

global environmental solutions

**Ecological Risk Assessment** 

Chedoke Creek Hamilton, Ontario

February 2020

SLR Project No.: 209.40666.00000



# ECOLOGICAL RISK ASSESSMENT CHEDOKE CREEK HAMILTON, ONTARIO

SLR Project No.: 209.40666.00000

Prepared by

SLR Consulting (Canada) Ltd. 300 Town Centre Blvd., Suite 200 Markham, ON L3R 5Z6

for

City of Hamilton 77 James Street North, Suite 400 Hamilton, ON L8R 2K3

February 12, 2020

Distribution: 1 copy – City of Hamilton

1 copy - SLR Consulting (Canada) Ltd.

## **EXECUTIVE SUMMARY**

#### INTRODUCTION

SLR Consulting (Canada) Ltd. (**SLR**) was retained by the City of Hamilton to complete an Aquatic Ecological Risk Assessment (**ERA**) for the lower section of Chedoke Creek, parallel to Highway 403 between Glen Road and Princess Point (i.e., study area).

An accidental sewage discharge from the Main/King Combined Sewer Overflow (CSO) facility to Chedoke Creek occurred between January 28, 2014 and July 18, 2018.

On November 14 and 28, 2019, MECP issued a revised provincial order and Directors Order to the City, including a requirement for completing an ERA report for Chedoke Creek.

The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (COPCs) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge. Specifically, the Order specified that the ERA should include an evaluation of the sewage remaining in the creek, identification of any on-going environmental impacts to the creek as a result of the sewage spill and a review of remediation options for the creek. Typical components of sewage discharge include nutrients and bacteria, with relatively small amounts of metals and polycyclic aromatic hydrocarbons (PAHs). However, because this is a CSO, metals and PAHs were also analyzed because these are components of CSO discharge.

## **ERA APPROACH**

The methods used to conduct this ERA were based on risk assessment procedures recommended by the Ministry of Environment, Conservation and Parks (**MECP**) and Environment and Climate Change Canada (**ECCC**).

The study area considered in this ERA includes the lower section of Chedoke Creek running parallel to Highway 403. The upstream extent of the study area is defined by Glen Road at which point Chedoke Creek is channelized underground. The downstream limit of the study area is the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). The bridge at Princess Point marks the boundary of the Chedoke Creek subwatershed (Hamilton Conservation Authority - **HCA**, 2008).

The datasets used in this ERA included a total of twenty-two sediment samples collected by Wood in 2018 and by SLR in 2019, as well as a total of eight surface water samples obtained by SLR in 2019. Sediment and surface water samples obtained prior to the Main/King CSO discharge event were also used, when available, to evaluate whether concentrations have returned to conditions observed before the discharge event. The ERA focused on the shallow sediment dataset (collected entirely within the top 15 cm of sediment) following MECP guidance (MOE 2008) specifying that surficial sediments (to about 10 cm depth) are where most sediment-dwelling organisms live and should therefore be the focus of the sediment assessment. The 2019 sediment sampling locations in the study area were selected based on a review of the 2018 sediment results. The design of the sampling program was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area.

SLR Project No.: 209.40666.00000

February 2020

City of Hamilton Ecological Risk Assessment – Chedoke Creek

The first part of this ERA is the problem formulation. For there to be any possibility of risks to ecological health, aquatic receptors must be exposed to one or more stressors (i.e., one or more COPCs). This question was addressed systematically by identifying the COPCs, the ecological receptors of concern (**ROCs**) that might be exposed to the COPCs, and the specific pathways through which the ROCs might be exposed. The information was summarized in a conceptual site model (**CSM**). The CSM combines information on COPCs, potential receptors, and potential exposure pathways to provide an overall picture of interactions within the study area and identifies complete exposure pathways which are carried forward for risk characterization.

The next steps in the ERA were the calculation of the degree to which the ROCs were exposed to the COPCs (i.e., Exposure Assessment) and an evaluation of the adverse effects posed by the COPCs (i.e., Effects Assessment). The exposure assessment evaluated the spatial distribution of the COPC groups and quantified the concentrations of individual COPCs at the point of contact with a receptor (e.g., aquatic plants, aquatic invertebrates, fish and/or amphibians). The COPC concentration at the point of contact is also referred to as the exposure point concentration (**EPC**). As part of the Effects Assessment, toxicity reference values (**TRVs**) were compiled for each of the COPCs to assess the potential effects and characterize the potential risks. A TRV is a receptor-specific concentration of a chemical, above which adverse effects have the potential to occur, and below which there is a low likelihood that adverse effects will occur.

In the Risk Quantification, the EPC obtained as part of the Exposure Assessment were divided by the TRVs to calculate hazard quotients (**HQs**). The HQs were compared to MECP ecological risk-based targets to characterize risks. According to MECP guidance, HQs greater than 1 indicate potential risks are present, while HQs less than 1 indicate negligible risk. In addition to calculating HQs, additional lines of evidence (**LOEs**) were evaluated to further assess the risks for benthic invertebrates. The benthic invertebrate LOEs included toxicity tests and the assessment of benthic invertebrates living in the creek. These additional LOEs were used because concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated to bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood, and vary on a site-specific basis, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including biological observations, controlled toxicity tests and measures of effects on benthic communities inhabiting sediments.

## PROBLEM FORMULATION FINDINGS

## Which compounds have been retained as COPCs?

COPC screening benchmarks were used to identify substances that could cause negative effects to ecological receptors. Chemicals with concentrations exceeding the screening benchmarks were deemed to be final COPCs and were carried forward for evaluation in the ERA.

The sediment screening benchmarks included, in the following order of preference, the Provincial Sediment Quality Guidelines (**PSQGs**) Lowest Effect Level (**LEL**), the Canadian Sediment Quality Guidelines (**CCME**) freshwater Interim Sediment Quality Guidelines (**ISQGs**), or the background sediment concentrations for metals in the Great Lakes region.

The surface water screening benchmarks included, in the following order of preference, the Provincial Water Quality Objectives (**PWQOs**), MECP Aquatic Protection Values (**APVs**), CCME Water Quality Guidelines, and BC Approved WQG for the protection of freshwater aquatic life.

SLR ii

The surface water results were screened against values protective of aquatic life, and of wildlife or livestock to account for wildlife potentially using Chedoke Creek as a source of drinking water.

The final COPCs retained in the ERA are presented below.

| COPC Group Sediment (0-0.15) |                                                                                                                                                                                                                                                                                   | Surface Water                |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Metals                       | Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc                                                                                                                                                                                                             | Aluminum and iron (total)    |
| PAHs                         | Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene,  2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs | None                         |
| Nutrients                    | Total Kjeldahl nitrogen (TKN) and total phosphorus                                                                                                                                                                                                                                | Nitrite and total phosphorus |

Fecal coliforms including *E. coli* were identified as uncertain COPCs in surface water and sediment as there are no screening benchmarks for the protection of ecological receptors.

## What species were identified as ROCs and how?

Numerous databases and reports were consulted to identify the ecological receptors potentially present in the study area. In addition, SLR biologists gathered information on aquatic plants and animals and their habitat while in the field. This information was used to compile a list of the species potentially present in the study area. It is standard practice in completing an ERA to select a subset of representative plant and animal species (surrogate receptors) to evaluate a reasonable number of receptors because it is impractical in terms of time and cost to conduct a risk assessment for every plant and animal species that might occur in a particular area. Provincial and federal agencies provide criteria to assist in the selection of surrogate receptors. These criteria were used to compile the final list of species considered in this ERA.

The following receptor groups and species were selected. Some species were selected to represent different feeding guilds.

- Aquatic plants
- Benthic aquatic invertebrates (community of organisms living in or on the sediment)
- Aquatic invertebrates (community of organisms living in the water column)
- Fish (benthivorous represented by the white sucker and piscivorous represented by the northern pike)
- Amphibians (represented by the leopard frog)
- Reptiles (represented by the northern water snake and snapping turtle)
- Herbivorous dabbling ducks (represented by the mallard)
- Omnivorous dabbling ducks (represented by American Black duck)
- Carnivorous birds (represented by the Great Blue heron)
- Piscivorous birds (represented by the osprey)
- Herbivorous mammals (represented by the muskrat)

SLR iii

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 6 of 406
SLR Project No.: 209.40666.00000
February 2020

## How can the ecological ROCs come into contact with the COPCs and what was evaluated in the ERA?

The ecological ROCs can come into contact with the COPCs via several exposure pathways including:

- Direct contact with contaminated environmental media (e.g., sediment, surface water)
- Ingestion (consumption) of sediment and water
- Ingestion of contaminated prey items.

As per risk assessment guidance, only complete exposure pathways are carried forward for evaluation in the ERA. Complete exposure pathways require a receptor to contact an environmental medium where COPCs have been identified. Complete exposure pathways have varying levels of importance; consequently, the pathways that reflect the highest potential exposure of a ROC to a specific COPC or group of COPCs are generally identified.

Complete exposure pathways were identified for:

- Aquatic plants exposed to COPCs in sediment and surface water
- Aquatic invertebrates exposed to COPCs in sediment and surface water
- Fish exposed to COPC in sediment and surface water
- Amphibians exposed to COPC in sediment and surface water

## **COPC SEDIMENT DISTRIBUTION AND TRENDS**

## **Nutrients**

Nutrients are a component of raw sewage. Total Kjeldahl nitrogen (TKN¹) and total phosphorus (TP) were the nutrients used to evaluate nutrients in sediment and surface water after the discharge event.

In 2018, both TKN and TP in surface sediment were above the PSQG LEL but below the PSQG SEL. In 2019, TKN decreased at all locations and all sediment samples had TKN in concentrations below the PSQG LEL. Concentrations of TP in surface sediment were comparable in 2018 and 2019. Studies that included historical sediment samples analyzed for TP in the study area were not found. However, sediment samples were collected in Cootes Paradise in 2006 and 2013, including two sediment samples from Chedoke Bay (CC-1 and CC-2). TP concentrations obtained from Chedoke Bay in 2006 and 2013 were comparable to concentrations obtained in 2018 and 2019.

Nutrients concentrations in the surface water samples obtained in 2019 were characteristics of waters influenced by organic inputs. TKN in the study area ranged from 500 to 1500  $\mu$ g/L and indicates nutrients enrichment<sup>2</sup>. TP concentrations in 2019 (314 to 428  $\mu$ g/L) exceeded the PWQO

SLR iv

-

<sup>&</sup>lt;sup>1</sup> TKN measures ammonia and organic nitrogen. In many wastewaters and effluents, organic nitrogen will convert to ammonia.

<sup>&</sup>lt;sup>2</sup> There is no Ontario guideline for TKN; however, waters not influenced by excessive organic inputs typically range from 0.100 to 0.500 mg/l (Environment Canada 1979).

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 7 of 406

SLR Project No.: 209.40666.00000 February 2020

(30  $\mu$ g/L) indicative of an excessive amount of TP in rivers. Elevated nutrients concentrations are a common occurrence in Chedoke Creek. In 1996, a mean TKN concentration of 2840  $\mu$ g/L was reported for Chedoke Creek (Chow-Fraser 1996). The mean total phosphorus concentration in the same study was reported to be 375  $\mu$ g/L. These concentrations are higher (TKN) or comparable (TP) to those obtained in 2019.

TP concentrations were measured in the study area (CP-11) before (2009 to 2013), during the discharge (May 2014 to July 2018) and after the discharge (August 2018 to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that TP concentrations were significantly higher in 2018 during the Gate 2 failure. After the discharge, TP concentrations returned to concentrations observed before the discharge event.

Chow-Fraser indicated that the high nutrient levels observed in 1996 in Chedoke Creek were probably linked to the several CSOs discharging into the creek. In addition, urban runoff has been recognized as a major nonpoint source of TP in the growing season, for example urban runoff has been identified as the second most important nonpoint loading source of TP to Cootes Paradise (Dong-Kyun et al 2016).

#### **Bacteria**

*E. coli* counts in surface water are commonly elevated throughout the Chedoke Creek watershed. *E coli* levels in water were measured in the study area and at three locations upstream of the Main/King CSO (CC-3, CC-7 and CC-9) in 2018, during and after the sanitary sewer discharge event. The results show that *E. coli* levels were significantly higher downstream of the King/Main CSO than in the upstream stations at CC-2, CC-7, and CC-9, during the discharge. After the discharge period, *E coli* downstream of the King/Main CSO decreased to levels lower than those observed at the upstream locations. This distribution pattern points to several sources of *E. coli* in Chedoke Creek subwatershed. In sediment, fecal coliforms were elevated after the discharges and have since decreased. Fecal coliforms are, however, still detectable in surface sediment downstream from the CSO and could be released to the water column when the sediment is stirred.

## Metals

Metals in surface sediment reflect the various inputs present in an urban watershed such as Chedoke Creek subwatershed and are present in concentrations that are comparable to those in a composited sample obtained in the study area by Environment Canada in 2002.

Metals exceeding the PSQG LELs in one or more samples included arsenic, chromium, copper, lead, manganese, mercury and zinc. Copper was the only metal that exceeded the PSQG SEL (at locations C-3 West, C-4 West and C-5 East). The highest concentrations of metals in surface sediment were generally obtained at locations 3 West, C-4 West and C-5 East. This indicates that the storm sewers located immediately upstream of C3-West and C5-East may also contribute metals to the study area.

## **Polycyclic Aromatic Hydrocarbons (PAHs)**

All surface sediment sampling locations except for one (G3) had one or more PAHs and total PAHs in concentrations exceeding the PSQG LELs in 2018 and 2019. Total PAHs were below the SEL in all samples in 2018 and 2019.

SLR v

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 8 of 406

SLR Project No.: 209.40666.00000 February 2020

In all samples, fluoranthene was the dominant PAH, followed by pyrene and phenanthrene or chrysene. The similar distribution of individual PAHs in the samples across the study area points to a common source. A study on PAHs in Cootes Paradise Marsh and select tributaries completed by Chow-Fraser et al (1996) indicated that PAHs in sediment in Spencer, Borer's and Chedoke Creeks most likely originated from automobile exhaust and residual asphalt based on the high levels of fluoranthene and pyrene, which are derivatives of engine combustion.

In 2002, Environment Canada investigated PAH concentrations in the sediment of 131 tributaries draining into the Niagara River or Lake Ontario. A composited sediment sample was obtained upstream of the mouth of Chedoke Creek as part of the 2002 study. The results indicated that at the time, individual PAHs and total PAHs also exceeded the SQG LELs. Similar to the samples obtained in 2018 and 2019, pyrene, fluoranthene and phenanthrene were the dominant PAHs in the composited sample obtained in 2002. The Environment Canada study concluded that PAHs were widespread in the tributaries, with concentrations generally appearing to be higher in or near urbanized areas. Ten out of the 131 tributaries had concentrations of total PAHs greater than 10 mg/kg. These tributaries were located in the most densely populated portions of the basin, between Hamilton and Toronto, and included Chedoke Creek. Out of the ten tributaries, seven had higher concentrations of total PAHs than Chedoke Creek.

## **KEY FINDINGS OF THE ERA**

The hazard quotients calculated as part of the risk characterization indicated that potential risks to aquatic life and amphibians exposed to surface sediment were negligible for nutrients and negligible to low for metals. This however does not preclude potential risks from exposure to nutrients for which TRVs are not available. Based on the hazard quotients for COPCs with available TRVs, potential risks were identified for aquatic life and amphibians exposed to PAHs in surface sediment. The potential risks were qualified as low, moderate or high depending on location. PAHs were identified as the risk drivers among the COPCs for which TRVs were available.

One mussel species of special conservation concern, Lilliput (*Toxolasma parvum*), has been observed in Cootes Paradise Marsh and Princess Point near the study area. For this reason, potential risks were conservatively assessed for this species although it is not known if it is present in the study area. The ERA found potential risks for this species at all sampling locations for metals and/or PAHs in sediment and nutrients in surface water.

Additional lines of evidence (LOEs) were used to evaluate potential risks to benthic invertebrates exposed to COPCs in sediment. The toxicity tests showed that the freshwater midge *Chironomus dilutus* was not significantly impacted after being exposed the sediment obtained from the study area. Adverse effects to amphipod (*Hyalella azteca*) growth and survival were observed in the toxicity tests. The benthic community in the study area comprised stress tolerant species consistent with those observed in urban streams draining areas of high percent impervious cover.

The results of the ERA indicate that the PAHs, metals and bacteria in the study area sediment, as well as the sediment oxygen demand resulting from the degradation of natural organic detritus and/or organic waste, likely restricts the benthic invertebrate community makeup to stress tolerant organisms. While the Main/King CSO discharge likely impacted the benthic invertebrates, the benthic community assemblage observed in the study area is consistent with that observed in streams in urban watersheds with a high percent of impervious cover and connectivity issues. The review of the COPCs distribution indicates that concentrations of PAHs, metals, nutrients and bacteria in sediment and/or surface water are comparable to concentrations measured prior to

SLR vi

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 9 of 406

SLR Project No.: 209.40666.00000 February 2020

the discharge. The elevated concentrations of COPCs have been an ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO. These observations are consistent with the fact that Chedoke Creek is predominantly an urbanized watershed that has been altered over time as a result of intense urban development within the Hamilton area, and the creek has been and continues to be subject to numerous point source (e.g., CSOs, storm water outfalls) and nonpoint source discharges (e.g., highway runoff, runoff from urban and industrial areas).

## RECOMMENDATIONS

Item 1 of the Director's Order required "an identification and evaluation of sewage remaining in the creek, anticipation of any ongoing environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek."

Recommendations proposed by Wood (2019) were reviewed by SLR based on information collected during 2019 (and not available to Wood) and findings in the current ERA. As a result of this review, none of the following recommendations considered in Wood (2019) – physical capping, chemical inactivation, or sediment removal by hydraulic dredge – are recommended at this time.

Options to remediate and monitor the creek were contingent on the assessment of impact. Monitoring the environmental condition of the creek as it relates to ongoing operations for the Main/King CSO is occurring. Information available for review in the ERA showed nutrient contamination and phosphorus loading typically associated with sewage discharge have reduced and are comparable to pre-discharge levels, indicating no apparent and persistent effects in Chedoke Creek resulting from the sewage discharge. Given these findings, the requirement for remediation of the creek as stated in the Director's Order would appear unnecessary to address effects from the sewage discharge, and the 'no action' alternative is recommended.

SLR vii

## **TABLE OF CONTENTS**

| <b>EXE</b> | CUTIV | /E SUMMARY                                                               |        |
|------------|-------|--------------------------------------------------------------------------|--------|
| LIST       | OF A  | CRONYMS AND ABBREVIATIONS                                                | XIII   |
| 1.0        | INTR  | ODUCTION                                                                 | 1      |
|            | 1.1   | Background                                                               |        |
|            | 1.2   | ERA Scope and Approach                                                   |        |
|            |       | 1.2.1 Spatial Scope                                                      |        |
|            |       | 1.2.2 Temporal Scope                                                     |        |
|            |       | 1.2.3 General Approach                                                   |        |
|            | 1.3   | Report Organization                                                      |        |
| 2.0        |       | LICABLE GUIDELINES AND/OR STANDARDS                                      |        |
| 2.0        | 2.1   | Sediment                                                                 |        |
|            | 2.1   |                                                                          |        |
|            |       |                                                                          |        |
| 3.0        |       | MARY OF PREVIOUS ENVIRONMENTAL STUDIES                                   |        |
|            | 3.1   | Royal Botanical Gardens Water Quality Monitoring Program                 |        |
|            | 3.2   | Hamilton Conservation Authority (HCA) Water Quality Monitoring Program   |        |
|            | 3.3   | Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of |        |
|            | 3.4   | the Bay of Quinte) Screening-Level Survey                                | ە<br>7 |
|            | 3.5   | Wood Environment and Infrastructure Solution (2019)                      |        |
|            |       |                                                                          |        |
| 4.0        |       | RONMENTAL DATA COLLECTED IN SUPPORT OF THE ERA                           |        |
| 5.0        | PRO   | BLEM FORMULATION                                                         |        |
|            | 5.1   | Chedoke Creek                                                            |        |
|            |       | 5.1.1 Study Area                                                         |        |
|            | 5.2   | Aquatic Receptors of Concern                                             | .13    |
|            |       | 5.2.1 Aquatic Life                                                       | .13    |
|            |       | 5.2.2 Aquatic Dependent Wildlife                                         |        |
|            |       | 5.2.3 Species of Concern                                                 |        |
|            |       | 5.2.4 Summary of Potential Ecological Receptors                          | .17    |
|            | 5.3   | Data Considered in the ERA                                               |        |
|            |       | 5.3.1 Sediment Chemistry Dataset                                         | .19    |
|            |       | 5.3.2 Surface Water Chemistry Dataset                                    | .20    |
|            |       | 5.3.3 Porewater Chemistry Dataset                                        | .20    |
|            |       | 5.3.4 Sediment Toxicity Dataset                                          |        |
|            |       | 5.3.5 Benthic Invertebrate Community Structure Dataset                   | .20    |
|            |       | 5.3.6 Dataset Use                                                        |        |
|            | 5.4   | Contaminants of Potential Concern                                        |        |
|            |       | 5.4.1 COPC Screening Method                                              |        |
|            |       | 5.4.1.1 Sediment                                                         |        |
|            |       | 5.4.1.2 Surface water                                                    |        |
|            |       | 5.4.2 COPC Screening Results                                             |        |
|            |       | 5.4.2.1 Final Sediment COPCs                                             |        |
|            |       | 5.4.2.2 Final Surface Water COPCs                                        |        |
|            |       | 5.4.2.4 Innocuous Substances                                             |        |
|            |       | 5.4.2.4 Innocuous Substances                                             |        |
|            |       | 5.4.3.1 Bioaccumulation and Biomagnification of PAHs                     |        |
|            |       | o. 1.o. 1 Diodoodinalation and Diomagninoation of 1 Alio                 | 0      |

SLR viii

|     | 5.5  | Exposure Pathway Identification                                 |    |
|-----|------|-----------------------------------------------------------------|----|
|     |      | 5.5.1 Exposure to Sediment                                      |    |
|     |      | 5.5.2 Exposure to Surface Water                                 |    |
|     | 5.6  | Conceptual Site Model                                           |    |
|     | 5.7  | ERA Risk Analysis Plan                                          |    |
|     |      | 5.7.1 Assessment and Measurement Endpoints                      | 30 |
| 6.0 | EXP  | DSURE ASSESSMENT                                                | 32 |
|     | 6.1  | COPCs Spatial Distribution and Trends                           | 32 |
|     |      | 6.1.1 Metals                                                    | 32 |
|     |      | 6.1.2 PAHs                                                      | 35 |
|     |      | 6.1.3 Nutrients                                                 | 36 |
|     |      | 6.1.4 Bacteria                                                  |    |
|     |      | 6.1.5 Biochemical Oxygen Demand (BOD) and Dissolved Oxygen (DO) | 39 |
|     | 6.2  | Exposure Point Concentrations (EPC)                             | 40 |
| 7.0 | FFFF | ECTS ASSESSMENT                                                 | 40 |
|     | 7.1  | Literature-Based Toxicity Reference Values                      |    |
|     |      | 7.1.1 Sediment TRVs for Aquatic Life                            |    |
|     |      | 7.1.2 Surface Water TRVs for Aquatic Life                       |    |
|     | 7.2  | Sediment Toxicity Tests                                         |    |
|     | 7.3  | Benthic Invertebrate Community Structure Analysis               |    |
|     |      | 7.3.1 Benthic Invertebrate Community Structure Analysis Method  |    |
|     |      | 7.3.2 Benthic Invertebrate Community Structure Analysis Results |    |
| 0.0 | DICK | CHARACTERIZATION                                                |    |
| 8.0 | 8.1  | Sediment HQ                                                     |    |
|     | O. I |                                                                 |    |
|     |      | 8.1.1 Aquatic Plants and Benthic Invertebrates                  |    |
|     |      | 8.1.2 Fish and Amphibians                                       |    |
|     | 8.2  | 8.1.3 Invertebrates Species at risk                             |    |
|     | 0.2  | •                                                               |    |
|     |      | 8.2.1 Invertebrates                                             |    |
|     |      | 8.2.2 Aquatic Plants                                            |    |
|     |      | 8.2.3 Fish                                                      |    |
|     |      | 8.2.4 Amphibians                                                |    |
|     | 0.0  | 8.2.5 Interpretation of Surface Water Results                   |    |
|     | 8.3  | Lines of Evidence (LOEs) for Select 2019 Sediment Samples       |    |
|     |      | 8.3.1 Approach                                                  |    |
|     |      | 8.3.2 Chemistry Line of Evidence                                |    |
|     |      | 8.3.3 Toxicity Test Line of Evidence                            |    |
|     |      | 8.3.4 BICS Line of Evidence                                     |    |
|     |      | 8.3.5 Weight of Evidence                                        |    |
| 9.0 | UNC  | ERTAINTY ANALYSIS                                               |    |
|     | 9.1  | Problem Formulation Uncertainties                               |    |
|     |      | 9.1.1 Data Collection and Evaluation Uncertainties              |    |
|     |      | 9.1.2 COPC Screening Uncertainties                              |    |
|     |      | 9.1.2.1 Depth-Specific COPC Screening                           |    |
|     |      | 9.1.2.2 Uncertain COPCs                                         |    |
|     |      | 9.1.3 Receptor Identification Uncertainties                     |    |
|     |      | 9.1.4 Exposure Pathway Uncertainties                            |    |
|     | 9.2  | Exposure Assessment Uncertainties                               |    |
|     |      | 9.2.1 Estimated Exposure Concentrations                         |    |
|     |      | 9 2 1 1 Depth-Specific EPCs                                     | 61 |

| !     | 9.3   | Effects Assessment Uncertainties                                                                  |     |
|-------|-------|---------------------------------------------------------------------------------------------------|-----|
|       | 9.4   | 9.3.1 Toxicity Testing and BICS Analysis Risk Characterization Uncertainties                      |     |
|       |       | MARY AND CONCLUSIONS                                                                              |     |
|       |       | DMMENDATIONS                                                                                      |     |
|       |       | EMENT OF LIMITATIONS                                                                              |     |
|       |       | RENCES                                                                                            |     |
| 13.0  | KEFE  | :RENCES                                                                                           | ./1 |
|       |       |                                                                                                   |     |
|       |       | TABLES WITHIN TEXT                                                                                |     |
| Table | 1-1:  | Report Organization                                                                               |     |
| Table | 3-1:  | Total PAHs Concentrations in Ten Lake Ontario Tributaries                                         |     |
| Table | 4-1:  | Summary of SLR 2019 Surface Water and Sediment Analytes                                           |     |
| Table | 5-1:  | Chedoke Creek Subwatershed Land Use Statistics (Source: HCA 2008)                                 | .11 |
| Table | 5-2:  | Native Fish Species Known to occur in Chedoke Creek                                               |     |
| Table | 5-3:  | Summary of Species at Risk                                                                        | .16 |
| Table | 5-4:  | Ecological Receptor Selection                                                                     | .18 |
| Table | 5-5:  | Sediment COPC Summary                                                                             | .23 |
| Table | 5-6:  | Surface Water COPC Summary                                                                        | .23 |
| Table | 5-7:  | Uncertain COPC Summary                                                                            | .24 |
| Table | 5-8:  | Bioaccumulation Potential of Preliminary COPCs                                                    | .25 |
| Table | 5-9:  | Summary of Potential Exposure Pathways                                                            | .29 |
| Table | 5-10: | ERA Assessment and Measurement Endpoints                                                          | .31 |
| Table | 6-1:  | Chedoke Creek COPC Concentrations in 2002, 2018 and 2019                                          | .34 |
| Table | 6-2:  | Chedoke Bay Historical and Current Surface Sediment Metal Maximum COPC Concentrations             | 34  |
| Table | 6-3:  | Total PAHs Results in Chedoke Creek                                                               | .36 |
| Table | 6-4:  | Chedoke Bay Historical and Current Maximum Sediment TKN and TP Concentrations in Surface Sediment | 37  |
| Table | 6-5:  | Surface Water TP Concentrations Before, During and After the Discharge                            | .38 |
| Table | 6-6:  | Chedoke Creek E. Coli Levels in Surface Water Downstream and Upstream of Main/King CSO in 2018    | 39  |
| Table | 6-7:  | Surface Water Exposure Point Concentrations                                                       | .40 |
| Table | 7-1:  | Sediment Toxicity Reference Values for the Protection of Aquatic Life (mg/kg)                     | .42 |
| Table | 7-2:  | Surface Toxicological Reference Values for the Protection of Aquatic Life (µg/L)                  | 44  |
| Table | 7-3:  | Summary of Chironomus dilutus and Hyalella azteca Percent Difference                              | .45 |
| Table | 7-4:  | Mean Species Richness and Hilsenhoff's Biotic Index (HBI) in 2018 and 2019                        | .47 |
| Table | 8-1:  | Summary of Sediment Samples with HQs > 1.0                                                        | .48 |

SLR x

City of Hamilton Ecological Risk Assessment – Chedoke Creek

| Table 8-2:  | Risk Categories and Associated Criteria Used to Rank Sediment Samples Presented in Table 8-1 Based on Analytical Chemistry | 49 |
|-------------|----------------------------------------------------------------------------------------------------------------------------|----|
| Table 8-3:  | Invertebrate Hazard Quotients (HQ) for Surface Water                                                                       | 50 |
| Table 8-4:  | Aquatic Plant Hazard Quotients (HQ) for Surface Water                                                                      | 51 |
| Table 8-5:  | Fish Hazard Quotients (HQ) for Surface water                                                                               | 51 |
| Table 8-6:  | Amphibian Hazard Quotients (HQ) for Surface water                                                                          | 52 |
| Table 8-7:  | Summary of 2019 Sediment Samples with Additional Lines of Evidence                                                         | 53 |
| Table 8-8:  | 2019 Sediment Samples Risk Categories                                                                                      | 54 |
| Table 8-9:  | Risk Categories and Criteria for Toxicity LOE                                                                              | 55 |
| Table 8-10: | Risk Categories for the Toxicity Testing LOE                                                                               | 55 |
| Table 8-11: | COPCs above TRV in Samples Submitted for Toxicity Tests                                                                    | 56 |
| Table 8-12: | WOE Risk Rankings for Sediment Samples                                                                                     | 57 |
| Table 9-1:  | Depth-Specific Sediment COPC Summary                                                                                       | 59 |
| Table 9-2   | Uncertain COPC Summary                                                                                                     | 60 |
| Table 11-1: | Some Effects Associated with Sediment Removal by Dredge in Chedoke Creek.                                                  | 86 |
|             | TABLES FOLLOWING TEXT                                                                                                      |    |
| Table 1:    | Contaminants of Potential Concern (COPC) Screening for Aquatic Life - Sediment (0-0.15 mbss)                               |    |
| Table 2:    | Contaminants of Potential Concern (COPC) Screening for Aquatic Life - Surface Water                                        |    |
| Table 3:    | Contaminants of Potential Concern (COPC) Screening for Wildlife - Surface Water                                            |    |
| Table 4:    | Sediment EPCs and HQs                                                                                                      |    |
| Table 5:    | Sediment EPCs and HQs – SAR                                                                                                |    |
| Table 6:    | Surface Water HQs                                                                                                          |    |

## **DRAWINGS**

| Drawing 1: | Site Location Plan                     |
|------------|----------------------------------------|
| Drawing 2: | Sample Locations                       |
| Drawing 3: | Sample Details and Reference Locations |
| Drawing 4: | Conceptual Site Model                  |

SLR χi

Appendix "A" to Report PW19008(g)/LS19004(g)

Page 14 of 406

City of Hamilton Ecological Risk Assessment – Chedoke Creek SLR Project No.: 209.40666.00000 February 2020

## **APPENDICES**

Appendix A: Previous Environmental Investigations Sampling Locations

Appendix B: Laboratory Analytical Report

Appendix C: Ecological Receptors Supporting Information

Appendix D: ERA Analytical Chemistry Dataset

Appendix E: Entomogen Report and BV Toxicity Report

Appendix F: ProUCL Outputs

Appendix G: TRVs

Appendix H: Uncertainty Assessment

SLR xii

Page 15 of 406

City of Hamilton Ecological Risk Assessment – Chedoke Creek SLR Project No.: 209.40666.00000 February 2020

## LIST OF ACRONYMS AND ABBREVIATIONS

AEC Area of Environmental Concern

ANOVA Analysis of Variance

APVs Aquatic Protection Values

ARCS Assessment and Remediation of Contaminated Sediment

ATSDR Agency for Toxic Substances and Disease Registry

AWF Freshwater Aquatic Life

BC British Columbia

BICS Benthic Invertebrate Community Structure

BOD Biochemical Oxygen Demand

BV Bureau Veritas
CC Chedoke Creek

CCME Canadian Council of Ministers of the Environment

cfu/ml Colony Forming Unit per Milliliter

cm centimetre

COPC Contaminants(s) of Potential Concern

COSEWIC Committee on the Status of Endangered Wildlife in Canada

CP Cootes Paradise

CSAP Contaminated Sites Approved Professionals Society

CSM Conceptual Site Model

CSO Combined Sewer Overflow

CUM Cultural Meadow
CUS Cultural Savana

DFO Fisheries and Oceans Canada

DO Dissolved Oxygen

DOC Dissolved Organic Carbon

DQRA<sub>CHEM</sub> Detailed Quantitative Risk Assessment for Chemicals

EC Environment Canada

EC<sub>20</sub> Environmental Concentration where 20% Effect Occurs

EPC Exposure Point Concentration
EPR Environmental Project Report
EPS Environmental Protection Series

EPT Ephemeroptera, Plecoptera, Trichoptera

ERA Ecological Risk Assessment
ESA Environmental Sensitive Area

FCSAP Federal Contaminated Sites Action Plan

SLR xiii

Appendix "A" to Report PW19008(g)/LS19004(g)

Page 16 of 406

City of Hamilton Ecological Risk Assessment – Chedoke Creek SLR Project No.: 209.40666.00000 February 2020

FOD Deciduous Forest

HBI Hilsenhoff's Biotic Index

HCA Hamilton Conservation Authority

HHRAP Hamilton Harbour Remedial Action Plan

HQ Hazard Quotient

HMW High Molecular Weight IBA Important Bird Area

IMPARA Important Reptile and Amphibian Area ISQGs Interim Sediment Quality Guidelines

km<sup>2</sup> square kilometers

L Litre

LEL Lowest Effect Level
LMW Low Molecular Weight

LOE Line of Evidence

LOEL Lowest Observed Effect Level

LRT Light Rail Transit

m metre

MAC Maximum Allowable Concentration

MAS Shallow Marsh

MECP Ministry of the Environment, Conservation and Parks

mg/kg milligram per kilogram mg/L milligram per litre

MOE Ministry of the Environment

NA Not Applicable na not available

NAI Natural Areas Inventory

NOAEL No Observed Adverse Effect Level

O<sub>2</sub> Oxygen
OAO Open water

OMNR Ontario Ministry of Natural Resources

ON Ontario

PAH Polycyclic Aromatic Hydrocarbons

PCBs Polychlorinated Biphenyls

PEC Consensus-Based Probable Effect Concentration

PEL Probable-Effect Level

POPs Persistent Organic Pollutants

PWQO Provincial Water Quality Objectives

SLR xiv

Page 17 of 406

City of Hamilton Ecological Risk Assessment – Chedoke Creek

SLR Project No.: 209.40666.00000 February 2020

**PSQGs** Provincial Sediment Quality Guidelines

Q Quotient

QA/QC Quality Assurance and Quality Control

**RBG** Royal Botanical Gardens

ROC Receptor of Concern

SA **Shallow Aquatic** SAR Species at Risk

SARA Species at Risk Act

SedQC Sediment Quality Criteria

SEL Severe Effect Level

SLR SLR Consulting (Canada) Ltd. SOP Standard Operating Procedure SQG Sediment Quality Guideline

TCEQ Texas Commission on Environmental Quality

TKN Total Kjeljdahl Nitrogen TOC **Total Organic Carbon** TP **Total Phosphorus** 

TRV **Toxicity Reference Value** TSS **Total Suspended Solids** 

Upper Confidence Limit of the Mean **UCLM** 

**UNEP** United Nations Environmental Programme

US **United States** 

USEPA United States Environmental Protection Agency

**USGS** United States Geological Survey Valued Ecosystem Components **VECs** 

WOE Weight of Evidence

Wood Environmental & Infrastructure Solutions Wood

WQG Water Quality Guidelines

μg/L micrograms per litre

SLR X۷

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 18 of 406

SLR Project No.: 209.40666.00000 February 2020

## 1.0 INTRODUCTION

SLR Consulting (Canada) Ltd. (**SLR**) was retained by the City of Hamilton to complete an Aquatic Ecological Risk Assessment (**ERA**) for the lower section of Chedoke Creek, parallel to Highway 403 (Drawing 1). The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (**COPCs**) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge.

The ERA was carried out using data and information presented in the Wood Environmental & Infrastructure Solutions (**Wood**) report titled, *MECP Order # 1-J25YB Item 1b Chedoke Creek Natural Environment and Sediment Quality Assessment and Remediation Report, City of Hamilton*, dated January 24, 2019 as well as environmental data collected by SLR during the week of September 30, 2019.

## 1.1 Background

An accidental sewage discharge from the Main/King Combined Sewer Overflow (**CSO**) facility to Chedoke Creek occurred between January 28, 2014 and July 18, 2018.

On August 2, 2018, the Ministry of Environment, Conservation and Parks (**MECP**) issued Provincial Officer's Order #1-J25YB (the 2018 Order) to the City. The 2018 Order included requirements for an evaluation of the impacts of the sewage discharge to Chedoke Creek. To fulfil this requirement, the City retained Wood to complete a site assessment and an impact assessment, and to prepare a remedial plan, if required (Wood, 2019).

In the spring of 2019, the City asked SLR to provide peer review services related to the investigation and mitigation recommendations presented in the 2019 Wood Report. Findings of the peer review were provided in a memorandum dated May 15, 2019 and follow-up report entitled "Peer Review Related Services and Environmental Technical Support" dated June 7, 2019.

The findings of the peer review indicated that the 2019 Wood Report included information on the physical characteristics and the quality of the sediment found at the bottom of Chedoke Creek, the aquatic invertebrates living in this sediment, the fish living in or migrating to Chedoke Creek, and the quality of the water in the creek. However, only sediment quality compared to the Provincial Sediment Quality Guidelines had been used to evaluate whether conditions in the creek potentially caused adverse effects to aquatic life. For this reason, SLR recommended re-analyzing the data presented in the Wood Report in the context of an ERA to determine next steps for Chedoke Creek, including a data gap analysis and the development of a workplan to collect additional information where required.

Following a review of the data contained in the 2019 Wood Report and consultation with the City of Hamilton, a sediment and surface water sampling program was conducted in September 2019 by SLR to support the completion of a risk assessment report. Sediment sampling sites in Chedoke Creek were selected based on a review of the sediment chemistry data provided in the 2019 Wood Report. The sampling design was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area. Though every effort was made to include a local sediment reference location in a comparable urban creek (i.e., Red Hill Creek), no nearby location included fine sediments suitable for chemical or toxicological analyses.

Appendix "A" to Report PW19008(g)/LS19004(g) Page 19 of 406 SLR Project No.: 209.40666.00000

February 2020

The field program consisted of the collection of surface water and sediment samples from Lower Chedoke Creek for analytical chemistry evaluation. Two surface water samples were also collected upstream and downstream of the CSO at Red Hill Creek, a local urban stream. In addition to chemical analysis, select sediment samples were submitted for toxicological characterization (i.e., toxicity testing). Benthic invertebrate community structure (BICS) analysis was also conducted.

On November 14 and 28, 2019, MECP issued a revised provincial order and Directors Order (1-MRRCX) to the City, including a requirement for completing an ecological risk assessment report for Chedoke Creek as a result of the sewage discharge.

## 1.2 ERA Scope and Approach

The risk assessment presented in this report is an aquatic ecological risk assessment and considered ecological receptors including aquatic life (aquatic plants, aquatic invertebrates and fish), amphibians and aquatic-dependent reptiles, birds and mammals.

## 1.2.1 Spatial Scope

The study area considered in this ERA includes the lower section of Chedoke Creek running parallel to Highway 403. The upstream extent of the study area is defined by Glen Road at which point Chedoke Creek is channelized underground. The downstream limit of the study area is the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). The bridge at Princess Point marks the boundary of the Chedoke Creek subwatershed (Hamilton Conservation Authority -HCA, 2008; drawing provided in Appendix A). The outlet of the Main/King CSO facility is located at the upstream limit of the study area.

Some environmental samples were collected immediately downstream of the bridge in Chedoke Bay (also referred to as Chedoke Delta). Chedoke Bay is located in the south east corner of Cootes Paradise Marsh at the mouth of Chedoke Creek (Theijsmeijer and Bowman, 2016). These samples, while collected from within Cootes Paradise, are discussed in the ERA as they characterize the outlet area of Chedoke Creek.

Environmental samples obtained in Chedoke Creek upstream of the study area were also considered in this ERA. These samples provide information on conditions in sections of the creek not affected by the Main/King CSO. Finally, environmental samples obtained in Red Hill Creek were considered in this ERA. These samples provide information on environmental conditions in an urban creek draining a similar urban watershed.

As per the scope of work for this ERA, Cootes Paradise Marsh was not included in the ERA.

## 1.2.2 Temporal Scope

The ERA focuses on current environmental conditions in the study area. Therefore. environmental data collected prior to or during the Main/King CSO discharge were not included in the dataset used to evaluate the current exposure of ecological receptors (i.e., data obtained before July 18, 2018).

Environmental data obtained from Chedoke Creek prior to the CSO discharge were; however, considered in this report to support the discussion of environmental trends prior to and following the Main/King CSO discharge.

## 1.2.3 General Approach

The ERA was conducted in general accordance with the ecological risk assessment guidance available from the following sources:

- Ministry of the Environment (**MOE**<sup>3</sup>). 2008. Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario.
- MOE 2011a. Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act.
- MOE 2011b. Rationale for the Development of the Soil and Groundwater Standards for Use at Contaminated Sites in Ontario. Ministry of the Environment Standards Development Branch. April 15, 2011.
- MECP. 2017. Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act. Published August 18, 2017, Updated May 15, 2019.
- Environment Canada (**EC**). 2012. Federal Contaminated Sites Action Plan (**FCSAP**) Ecological Risk Assessment Guidance. March 2012.

The first part of this ERA is the problem formulation. For there to be any possibility of a risk to ecological health, aquatic receptors must be exposed to one or more stressors (i.e., one or more COPCs). This question was addressed systematically by identifying the COPCs, the ecological receptors of concern (**ROCs**) that might be exposed to the COPCs, and the specific pathways through which the ROCs might be exposed. The information was summarized in a conceptual site model (**CSM**<sup>4</sup>) to determine the ROC-COPC combinations arising from complete exposure pathways that were carried forward for risk characterization.

The next steps were the calculation of the degree to which the ROCs were exposed to the COPCs (i.e., Exposure Assessment) and the toxicity of the COPC (i.e., Effects Assessment). Using these two factors, risk calculations were completed and the resulting hazard quotients (**HQs**) were compared to MECP ecological risk-based targets (i.e., Risk Characterization). According to MECP guidance, HQs greater than 1 indicate potential risks are present, while HQs less than 1 indicate negligible risk. In addition to calculating HQs to evaluate the risks, additional lines of evidence (**LOEs**) were evaluated to further assess the risks for benthic invertebrates. The benthic invertebrate LOEs included the evaluation of sediment toxicity to freshwater organisms in controlled laboratory conditions, and the assessment of benthic invertebrate living in the creek.

SLR 3

<sup>&</sup>lt;sup>3</sup> Now the Ministry of Environment Conservation and Parks (MECP)

<sup>&</sup>lt;sup>4</sup> A CSM combines information on COPCs, potential receptors, and potential exposure pathways to provide an overall picture of interactions on a site and identifies complete exposure pathways which are carried forward for risk characterization (refers to Section 5.7).

Page 21 of 406 SLR Project No.: 209.40666.00000 February 2020

## 1.3 Report Organization

The report is organized into the sections described in Table 1-1.

**Table 1-1: Report Organization** 

| Report Section                                        | Content                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Section 1 – Introduction                              | Outlines site objectives and scope.                                                                                                                                                                                                                                                                                                                     |
| Section 2 – Applicable Guidelines and/or Standards    | Provides an overview of the standards and guidelines applied to the data to identify the COPCs                                                                                                                                                                                                                                                          |
| Section 3 – Summary of Previous Environmental Studies | Provides brief summaries of previous environmental studies relevant to the ERA.                                                                                                                                                                                                                                                                         |
| Section 4 – Data Collected in Support of the ERA      | Provides a summary of the field investigations completed by SLR to support the ERA.                                                                                                                                                                                                                                                                     |
| Section 5 – Problem Formulation                       | Provides site information; describes characterization data and historical and current analytical results; presents the COPC screening process and identifies COPCs in affected media; screens potential ecological receptors; discusses relevant exposure pathways; presents the CSM identifying complete exposure pathways to be evaluated in the ERA. |
| Section 6 – Exposure Assessment                       | Discusses the distribution of the final COPCs and identifies exposure point concentrations (EPCs) for each medium, pathway and receptor pairing.                                                                                                                                                                                                        |
| Section 7 – Effect Assessment                         | Provides toxicity reference values (TRVs) and discusses methods and results for toxicity tests, benthic invertebrate community structure and biological surveys.                                                                                                                                                                                        |
| Section 8 – Risk Characterization                     | Evaluates potential risks by combining the exposure information and TRVs to calculate HQs on a study area-wide basis. Presents the additional LOEs used in the evaluation of risks and integrates each LOEs into a final ERA weight of evidence (WOE).                                                                                                  |
| Section 9 – Uncertainty Analysis                      | Identifies areas of greatest uncertainty and any assumptions that could affect the conclusions of the ERA                                                                                                                                                                                                                                               |
| Section 10 – Summary and Conclusions                  | Provides a summary and conclusions of the ERA.                                                                                                                                                                                                                                                                                                          |
| Section 11 – Recommendations                          | Provides a summary of the recommendations.                                                                                                                                                                                                                                                                                                              |
| Section 12 – Statement of Limitations                 | Discusses obligations and responsibilities of SLR regarding this report.                                                                                                                                                                                                                                                                                |
| Section 13 – References                               | Lists references used in the ERA.                                                                                                                                                                                                                                                                                                                       |

Appendix "A" to Report PW19008(g)/LS19004(g) Page 22 of 406

SLR Project No.: 209.40666.00000 February 2020

## 2.0 APPLICABLE GUIDELINES AND/OR STANDARDS

The following subsections present the environmental guidelines and/or standards specifically used to identify the COPCs selected in the ERA (i.e., COPC screening benchmarks). The COPC identification process (or COPC screening) is further discussed in Section 5.4.

## 2.1 Sediment

The Provincial Sediment Quality Guidelines (**PSQGs**) Lowest Effect Levels (**LELs**) are the basis of the MECP Sediment Standards (MOE 2011a) and were used to identify sediment COPCs for aquatic life (macrophyte, benthic invertebrates and benthic fish) (MOE 2011b and MOE 2008). The PSQG LEL "indicates a level of contamination that can be tolerated by the majority of sediment-dwelling organisms. Sediments meeting the LEL are considered clean to marginally polluted" (MOE 2008).

The Canadian Sediment Quality Guidelines (Canadian Council of Ministers of the Environment - CCME 1999) freshwater Interim Sediment Quality Guidelines (**ISQGs**) were used as secondary values to identify COPCs for the parameters for which PSQG LELs have not been developed.

The background sediment concentrations for metals in the Great Lakes region (MOE, 2008) were also used as screening benchmarks, where available.

The selected COPC screening values for sediment are provided in Table 1 after the text.

#### 2.2 Surface Water

The surface water results were compared to the guidelines/standards listed below to identify COPCs for aquatic life. Where provincial water quality objectives or values were unavailable, guidelines and standards from other jurisdictions were selected if methods and protection goals aligned with MECP approaches.

- Provincial Water Quality Objectives (PWQOs) and Interim PWQOs for the protection of aquatic life (MOE 1994 and updates);
- MECP Aquatic Protection Values (APVs) (MOE 2011b);
- CCME Water Quality Guidelines (WQG) for the protection of aquatic life (2008);
- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019); and
- BC Working WQGs for the protection of AWF Long-term Values (BC ENV 2018).

In addition to the guidelines listed above, the CCME WQG for the protection of livestock were used to identify COPCs for aquatic-dependent wildlife potentially using Chedoke Creek as a source of drinking water. In the absence CCME WQG for livestock, the BC Approved and Working WQG for wildlife and/or livestock were used. Finally, in the absence of WQG specific to wildlife or livestock, the MECP value protective of potable water (GW1) were conservatively applied to identify COPCs for wildlife ingesting surface water.

The selected COPC screening values for surface water are provided in Tables 2 and 3 after the text.

## 3.0 SUMMARY OF PREVIOUS ENVIRONMENTAL STUDIES

The following is a summary of recent environmental studies considered in this ERA.

## 3.1 Royal Botanical Gardens Water Quality Monitoring Program

The Royal Botanical Gardens (**RBG**) has been conducting an annual water quality monitoring program since the early 1970's in Cootes Paradise Marsh and Grindstone Marsh. The monitoring program focuses on the marshes, but also monitors inflowing waters including Chedoke Creek, Spencer Creek, Borer's Creek, and Grindstone Creek. One sampling location, CP11, is within Chedoke Creek in the study area. RBG records show that CP11 was monitored from June 1994 to May 2014.

Surface water samples were analyzed for bacteriology and nutrients (total ammonia, ammonia un-ionized, Total Kjeldahl Nitrogen (**TKN**), nitrate, nitrite, total nitrogen, and total phosphorus (**TP**)). In addition, temperature, conductivity, dissolved oxygen, pH, and turbidity were measured in the field. The sample locations are provided in Appendix A.

## 3.2 Hamilton Conservation Authority (HCA) Water Quality Monitoring Program

In 2014, HCA became responsible for the surface water sampling in Spencer Creek, Ancaster Creek, Borers Creek and Chedoke Creek, previously completed by RBG. This sampling program included biweekly grab samples was implemented under the Hamilton Harbour Remedial Action Plan (HHRAP) to gather information on inputs from nonpoint sources of nutrients, sediments and bacteria into Cootes Paradise Marsh and ultimately the Hamilton Harbour. The HCA monitoring program included one sampling location in Chedoke Creek, in the study area (CP-11). As part of the 2017/2018 sampling program, eight additional sampling locations were added in Chedoke Creek (CC-3. CC-5, CC-7, CC-9, CC-2, CC-5a, CC-10, CC11 Outlet). These samples locations were added in order to identify the sources of elevated levels of nutrients and bacteria that had been observed at CP-11. Sampling locations CP-11 and CC11 Outlet are within the study area. The other seven locations are upstream of the study area.

Samples obtained by HCA were analyzed for bacteriology and nutrients (ammonia + ammonium, nitrate, nitrite, TP, and o-Phosphate). In addition, temperature, conductivity, dissolved oxygen, pH, and turbidity were measured in the field. Sample locations are provided in Appendix A.

# 3.3 Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte) Screening-Level Survey

In the summer of 2002, Environment Canada completed a screening-level survey of the quality of recently deposited sediment near the mouths of tributaries draining to the Niagara River and Lake Ontario as far east as the Bay of Quinte. Sampling method followed the United States Geological Survey (USGS) protocol and sub-samples were combined at each site to obtain one sample representative of the overall conditions in a given tributary. A total of 147 samples were obtained including 131 tributaries and 16 field duplicate samples (Dove et al 2003). One sample was obtained from lower Chedoke Creek and analyzed for metals, polycyclic aromatic hydrocarbons (PAHs), total polychlorinated biphenyls (PCBs) and organochlorine pesticides. Total PCBs and pesticides results were below the detection limits of the laboratory methods. Most individual PAHs and total PAHs in the Chedoke Creek sample were above the SQG LEL. In addition, phenanthrene, fluoranthene, pyrene and benz(a)anthracene were above the CCME

probable effect level (**PEL**). Arsenic, cadmium, chromium, copper, mercury, manganese, lead and zinc were above the SQG LEL. Zinc was also above the CCME PEL.

The study concluded that PAHs were widespread in the tributaries, with concentrations generally appearing to be higher in or near urbanized areas. Ten of the tributaries had concentrations of total PAHs greater than 10 mg/kg. These tributaries were located in the most densely populated portion of the basin, between Hamilton and Toronto (Table 3-1).

Table 3-1: Total PAHs Concentrations in Ten Lake Ontario Tributaries

| Tributary        | Total PAH concentration (mg/kg) |  |
|------------------|---------------------------------|--|
| Pioneer Creek    | 71.6                            |  |
| Stoney Creek     | 26.0                            |  |
| Rambo Creek      | 20.0                            |  |
| Applewood Creek  | 19.3                            |  |
| Shoreacres Creek | 18.8                            |  |
| Wendigo Creek    | 17.0                            |  |
| Montgomery Creek | 14.8                            |  |
| Chedoke Creek    | 14.5                            |  |
| Roseland Creek   | 12.6                            |  |
| Tuck Creek       | 11.7                            |  |

The study also concluded that some metals commonly exceeded the SQG LEL, including cadmium (at 94 sites), copper (at 83 sites), manganese (at 87 sites), and zinc (at 64 sites).

## 3.4 Royal Botanical Gardens (RBG) Marsh Sediment Quality Assessment

In November 2013 sediment grab samples were obtained from Cootes Paradise Marsh and Grindstone Marsh areas as part of the sediment quality monitoring program completed by RBG (Bowman and Theijsmeijer, 2014). Sediment samples were obtained from ten locations. While the inflowing creeks were not sampled, two samples were obtained from Chedoke Bay (CC-1 and CC-2). The locations were selected based on results of the RBG 2006 sediment sampling program so that results could be compared to evaluate trends in sediment quality. Sediment samples were analyzed for nutrients and metals. Concentrations of TKN. TP. cadmium, copper. iron, manganese, lead, nickel and zinc exceeded the PSQG LEL but were below the SEL in Chedoke Bay. Metals exceeding the PSQGs LEL were observed at most locations in Cootes Paradise and Grindstone Marsh, with copper exceeding the LEL at all ten locations. Chedoke Bay and West Pond had the greatest number of metals exceeding the LEL (seven LEL exceedances for both stations). All stations exceeded the LEL for TKN and TP. In addition, TP exceeded the SEL at the Desjardins Canal sampling locations. The study concluded that the sediments of Cootes Paradise Marsh and Grindstone Marsh demonstrate low to moderate contamination of some heavy metals and nutrients, with the exception of TP in the Desjardin Canal. Sample locations are provided in Appendix A.

The study did not recommend additional monitoring for metals in sediment because concentrations "were only slightly elevated above LEL's and include a number of naturally

Appendix "A" to Report PW19008(g)/LS19004(g) Page 25 of 406 SLR Project No.: 209.40666.00000

February 2020

occurring metals sources from high contact with rock in the area". The study recommended follow up monitoring for nutrients (specifically TP and TKN) in areas of concern including West Pond, Westdale Inlet, the Desjardins Canal, and Long Pond. Remediation of the Desjardins Canal sediment was identified as a priority.

## 3.5 Wood Environment and Infrastructure Solution (2019)

Wood completed a site assessment and impact assessment of Chedoke Creek downstream from the Main/King CSO facility (Wood, 2019). The study used several LOEs including sediment physical characteristics and analytical chemistry, benthic invertebrate community data, fish community data and surface water analytical chemistry to evaluate the environmental conditions in lower Chedoke Creek.

The sediment thickness characterization indicated that a greater accumulation of fine sediment was present along the west shoreline of the creek, with upstream sampling locations generally containing less soft sediment than downstream sampling locations.

Wood collected sediment core and/or grab samples from ten locations in Chedoke Creek. All locations were downstream of the Main/King CSO facility. Sediment samples were analysed for bacteria, nutrients, metals and PAHs. Analytical results were compared to the PSQG LELs and SELs. Porewater biochemical oxygen demand (BOD) was also measured. The highest level of BOD was observed at the downstream end of the creek immediately upstream of the Princess Point bridge and coincided with the highest level of organic matter observed in the creek. The highest fecal bacteria counts were obtained downstream of the Kay Drage Park bridge. The report noted that inputs/sources of fecal bacteria were ongoing in the creek (e.g., permitted CSO, wildlife, dogs). Nutrients concentrations exceeded the PSQG LEL, but were below the SEL. The report indicated that these results suggested that the "sediments contain a level of contamination that can be tolerated by the majority of sediment-dwelling organisms, but not necessarily stressintolerant taxa". Metals exceeding the PSQG LELs included arsenic, cadmium, chromium, copper, lead, nickel, silver and zinc. Exceedances of the LELs were observed at all locations. In surficial sediment (< 15 cm), copper was the only metal to exceed the PSQG SEL. In deeper sediment (>15 cm), cadmium, copper, nickel and zinc exceeded the PSQG SELs. The report indicated that several sources of metal contamination were present in the Chedoke Creek watershed (e.g., other CSOs and urban runoff) and added that isolating these sources from the Main/King CSO facility inputs was not considered feasible. Wood also reviewed sediment data provided in studies completed prior to the CSO event and indicated that the results suggested that legacy metals enrichment had occurred prior to the Main/King CSO facility event. One or more PAHs exceeded the PSQG LELs at all locations. Comparisons to the SELs were not provided. Similar to the metals-enrichment discussion, Wood reported that many historical and ongoing sources of PAHs were present in the Chedoke Watershed.

Wood collected seven sediment samples for BICS analysis. Results indicated that "the community was made of taxa generally tolerant of poor water quality and environmental stress". Sampling for benthic invertebrates in Chedoke Creek was not completed prior to 2018 to evaluate predischarge conditions. Wood noted that "benthic macroinvertebrate community data provide a measurement of the existing conditions and do not solely represent impacts attributable to the discharge event. Other confounding factors such as other sources of contaminants (e.g., other CSOs and urban runoff) have likely contributed to the environmentally degraded state of the creek, however as noted earlier, establishing a clear distinction as to the attributable sources is not considered feasible with the available data."

Wood did not implement field studies to evaluate fish in Chedoke Creek, and instead used fish community survey data provided by the RBG. The data interpretation showed "changes typically indicative of environmental stresses during the discharge event time period; however, some recent (2018) data suggest improvement". Wood added that monitoring would be required to confirm the apparent improving trend.

As with the evaluation of fish, Wood used existing surface water data in the impact assessment. The data included nutrient concentrations prior to, during and after the discharge. The Wood evaluation showed a decline in water quality during the discharge and a "dramatic improvement in water quality" after the discharge ceased. Wood recommended monitoring to confirm this apparent improving trend.

Wood recommended sediment dredging based on the degraded ecological conditions in the creek. Wood did note that these conditions likely existed "long before the beginning of the spill event in 2014". Wood also reported that "future accumulation and pollutant loading is likely since multiple CSOs and stormwater outfalls exist upstream".

## 4.0 ENVIRONMENTAL DATA COLLECTED IN SUPPORT OF THE ERA

During the week of September 30, 2019, SLR collected thirteen (13) surface water and nine (9) sediment samples (including one duplicate) from Lower Chedoke Creek. A surface water sample was also collected upstream and downstream of the Main/King CSO at Red Hill Creek, a local urban stream. The surface water samples were submitted to the City of Hamilton laboratory for analysis, while the sediment samples were submitted to Bureau Veritas Laboratories (**BV** - previously known as Maxxam). Target analytes for surface water and sediment are summarized below.

Table 4-1: Summary of SLR 2019 Surface Water and Sediment Analytes

| Surface Water                                                                                                   | Sediment                                         |  |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|
| pH and hardness                                                                                                 | Particle size                                    |  |
| TOC and DOC                                                                                                     | TOC and moisture                                 |  |
| BOD                                                                                                             | Bacteriology                                     |  |
| TSS                                                                                                             | Nutrients (total ammonia, TKN, total phosphorus) |  |
| Bacteriology                                                                                                    | Metals including mercury                         |  |
| Nutrients (total phosphorus, dissolved ortho-phosphate, total ammonia, ammonia un-ionized, nitrate and nitrite) | BOD (porewater)                                  |  |
| Metals including mercury                                                                                        | Hydrogen sulphide (porewater)                    |  |
| PAHs                                                                                                            | PAHs                                             |  |

DOC - dissolved organic carbon

BOD – Biochemical oxygen demand (BOD)

PAH - Polycyclic aromatic hydrocarbons

TKN – Total Kjeldahl nitrogen (sum of organic nitrogen and ammonia/ammonium)

TSS - Total suspended solids

TOC - Total organic carbon

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 27 of 406
SLR Project No.: 209.40666.00000
February 2020

r obradily 2020

In addition, surface water pH, temperature, conductivity and dissolved oxygen were measured in the field.

Sediment sampling sites in Chedoke Creek were selected based on a review of the sediment chemistry data provided in the Wood Report. The design was intended to provide a gradient of chemical concentrations in the resultant data and provide reasonable spatial coverage of the study area. Though every effort was made to include a local sediment reference location in a comparable urban creek, i.e. Red Hill Creek, no location included sediments with grain size ranges suitable for chemical or toxicological analysis.

Grab sediment samples were collected by deploying and retrieving a Ponar dredge sampler. The sampling method was selected to be consistent with that used by Wood so that the sample results could be compared. Grab samples were collected side-by-side at each location until enough material was obtained for chemical characterization, toxicity testing, and BICS analysis.

Six (6) sediment samples obtained from the Study area were submitted to BV for toxicological characterization using the freshwater midge *Chironomus dilutus* and the freshwater amphipod *Hyalella azteca*.

Benthic invertebrate samples were collected, and field filtered at the same locations where sediments were collected. Samples from 10 locations (eight in the Study area, one in Chedoke Bay and one in Red Hill Creek), with three replicates at each location (for a total of 30 samples), were submitted to Entomogen for benthic invertebrate identification to the lowest practical level (species or genus). The sample in Red Hill Creek was used to provide qualitative information on benthic community assemblage in another urban stream with a similar watershed. Sediment could not be collected at this location due to the nature of the substrate (e.g., cobble), for this reason, this sample will not be used as a local reference for direct comparisons.

Laboratory analytical reports are provided in Appendix B.

Page 28 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

## 5.0 PROBLEM FORMULATION

The problem formulation is considered the planning phase of the risk assessment. The steps include:

- Describing the study area;
- Screening the environmental data to identify COPCs;
- Evaluating the fate and transport of COPCs in environmental media;
- · Identifying ecological receptors of concern; and
- Determining COPC and exposure pathway combinations considered to be complete.

The information herein will form the basis for developing the CSM, which will illustrate the applicable exposure pathways between sources of contamination and potential receptors evaluated in the ERA. Only complete exposure pathways are to be quantified in this ERA.

## 5.1 Chedoke Creek

Chedoke Creek watershed covers an area of 25.1 km², with the head waters located above the Niagara Escarpment. The watershed comprises six catchment basins, including, from the headwaters to the outlet: Chedoke West, Lang's Creek, Mid-Chedoke, Cliffview, Chedoke East, and Lower Chedoke Creek (HCA) (2008). Chedoke Creek flows eastward and aligns parallel with Highway 403, within its lower section, before outletting into the south shore of Cootes Paradise Marsh. Chedoke Creek combined with Ancaster Creek and Borer's Creek, two other creeks of similar size outletting in the marsh, account for 16% of the total watershed of the Cootes Paradise Marsh (Cootes Paradise Water Quality Group 2012).

The watershed is predominantly urbanized with more than 70% of impervious surface. HCA (2008) noted that "much of the Chedoke Creek subwatershed has been altered over time as a result of intense urban development within the Hamilton area; subsequently the majority of the stream flow directly results from storm water input. Therefore, erosion, sedimentation and insufficient channel sizes occur at the outlet". HCA (2008) inventories nineteen (19) stormwater outfalls/(CSOs) in Chedoke Creek, including four in Lower Chedoke Creek. Land use statistics provided by HCA (2008) are summarized in Table 5-1.

Table 5-1: Chedoke Creek Subwatershed Land Use Statistics (Source: HCA 2008)

| Land Use/Descriptor | Area (km²) |
|---------------------|------------|
| Area                | 25.1       |
| Agricultural        | 0.001      |
| Commercial          | 0.7        |
| Industrial          | 0.6        |
| Institutional       | 3.2        |
| Open space          | 3.0        |
| Residential         | 11.0       |
| Transportation      | 5.5        |
| Utility             | 1.1        |
| Impervious area (%) | 76         |

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 29 of 406

SLR Project No.: 209.40666.00000 February 2020

Water quality in Chedoke Creek indicates contamination with urban sewage and cross connections, and urban runoff with high levels of nitrate, phosphorus and bacteria (*E. coli* and total coliform) commonly observed (Vander Hout et al 2015). Chedoke Creek is generally considered to have degraded habitat conditions for aquatic life (SNC Lavalin 2017).

The waters of Chedoke Creek are reported to "bypass the majority of Cootes Paradise as it enters the marsh near the outlet to the harbour with minimal impact to the centre of the marsh" (Theÿsmeÿer as cited in Cootes Paradise Water Quality Group 2012).

## 5.1.1 Study Area

As indicated in Section 1.3.1, the study area includes the lower section of Chedoke Creek extending parallel to Highway 403, between Glen Road and the Desjardin Recreational Trail Bridge at Princess Point (Drawing 1). Chedoke Bay at the mouth of Chedoke Creek is also described in this section as it is the outlet area of Chedoke Creek.

The area of study of Chedoke Creek within the Cootes Paradise Environmental Sensitive Area (ESA) is a linear small riverine warmwater system and is part of the broader Spencer Creek Watershed and Management Area (Bowlby et al. 2009, HCA 2008). The vegetation communities along the shorelines reflect this whereby there are no wetland embayment communities (Photograph 1, Appendix C). The riparian bank slopes are moderate along the length of Chedoke Creek study area and comprise modified (armour stone) sections (Photograph 2, Appendix C).). Near the large box culvert, steep concrete banks occur (Photograph 3, Appendix C).). Two bridges and a pedestrian trail also occur along the banks. The trail fragments the creek from adjacent Deciduous Forest (FOD) and Cultural Savana (CUS) of the study area. Treed vegetation along the banks are composed mostly of Manitoba Maple (Acer negundo), Willow Species (Salix), and Sugar Maple (Acer saccharum) intermixed with Poplar (Populus sp), Ironwood (Ostrya virginiana), Black Walnut (Juglans nigra), Elm (Ulmus sp) and Ash (Fraxinus sp) (Photograph 4, Appendix C). These remnant creek valley slopes of floodplain forests have experienced significant degradation. Cultural Meadow (CUM) (Photograph 5, Appendix C).) almost exclusively occurs along the eastern banks and includes a suite of tolerant broad-leaf vegetation typical of old fields and disturbed areas. Efforts in recent years have focused on restoring these shoreline areas (Photograph 6, Appendix C).) and areas of Chedoke Bay.

The aquatic community is a mixture of mostly open water (OAO), with pockets of Mixed Shallow Aquatic (SA). Small areas of Shallow Marsh (MAS) occur at the northern end near sampling Station C5/G6 and in smaller pockets especially near sampling station G3. Water levels and flows fluctuate during spring freshets and rain events. During low flow periods, exposed flats occur along the banks and near the Main/King CSO. Submergent and emergent vegetation observed throughout the study area includes those species tolerant of dryer and or prolonged flooding periods. Broad-leaved and Narrow-leaved Cattail (Typha latifolia / Typha angustifolia) and Reed Canary Grass (Phalaris arundinacea) are common along the riparian banks, with Broad-leaved Arrowhead (Sagittaria latifolia) and Water Smartweed (Persicaria amphibia) occurring infrequently in smaller cluster areas. Invasive flora such as Eurasian Manna Grass (Glyceria maxima) occurs with pockets of Common Reed (Phragmites australis). Generally, the submergent and floating leaved community is lacking, but restoration efforts in recent years by the RBG (Chedoke Bay Project and Stream Habitat Improvement program) has seen a reintroduction of some species. In the summer duckweed species, Canada Waterweed (Elodea canadensis), Water Smartweed (Polygonum amphibium) and Pond Weed (Stuckenia pectinata) occur in small backwater areas. Photographs 7 and 8 (Appendix C), provide examples of these SA areas. The

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 30 of 406

SLR Project No.: 209.40666.00000 February 2020

shallow vegetation communities provide refuge, foraging, spawning and nesting opportunities for a variety of fish and wildlife (Photographs 9 and 10, Appendix C).

## 5.2 Aquatic Receptors of Concern

As part of the problem formulation process, aquatic ecological receptors potentially exposed to COPCs are identified. The ecological receptors of potential concern (ROCs) in the study area include aquatic life (invertebrates, plants and fish) and aquatic dependent wildlife (e.g., mammals, waterfowl, amphibians and reptiles) that are confirmed within the study area, or potentially present in the study area based on the available habitat and therefore may potentially be exposed to COPCs through sediments or surface water. The aquatic life and wildlife receptor groups are briefly described in the sub-sections below. The ROCs selected in the ERA are presented in Section 5.2.4.

## 5.2.1 Aquatic Life

Aquatic life as defined in this report encompasses aquatic plants, aquatic invertebrates and fish. The confluence of Chedoke Creek with Cootes Paradise Marsh is unimpeded. The flora and fauna community in Cootes Paradise Marsh is diverse, owing to its position at the interface between Lake Ontario and the Spencer Creek watershed. However, the aquatic habitat communities of Chedoke Creek are limited due to the degraded habitat in the creek.

Aquatic plants largely consist of macrophytes, phytoplankton, and periphyton. Aquatic macrophyte is the general term applied to large vascular and non-vascular plants that grow in aquatic systems [including both submergent and emergent plants]. Phytoplankton are small non-vascular plants that are suspended in the water column and are comprised of several types of algae. Periphyton are typically larger non-vascular plants that grow on other aquatic plants, or on the bottom surface of the water body often encrusting large cobble and rocks.

Aquatic invertebrates include species that reside in the water column (zooplankton), in the sediment (infaunal) or on the sediment (epifaunal). Wood (2019) and SLR (2019) completed quantitative surveys of the aquatic invertebrates associated with the sediment in Chedoke Creek (i.e., benthic invertebrates). Species observed by Wood and SLR consisted mainly of stress tolerant organisms such as chironomids and oligochaetes. These species are typical of urban streams. Species observed in Chedoke Creek are provided as part of Entomogen Report in Appendix E.

Fish species in Chedoke Creek were documented in Bowlby et al (2009) and the Royal Botanical Gardens (RBG, 2001 thru 2018) and are summarized in Table 5-2. The fish assemblage in Chedoke Creek reflects a warm water system. Chedoke Creek is significantly groundwater fed; therefore in the summer it will draw in fish species that prefer cooler water from the habitats of Cootes Paradise (Tys Theijsmeijer personal communication 2018). In the reaches of Chedoke Creek (south of Main Street), Creek Chub (Semotilus atromaculatus), Brook Stickleback (Culaea inconstans) and Pumpkinseed (Lepomis gibbosus) have been observed. Movement of the warm water and cool water fish from Cootes Paradise is expected within the study area given unrestricted access at the confluence. For example, White Sucker (Castostomus commersoni), Brown Bullhead (Ameiurus nebulosus) Pumpkin Seed and Large Mouth Bass (Micropterus salmoides) dominate the fish community in Chedoke Creek. Foraging opportunities and habitat in the study area exists for other piscivores such as Northern Pike (Esox Lucius) and small community bait fish ((e.g., Emerald shiner (Notropis atherinoides), Spottail shiner (Notropis hudsonius)).

Table 5-2: Native Fish Species Known to occur in Chedoke Creek

| Species             | Scientific               | Observations and Abundances <sup>5</sup> | Observed by RBG,<br>2001 - 2018 |
|---------------------|--------------------------|------------------------------------------|---------------------------------|
| Black Bullhead      | Ameiurus melas           | 2                                        | Х                               |
| Black Crappie       | Pomoxis nigromaculatus   | 3                                        | Х                               |
| Bluegill            | Lepomis macrochirus      |                                          | Х                               |
| Bluntnose Minnow    | Pimephales notatus       | 3                                        | Х                               |
| Bowfin              | Amia calva               | 3                                        | Х                               |
| Brook Silverside    | Labidesthes sicculus     | 3                                        |                                 |
| Brown Bullhead      | Ameiurus nebulosus       | 4                                        | Х                               |
| Channel Catfish     | Ictalurus punctatus      | 4                                        |                                 |
| Common Shiner       | Luxilus cornutus         | 2                                        |                                 |
| Common White Sucker | Castostomus commersoni   | 4                                        | Х                               |
| Creek Chub          | Semotilus atromaculatus  | 1                                        |                                 |
| Gizzard Shad        | Dorosoma cepedianum      |                                          | Х                               |
| Emerald Shiner      | Notropis atherinoides    | 4                                        | Х                               |
| Fathead Minnow      | Pimephales promelas      | 3                                        | Х                               |
| Fresh Water Drum    | Aplodinotus grunniens    | 4                                        |                                 |
| Golden Shiner       | Notemigonus crysoleucas  | 2                                        | Х                               |
| Golden Redhorse     | Moxostoma erythrurum     | 1                                        |                                 |
| Greater Redhorse    | Moxostoma valenciennesi  | 1                                        |                                 |
| Green Sunfish       | Lepomis cyanellus        | 3                                        | Х                               |
| Johnny Darter       | Etheostoma nigrum        | 3                                        |                                 |
| Largemouth Bass     | Micropterus salmoides    | 4                                        | Х                               |
| Longnose Dace       | Rhinichthys cataractae   | 1                                        | Х                               |
| Longnose Gar        | Lepisosteus osseus       | 2                                        |                                 |
| Logperch            | Percina sp.              |                                          | Х                               |
| Northern Pike       | Esox lucius              | 3                                        | Х                               |
| Pumpkinseed         | Lepomis gibbosus         | 4                                        | Х                               |
| River Chub          | Nocomis micropogon       | 1                                        |                                 |
| Rock Bass           | Ambloplites rupestris    | 3                                        |                                 |
| Sand Shiner         | Notropis ludibundus      | 1                                        |                                 |
| Shorthead Redhorse  | Moxostoma macrolepidotum | 2                                        |                                 |
| Silver Redhorse     | Moxostoma anisurum       | 1                                        |                                 |
| Smallmouth Bass     | Micropterus dolomieu     | 2                                        |                                 |
| Spottail Shiner     | Notropis hudsonius       | 4                                        | Х                               |
| Spotted Gar         | Lepisosteus osseus       | 1                                        |                                 |
| Tadpole Madtom      | Noturus gyrinus          | 2                                        | Х                               |
| Walleye             | Sander vitreus           | 2                                        | X                               |
| White Bass          | Morone chrysops          | 1                                        |                                 |
| White Crappie       | Pomoxis annularis        | 1                                        |                                 |
| White Perch         | Morone americana         |                                          | Х                               |
| Yellow Perch        | Perca flavescens         | 4                                        | X                               |

<sup>\*\*</sup> Invaders (e.g. Goldfish, Carp, Rudd, Round Goby) occur but are excluded

<sup>&</sup>lt;sup>5</sup> Warm and Cool Recorded fish community observed in seining and electrofishing fish surveys since 1970. Data from the watersheds were obtained from over 600 unpublished studies and were compiled into databases by the Hamilton Conservation Authority and Conservation Halton. Data from electrofishing, and entrapment surveys by DFO, RBG, and OMNR. Abundance Levels are based on quartiles with "1" as the lowest, and "4" as the highest relative abundance as described by Bowlby et AI, 2009.

Page 32 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

## 5.2.2 Aquatic Dependent Wildlife

Information on aquatic dependent wildlife potentially using the study area was gathered from the following sources:

- Nature Counts Natural Areas Inventory (NAI) (https://conservationhamilton.ca/naturalareas-inventory-nai/);
- Information from wildlife surveys completed in the Chedoke Watershed / Cootes Paradise by various organizations and/or consultants (Royal Ontario Botanical Gardens, Research and monitoring Cootes Paradise);
- Hamilton Naturalist Club Bird Counts;
- EBird, 2019 and Ontario Freshwater Fishes Life History Database;
- Environmental Review of Hendrie Valley. RBG Report No. 2019-6;
- Hamilton Harbour and Watershed Fisheries Management Plan (2009);
- City of Hamilton B-Line Light Rapid Transit Draft Environmental Project Report, Appendix B.1 Natural Heritage Features, Prepared by SNC Lavalin (2010);
- Cootes Paradise Heritage Lands Management Plan, Inventory, Issues and Opportunities, May 2018;
- Hamilton Conservation Authority Chedoke Creek Subwatershed Stewardship Action Plan (2008):
- Chedoke Creek Watershed Fact Sheet (2018);
- Cootes Paradise Nature Sanctuary Lower Chedoke Creek Area Water Quality & Fisheries (RBG, 2001);
- Project Paradise (2017)
- Observations through field evaluations by SLR biologists during the September 30, 2019 field program.

In addition, the study area is near Cootes Paradise a Nationally Important Reptile and Amphibian Area (IMPARA) and known Nationally Important Bird Area (IBA) for migratory waterfowl staging and feeding<sup>6</sup>.

SLR used the above information to compile a list of aquatic dependent wildlife ROCs relevant to the project study area (e.g., potentially exposed to sediment and surface water COPCs). These include birds, amphibians and mammals that potentially use the site during all or part of the year. Aquatic dependent groups and representative species are provided in Appendix C.

## 5.2.3 Species of Concern

Species that are listed either provincially under the Endangered Species Act, 2007 (Ontario Regulation 230/08) or federally by the Committee on the Status of Endangered Wildlife In Canada (COSEWIC) under the Species at Risk Act (s.c. 2002 c.29)<sup>7</sup> as special concern, threatened, or

<sup>&</sup>lt;sup>6</sup> Cootes Paradise has the highest biodiversity of plants per hectare in Canada and the highest biodiversity of plants in the Hamilton and Halton regions with 877 species (https://www.hamilton.ca/city-initiatives/ourharbour/cootes-paradise-marsh).

endangered collectively for the purpose of this assessment are referred to as Species at Risk. As per the Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act (MECP 2017) threatened and endangered species were considered for inclusion as valued ecosystem components [VECs].

Species at risk (**SAR**) were included as receptors of concern to be evaluated in the ERA if they were confirmed to be present within the study area or may occur based on habitat affinities. There are approximately 35 identified SAR species within the Cootes Paradise area, including several locally rare birds within the Hamilton Region. Not all these species are relevant, "aquatic dependent species". For this reason, the species list was refined to include those with a "riverine" habitat type – for example waterfowl, herons, gulls, terns, and sandpipers.

No SAR were observed during the 2019 sampling program conducted by SLR<sup>8</sup>.

The SAR review identified one mussel, one reptile and three birds listed as either threatened or endangered in the area of Chedoke Creek. A summary of each SAR and its potential presence within the study area is included in Table 5-3, below.

Table 5-3: Summary of Species at Risk

| Species                                                          | Provincial<br>Designation                 | General Habitat Affinities                                                                                                                                                                                                                                                                                                  | Potentially Present in Study Area?                                                                          |
|------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Lilliput<br>(Toxolasma<br>parvum)                                | Threatened                                | Variety of habitats, from small to large rivers to wetlands<br>and the shallows of lakes, ponds and reservoirs. It<br>prefers to burrow in soft substrates (river and lake<br>bottoms) made of mud, sand, silt or fine gravel<br>(COSEWIC, 2013)                                                                            | Yes – Recorded in<br>Cootes Paradise,<br>Chedoke Bay Hendrie<br>Valley (RBG, 2019)<br>DFO SAR Mapping, 2019 |
| Blanding's Turtle<br>(Emydoidea<br>blandingii)                   | Threatened<br>*General<br>Habitat Defined | Primarily aquatic species; prefers shallow water rich in nutrients, organic soil and rich vegetation. Requires terrestrial basking and nesting sites and can nest in dry conifer forests up to 410 m from a body of water.                                                                                                  | Yes – Recorded in<br>Cootes Paradise,<br>Chedoke Bay Hendrie<br>Valley (RBG, 2019)                          |
| American White Pelican (Pelecanus erythrorhynchos)               | Threatened                                | The White Pelican is a habitat generalist. Breeding occur on islands and shallow wetlands and rely on diet of mainly eat fish and occasionally crustaceans                                                                                                                                                                  | Yes – Recorded in<br>Cootes Paradise,<br>Chedoke Bay Hendrie<br>Valley (RBG, 2019)                          |
| Golden Eagle<br>(Aquila chrysaetos)                              | Endangered                                | Golden Eagles breeding habitats typically include Northern Ontario but will migrate, overwinter and have been recently documented nesting in parts of Southern Ontario. They use variety of habitat throughout their range and are often observed foraging in managed wetlands and reservoirs for fish, reptiles and birds. | Yes – Recorded in<br>Cootes Paradise,<br>Chedoke Bay Hendrie<br>Valley (RBG, 2019)                          |
| Red Knot <i>rufa</i><br>subspecies<br>(Calidris canutus<br>rufa) | Endangered                                | Only occurs in Ontario during migration, where the Red Knot <i>rufa</i> subspecies utilizes open and exposed mud flats, beach shoreline for staging where their primary diet consists of mollusks and crustaceans, other invertebrates.                                                                                     | Yes – Recorded in<br>Cootes Paradise,<br>Chedoke Bay Hendrie<br>Valley (RBG, 2019)                          |

SLR 16

-

<sup>&</sup>lt;sup>8</sup> SLR recognizes work was conducted in late September early October. Work was not to complete targeted flora or fauna inventories, observations are incidental.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 34 of 406

SLR Project No.: 209.40666.00000 February 2020

Blanding's Turtle was identified as potentially occurring within the study area due to confirmed presence within Cootes Paradise and marsh habitats of Hendrie Valley. Chedoke Creek lacks the typical wetland marsh communities preferred by this species. Therefore, occurrences are expected to be limited to vagrant individuals. Blanding's Turtle is unlikely to spend significant time within the study area.

Two endangered bird species were identified as potentially present within the study area (Golden Eagle and Red Knot *Rufa* Subspecies). The Golden Eagle prefers to forage in the larger open water habitats of Cootes Paradise and would be unlikely to spend significant time within the study area. Red Knot may utilize exposed shallow flats during low flow; however, the fluctuating water levels of Chedoke Creek are considered a limiting factor. The marsh communities and open areas of Cootes Paradise would be preferred. Occurrences are expected to be limited to vagrant individuals.

The Lilliput mussel was identified as potentially present within the study area. Based on the recent sightings of this invertebrate at the outlet of Chedoke Creek (Morris et al., 2015) and the lack of survey sites within Chedoke itself, this SAR species has been retained for further assessment.

In addition, several SAR fish and birds occur in the broader area, but no suitable habitat is found in the study site (e.g. extensive marshlands are not present). Other species have not been observed in the study area for more than 40 years and are considered historical (e.g. Lake Sturgeon, American Eel, Least Bittern, King Rail). These species were not retained as SAR species in this ERA.

## 5.2.4 Summary of Potential Ecological Receptors

Receptor refinement is conducted as it is not practical or necessary to characterize risks for all species belonging to the general receptor groups described above. Risk assessments must limit their focus to a smaller list of specific organisms, or receptors of concern, that might be present in the study area and come into contact with the COPCs. An ROC is an individual species chosen to serve as a surrogate for other species occupying a similar position in the food web; thus, results of the risk characterization for the surrogate receptor can be used to make inferences about risk to other species occupying a similar level in the food web. Surrogate ecological receptors were selected according to the following main criteria (CCME 1997; Environment Canada 2012):

- Species likely to be most exposed to contaminants;
- Species indigenous to the area;
- Species representative of the foraging guild or serve as a food item for higher trophic level species;
- Species recognized by the federal or territorial government as threatened, endangered, or of special concern;
- Species recognized as good indicators or surrogate species (i.e., representative of other similar organisms of a general type and feeding niche);
- Sedentary species or species with a small home range; and
- Species of aesthetic value or recreational value to the local human population.

The receptor groups and surrogate ecological ROCs selected for the problem formulation are provided in Table 5-4. Only the receptor group and/or surrogate receptors for which complete, and potentially significant exposure pathways were identified were carried forward in the risk assessment (Section 5.6).

City of Hamilton Ecological Risk Assessment – Chedoke Creek

**Table 5-4: Ecological Receptor Selection** 

|                          |                                               |                                                 |                                                                                                   | Dellanda for Caladian                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receptor<br>Group        | Туре                                          | Surrogate<br>Receptor                           | Primary Diet                                                                                      | Rationale for Selection or<br>Exclusion of Receptor Group<br>and/or Surrogate Receptor                                                                                                                                                                                                                                                                                                                                                                             |
| Aquatic<br>Plants        | Submergent and<br>Emergent                    | Community<br>Level                              | -                                                                                                 | Included – Directly exposed to<br>sediment and/or surface water<br>COPCs; important habitat item for<br>fish, food items for herbivorous birds<br>and mammals.                                                                                                                                                                                                                                                                                                     |
| Aquatic<br>Invertebrates | Benthic                                       | Community<br>and individual<br>level (lilliput) | -                                                                                                 | Included – Benthic invertebrates are directly exposed to sediment and/or surface water COPCs. Aquatic invertebrates are an important food item for fish, invertivorous birds and mammals. SAR (lilliput) may be present in the study area.                                                                                                                                                                                                                         |
| Fish                     | Herbivorous                                   | None<br>Selected.                               | Aquatic Plants                                                                                    | Not included – No herbivorous fish identified.                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | Benthivorous,<br>Carnivorous, &<br>Omnivorous | White Sucker                                    | Benthic forager; insect larvae,<br>aquatic vegetation / macrophytes<br>(invertivore/ detritivore) | Included – Exposed to surface water and/or sediment COPCs; eats mainly benthic macroinvertebrates with some vegetation. Consumed by larger fish, piscivorous birds, or wildlife. Widely distributed and common in both Chedoke Creek and Cootes Paradise. Open substratum and Litho-pelagophils spawners.                                                                                                                                                          |
|                          | Piscivorous                                   | Northern Pike                                   | Carnivore                                                                                         | Included – Exposed to surface water and/or sediment COPCs; consume smaller fish and are especially vulnerable to bioaccumulative COPCs. Fish in this group may be consumed by wildlife or piscivorous birds. Open substratum and phytophils spawners. Targeted by recreational and sustenance fishing. Known to occur in Cootes Paradise with unimpeded movement to habitats of Chedoke Creek which are suitable foraging, spawning and rearing of habitats young. |
| Amphibians               | Herpetofauna                                  | Leopard Frog                                    | Terrestrial and aquatic invertebrates, including snails, small crayfish and a variety of insects  | Included – Exposed to surface<br>water and/or sediment COPCs;<br>consume aquatic invertebrates. May<br>hibernate in sediment of Chedoke<br>Creek                                                                                                                                                                                                                                                                                                                   |

February 2020

| Receptor<br>Group | Туре                          | Surrogate<br>Receptor  | Primary Diet                                                          | Rationale for Selection or<br>Exclusion of Receptor Group<br>and/or Surrogate Receptor                                                                                                         |
|-------------------|-------------------------------|------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reptiles          | Herpetofauna<br>Snakes        | Northern<br>Watersnake | Fish and amphibians                                                   | Included – Exposed to surface water and/or sediment COPCs; consume smaller fish, amphibians.                                                                                                   |
|                   | Herpetofauna<br>Turtles       | Snapping<br>Turtle     | Omnivorous aquatic invertebrates and macrophytes                      | Included – Exposed to surface water and/or and sediment COPCs; consume smaller fish, amphibians.                                                                                               |
| Birds             | Herbivorous<br>Dabbling Ducks | Mallard                | Aquatic macrophytes                                                   | Included – Exposed to surface water and/or sediment COPCs; consume leaves, seeds, roots of many types of pond weeds, aquatic vegetation, tubers and rhizomes.                                  |
|                   | Omnivorous<br>Dabbling Ducks  | American<br>Black Duck | Omnivorous aquatic invertebrates and plants                           | Included – Exposed to surface water and/or sediment COPCs; consume aquatic macrophytes (e.g. smartweeds, pondweeds, algae and duckweeds) as well as aquatic insects, mollusks and crustaceans. |
|                   | Carnivorous                   | Great<br>Blue<br>Heron | Small fish crustaceans, mollusks, aquatic insects, leeches, and frogs | Included – Exposed to surface water and/or sediment COPCs; consume mostly fish, invertebrates, mollusks, crustaceans and amphibians.                                                           |
|                   | Piscivorous                   | Osprey                 | Large fish                                                            | Included – Exposed to surface water COPCs only; consume larger fish. SAR (Golden eagle and White Pelican) identified in the area.                                                              |
| Mammals           | Herbivorous                   | Muskrat                | Tubers, leaves, aquatic macrophytes                                   | Included – Exposed to surface<br>water and/or sediment COPCs;<br>consume aquatic macrophytes (e.g.<br>tubers)                                                                                  |
|                   | Carnivorous/<br>Omnivorous    | None                   | NA                                                                    | Not Included – none identified.                                                                                                                                                                |

## 5.3 Data Considered in the ERA

This section describes the datasets used in the ERA. The datasets represent current conditions in the study area (i.e., after the Main/King CSO discharge). All sample locations are illustrated in Drawing 2.

## 5.3.1 Sediment Chemistry Dataset

All sediment data collected in the study area by Wood in 2018 and by SLR in October 2019 were used to select sediment COPCs.

Two depth-specific sediment datasets were compiled for assessing exposure of aquatic receptors to COPCs: a shallow sediment dataset (collected entirely within the top 15 cm of sediment), and a deeper sediment dataset (collected at depths greater than 15 cm). The shallow dataset will be the focus of this ERA following MECP guidance (MOE 2008) specifying that surficial sediments (to about 10 cm depth) are where most sediment-dwelling organisms live and should therefore be the initial focus of the sediment assessment. The MOE (2008) guidance adds that deeper sediments should also be considered in the assessment as they may be relevant for evaluating

Page 37 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

potential future risks to aquatic receptors (i.e., risks that could exist in the future if subsurface sediments become exposed). Impacts to deeper sediment (15 cm+) are discussed in the uncertainty section (Section 9.0).

As indicated in Section 4.0, a suitable sediment reference location could not be sampled by SLR in 2019. Similarly, a reference location was not provided in Wood (2019).

The ERA sediment datasets used for COPC screening are presented in Appendix D.

The sediment samples obtained by RBG in 2013 and 2006 were used to evaluate trends in sediment quality (Section 6.1). Historical sediment samples were not used to select COPCs.

## 5.3.2 Surface Water Chemistry Dataset

The surface water samples (7 samples plus one duplicate) obtained by SLR from Chedoke Creek during the week of September 30, 2019 were included in the surface water dataset.

Historical water quality data collected pre- and post- discharge was reviewed by SLR; however, only data representing current water quality conditions was included in the surface water dataset for the assessment of current risks to aquatic life.

In addition, SLR obtained two surface water samples from Red Hill Creek to gather information from an urban creek located in a similar watershed. Historical water quality data provided by the City from Red Hill Creek since August 2018 was also included to compile a "reference" dataset for surface water quality.

## 5.3.3 Porewater Chemistry Dataset

Porewater extracted from the sediment samples collected in 2019 was analysed for hydrogen sulphide and biochemical oxygen demand (BOD) to support the interpretation of toxicity tests and effects.

## 5.3.4 Sediment Toxicity Dataset

Six sediment samples were obtained from the study area and submitted to BV for toxicity testing. The following freshwater sediment toxicity tests were conducted on the samples:

- 10-day survival and growth test with the freshwater midge, *Chironomus dilutus*
- 14-day survival and growth test with the freshwater amphipod, Hyalella Azteca

The BV report is provided in Appendix E.

## 5.3.5 Benthic Invertebrate Community Structure Dataset

Sediment samples for BICS analysis were collected at seven locations by Wood in 2018, and at eight location by SLR in 2019. Additionally, a BICS sample was taken immediately downstream from the study area in Chedoke Bay and one sample was collected from Red Hill Creek. The locations of the 2019 BICS samples are illustrated on Drawing 3 and the 2019 statistical analyses report by Entomogen is provided in Appendix E. Details on the BICS samples collected by Wood are available in Wood (2019).

City of Hamilton Ecological Risk Assessment – Chedoke Creek

Page 38 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

## 5.3.6 Dataset Use

The surface water and sediment datasets were used to identify COPCs for the protection of aquatic life (e.g., aquatic plants, invertebrates and fish as well as amphibians) and aquaticdependent wildlife consuming food items obtained from the study area. This was achieved through a bioaccumulation assessment as described in Section 5.4.3.

Surface water was also screened for the protection of wildlife consuming water as drinking water.

#### 5.4 Contaminants of Potential Concern

COPCs are substances that occur at elevated concentrations in environmental media, typically because of anthropogenic activity. More specifically, COPCs are the chemicals that occur at concentrations high enough to potentially cause adverse effects to receptors. Substances deemed COPCs are further evaluated in the risk assessment process, whereas contaminants with a low probability of posing risks to receptors are not identified as COPCs and are not evaluated further Typical components of sewage discharge include nutrients and bacteria, with relatively small amounts of metals and polycyclic aromatic hydrocarbons (PAHs). However, because this is a CSO, metals and PAHs were also analyzed because these are components of CSO discharge.

## 5.4.1 COPC Screening Method

COPCs were selected by comparing maximum concentrations to screening benchmarks from the sources listed in Section 2.0. Media-specific screening methodologies are described in the sections below.

### 5.4.1.1 *Sediment*

For sediment, a parameter was retained as a COPC if the maximum concentration exceeded the applicable guideline, standard or background concentration described in Section 2.1. Where SQG or sediment background values were not available for a parameter, the MECP Table 1 Background Standards for Soil (MOE 2011a) were used as screening benchmarks. If no guideline was available for a parameter, it was retained as an uncertain COPC.

## 5.4.1.2 Surface water

## Aquatic Life

For screening of surface water for aquatic life, a two-stage screening process was implemented. A parameter was identified as a preliminary COPC if the maximum concentration exceeded the PWQO or CCME WQG (where the PWQO was unavailable). To ensure the risk assessment focuses on evaluating the COPCs that represent potential risk drivers, a COPC refinement process was implemented for surface water preliminary COPCs. The COPC refinement process was intended to support the development of a list of final COPCs for evaluation in the risk assessment and consisted of comparing the maximum concentration to the MECP APVs.

The PWQOs are "numerical and narrative ambient surface water quality criteria that represent a desirable level of water quality that the Ministry strives to maintain in the surface waters of the Province" (MOE 2011b). Chedoke Creek is an urban watercourse which collects a combination of storm water runoff and discharges from the City's combined sewer overflow tanks during large

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 39 of 406

SLR Project No.: 209.40666.00000 February 2020

storm events. It is also located adjacent to other potential sources of impacts such as a major highway (highway 403) and a former landfill (City of Hamilton Website, 2019). According to the City of Hamilton, warning signs advising against recreational use of the creek (including swimming, wading, paddling, fishing) due to historically degraded water quality pre-date the Main/King CSO discharge, indicating that degraded conditions have been present historically within the creek. Based on these observations, the APVs were selected for final screening of water quality COPCs as more appropriate values representative of an urban watercourse environment. APVs were developed by the MECP to support the derivation of the Site Condition Standards (MOE 2011a) for contaminated sites. MOE 2011b indicates that while PWQOs are conservative values that are protective of all forms of aquatic life and aspects of the aquatic life cycle during indefinite exposure to the water, the APVs are "designed to provide a scientifically defensible and reasonably conservative level of protection for most aquatic organisms".

Based on the urban environment of the stream, the APVs were considered appropriate for final screening of surface water COPCs where available. Where neither an APV or PWQO was available for a specific parameter, water quality guidelines from other jurisdictions were reviewed and selected for final screening as listed in Section 2.2. Guidelines from other jurisdictions were selected if methods and protection goals aligned with MECP approaches. If no guideline was available for a parameter, it was retained as an uncertain COPC.

## Wildlife

For screening of wildlife consuming surface water as drinking water, a parameter was retained as a COPC if the maximum concentration exceeded the applicable guideline or standard described in Section 2.2. Since no provincial water quality guidelines are available for this exposure pathway, the CCME WQG for protection of livestock was selected as the primary screening benchmark. Where a CCME guideline was unavailable, values protecting wildlife and livestock from other jurisdictions were selected (as listed in Section 2.2). If no wildlife or livestock-specific values were available, the MECP GW1 values protective of consumption of water as drinking water (MOE 2011b) were applied conservatively as screening values.

If no guideline was available for a parameter, it was retained as an uncertain COPC.

### 5.4.2 COPC Screening Results

The final COPC screening results are presented in the sections below. Tables 1 to 3, after the text, provide details on the parameters screened for sediment and surface water datasets, including the number of samples, the number of detectable concentrations, the maximum concentrations and the second highest concentrations. Applicable screening benchmarks along with the rationale for retaining or dismissing parameters as COPCs are also presented.

### 5.4.2.1 Final Sediment COPCs

The final COPC screening results for sediment are presented in the table below.

Table 5-5: Sediment COPC Summary

| COPC Group | Sediment (0-0.15)                                                                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals     | Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc                                                                                                                                                                                                            |
| PAHs       | Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs |
| Nutrients  | Total Kjeldahl nitrogen (TKN) and total phosphorus                                                                                                                                                                                                                               |

### 5.4.2.2 Final Surface Water COPCs

Preliminary and final surface water COPCs are summarized in the table below.

Table 5-6: Surface Water COPC Summary

| Receptor Group | COPC Group | Preliminary COPCs                   | Final COPCs                         |
|----------------|------------|-------------------------------------|-------------------------------------|
|                | Metals     | Aluminum, boron, iron (total), zinc | Aluminum and iron (total)           |
| Aquatic Life   | PAHs       | None                                | None                                |
| 4              | Nutrients  | Nitrite (As N) and total phosphorus | Nitrite (As N) and total phosphorus |
|                | Metals     | _*                                  |                                     |
| Wildlife       | PAHs       | _*                                  | None                                |
| Wildlife       | Nutrients  | _*                                  | None                                |
|                | Bacteria   | _*                                  |                                     |

<sup>\*</sup>Preliminary screening not completed for wildlife screening (see Section 5.4.1.2).

Total boron exceeded the PWQO (200  $\mu$ g/L) at one location (206; C4-West). Dissolved boron exceeded the PWQO at three locations (maximum concentration: 211  $\mu$ g/L; C3-Centre, C3-West and C4-West). The PWQO for boron is an interim objective set for emergency purposes based on the best information readily available and was not subject to peer review and formal publication (MOE 1994). All total and dissolved boron concentrations are less than the CCME long-term WQG for the protection of aquatic life of 1500  $\mu$ g/L $^9$ . Boron was therefore not retained as a final COPC in surface water.

## 5.4.2.3 Uncertain Sediment and Surface Water COPCs

Uncertain COPCs are summarized in Table 5-7 and discussed in the Uncertainty Analysis (Section 9.1.2.2).

SLR 23

-

<sup>&</sup>lt;sup>9</sup> The CCME WQG for boron was developed in 2009 following CCME protocol (CCME 2009).

Page 41 of 406

City of Hamilton Ecological Risk Assessment – Chedoke Creek SLR Project No.: 209.40666.00000 February 2020

Table 5-7: Uncertain COPC Summary

| CORC Group              | Sadiment (0.0.15)                                               | Surface Water                      |                                 |  |
|-------------------------|-----------------------------------------------------------------|------------------------------------|---------------------------------|--|
| COPC Group              | Sediment (0-0.15)                                               | Aquatic Life                       | Wildlife                        |  |
| Metals                  | Aluminum, antimony, silver                                      | None                               | Iron (total),<br>manganese      |  |
| PAHs                    | 1-methylnaphthalene 10                                          | None                               | None                            |  |
| Nutrients <sup>11</sup> | Ammonia and ammonium (as N)<br>ammonia as N<br>nitrogen (total) | Kjeldahl nitrogen total<br>silicon | Kjeldahl nitrogen total silicon |  |
| Bacteria                | E. coli; fecal coliform                                         | E. coli                            | -                               |  |

#### 5.4.2.4 Innocuous Substances

COPC screening benchmarks or regional background concentrations were not available for bismuth, calcium, lithium, magnesium, potassium, strontium, tungsten and zirconium. Although commonly included in routine chemical analysis, government agencies such as the MECP do not develop regulatory criteria for these naturally occurring innocuous parameters (HC 2010c). As many of these parameters are considered essential nutrients and/or occur naturally in southern Ontario, they were not identified as uncertain COPCs.

## 5.4.3 Bioaccumulation Screening

In addition to identifying COPCs that are present above relevant sediment screening benchmarks for ecological life, MOE 2008 recommends "identifying substances that could biomagnify and affect the health of biological communities at higher trophic levels". Since available SQGs do not evaluate biomagnification, initial (conservative) decisions regarding biomagnification potential are based on the presence or absence of quantifiable amounts of substances that may biomagnify (MOE 2008).

Biomagnifying substances were identified by reviewing substances listed in MOE 2008, as well as those listed in the United Nations Environmental Programme (UNEP) Stockholm Convention on Persistent Organic Pollutants (POPs). In addition, substances that bioaccumulative in sediment and water were also identified conservatively through review of the following documents:

- (UNEP) Stockholm Convention on Persistent Organic Pollutants (POPs);
- Texas Commission on Environmental Quality (TCEQ). 2018. Conducting Ecological Risk Assessments at Remediation Sites in Texas. Draft August 2018; and
- Contaminated Sites Approved Professionals Society (CSAP). 2015. Bioaccumulation Research Project.

<sup>&</sup>lt;sup>10</sup> No guidelines were available for benzo(b)fluoranthene and benzo(b+j)fluoranthene; however these were included in the calculation for total PAHs and therefore were not identified as uncertain COPCs.

<sup>&</sup>lt;sup>11</sup> No guidelines were available for organic phosphorus or orthophosphate (PO<sub>4</sub>-P) however these parameters were assessed as total Phosphorus and therefore were not identified as uncertain COPCs (CCME 2016).

A summary of bioaccumulating and biomagnifying COPCs in the aquatic environment based on the review of the above-noted documents is presented in the table below. PAH parameters in sediment were not included in the summary table and are discussed further in the following section.

Table 5-8: Bioaccumulation Potential of Preliminary COPCs

|                                                     | Bioaccumula | ative Media      |                                                    | Biomagnifying?                    |  |
|-----------------------------------------------------|-------------|------------------|----------------------------------------------------|-----------------------------------|--|
| Preliminary COPC                                    | Sediment    | Surface<br>Water | Bioaccumulation Potential                          |                                   |  |
| Aluminum                                            | -           | -                | Not considered bioaccumulative                     | Not biomagnifying                 |  |
| Arsenic                                             | Х           | -                | Bioaccumulative (sediment)                         | Not biomagnifying                 |  |
| Boron                                               | -           | -                | Not considered bioaccumulative                     | Not biomagnifying                 |  |
| Cadmium                                             | Х           | -                | Bioaccumulative (sediment)                         | Not biomagnifying                 |  |
| Chromium (III+VI)                                   | -           | -                | Not considered bioaccumulative (sediment or water) | Not biomagnifying                 |  |
| Copper                                              | Х           | -                | Bioaccumulative (sediment)                         | Not biomagnifying                 |  |
| Iron (total)                                        | -           | -                | Not considered bioaccumulative                     | Not biomagnifying                 |  |
| Lead                                                | -           | -                | Not considered bioaccumulative (sediment or water) | Not biomagnifying                 |  |
| Manganese                                           | -           | -                | Not considered bioaccumulative                     | Not biomagnifying                 |  |
| Mercury                                             | Х           | Х                | Bioaccumulative (sediment and water)               | Yes; as methylmercury (CCME 2000) |  |
| Zinc                                                | Х           | -                | Bioaccumulative (sediment)                         | Not biomagnifying                 |  |
| Nutrients (Ammonia, Nitrite (As N), phosphorus TKN) | -           | -                | Not considered bioaccumulative 12                  | Not biomagnifying                 |  |
| Bacteria (Fecal Coliform, E.coli)                   | NA          | NA               | NA                                                 | NA                                |  |

NA - not applicable to COPC group

As indicated above, arsenic, cadmium, copper, mercury and zinc are potentially bioaccumulative sediment parameters, however arsenic and mercury were not retained as bioaccumulative COPCs in this ERA based on the following:

Based on a review of arsenic distribution in the study area, the bioaccumulation potential
of arsenic is considered low. Arsenic was only measured above the PSQG LEL

SLR 25

-

<sup>&</sup>lt;sup>12</sup> Nutrients such as nitrate and ammonia are naturally occurring compounds and key intermediates in the nitrogen cycle. It is continually recycled in the environment; therefore, bioaccumulation does not occur (ATSDR, 2004).

(0.4 mg/kg) at one sediment sample location (12 mg/kg at C-5 East) and was below the PWQO at all sample locations in surface water.

 Mercury was not retained as a potentially bioaccumulating and biomagnifying COPC for this ERA. Based on a review of mercury distribution in the study area, the bioaccumulating and biomagnifying potentials of mercury is considered to me low. Mercury was only measured above the PSQG LEL (0.2 mg/kg) at one sediment sample location (0.255 mg/kg at C-3 West) and was not detected in surface water.

## 5.4.3.1 Bioaccumulation and Biomagnification of PAHs

PAHs were also identified as COPCs but were not included in the bioaccumulation table above. PAHs may bioconcentrate in aquatic organisms and animals; however extensive metabolism of these compounds by high-trophic level consumers has been demonstrated, and food chain uptake does not appear to be a major source of exposure to PAHs for aquatic animals (Agency for Toxic Substances and Disease Registry - **ATSDR**, 1995).

A study by Bleeker and Verbruggen (2009) re-evaluated bioaccumulation in aquatic organisms and indicated that bioaccumulation of PAHs in aquatic organisms varies between low molecular weight (LMW) PAHs (e.g., acenaphthylene, acenaphthene, anthracene, fluorene, 2—methylnaphthalene, naphthalene and phenanthrene) and high molecular weight (HMW) PAHs (e.g., benz[a]anthracene, benzo[a]pyrene, chrysene, fluoranthene and pyrene). Phenanthrene and fluoranthene were not considered to be bioaccumulative in fish. HMW PAHs (four rings or more) were all found to potentially bioaccumulate in organisms lower in the food chain, but not in fish. LMW PAHs (2-3 rings) were noted to generally not bioaccumulate in fish or invertebrates. It has also been established that most vertebrates readily metabolize and excrete PAHs (Hylland, 2006). Tissue concentrations of PAHs do not increase (biomagnify) from the lowest to highest levels of food chains (Hylland, 2006). Therefore, direct effects of PAHs on invertebrates will be evaluated as part of this ERA but PAHs were not carried forward as bioaccumulating or biomagnifying COPCs for higher trophic levels.

## 5.5 Exposure Pathway Identification

Exposure pathways describe the movement of contaminants from sources such as sediment, to potential ecological receptors identified in Section 5.2. An exposure pathway is typically defined by the following four components:

- a source and mechanism of constituent release to the environment
- an environmental medium (e.g., sediment) for the released constituent(s)
- potential contact (exposure point) between a receptor and the affected environmental medium
- an exposure pathway (e.g., ingestion, dermal contact) at the exposure point.

The potential exposure pathways and the identified groups of ecological receptors of concern potentially exposed include:

- uptake of COPCs in sediment by aquatic plants
- direct contact with COPCs in sediment by benthic invertebrates
- direct contact with COPCs in sediment by benthic fish
- direct contact/dermal uptake of sediment and surface water COPCs by amphibians
- uptake of COPCs in surface water by aquatic plants
- direct contact with COPCs in surface water by aquatic invertebrates (e.g., zooplankton)

City of Hamilton Ecological Risk Assessment – Chedoke Creek Page 44 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

- direct contact with COPCs in surface water through skin or gills of fish
- ingestion of COPCs in sediment and prey items by benthic invertebrates
- ingestion of COPCs in food items and incidental ingestion of sediment by fish
- direct contact with, and incidental ingestion, of COPCs in sediment during feeding by aquatic-dependent wildlife
- ingestion of COPCs in surface water as drinking water for wildlife
- ingestion of bioaccumulating and/or biomagnifying COPCs in aquatic biota by aquatic dependent wildlife.

As per risk assessment guidance, only complete and potentially significant exposure pathways are carried forward for quantitative evaluation. Complete exposure pathways require a receptor to contact an environmental medium where COPCs have been identified. Complete exposure pathways have varying levels of importance; consequently, the pathways that reflect the highest exposure of a ROC to a specific COPC or group of COPCs are generally identified.

The significance of the exposure pathways listed above have been evaluated based on professional judgement, and have been categorized as follows:

- Exposure pathway is complete and potentially significant. Quantitative assessment of risk is recommended;
- Exposure pathway is complete but insignificant (no COPCs or limited exposure). Quantitative assessment of risk is not recommended; and
- Exposure pathway is incomplete. Quantitative assessment of risk is not recommended.

The following sections identify complete and potentially significant exposure pathways warranting further evaluation through quantitative ERA, as well as those exposure pathways that are incomplete or insignificant and are not considered to pose unacceptable risk.

### 5.5.1 Exposure to Sediment

Metals, PAHs and nutrients have been retained as the final groups of COPCs for the protection of aquatic life (benthic invertebrates, aquatic plants and fish). Complete and potentially significant exposure pathways for benthic invertebrates include direct contact with contaminated sediments, and ingestion of contaminated sediment (e.g., polychaetes that process sediment to obtain food). Direct contact with sediment and ingestion of sediment were also considered to be complete and potentially significant exposure pathways for fish. The uptake of COPCs through the root system was also considered to be a complete exposure pathway for some aquatic plants.

Direct contact with sediment is considered a complete and potentially significant exposure pathway for amphibians as some species may hibernate in the study area. Snakes and turtles may be directly exposed to COPCs in sediment via dermal contact and absorption through the skin as well as uptake through the food chain. Although these reptiles (including SAR) were identified as ROCs, based on their habitat affinities and availability of food in Cootes Paradise, turtles and snakes) are likely to use the more suitable habitat in Cootes Paradise, and are therefore unlikely to spend a significant amount of time within the study area.

Aquatic-dependent wildlife species (i.e., mammals and birds) may be directly exposed to COPCs in sediment via dermal contact. This exposure pathway was considered to be complete, but not a source of significant exposure as the integument of mammals and birds acts as a barrier to chemical exchange (BC MOE non-dated). Mammals and birds may also be exposed via uptake through the food chain, however based on the availability of food in Cootes Paradise, the home

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 45 of 406

SLR Project No.: 209.40666.00000 February 2020

range size of species identified, the size of the site and quality of habitat compared to Cootes Paradise, and the urban setting of the study area, birds (including SAR) and mammals are not expected to be present for significant periods of time in Chedoke Creek compared to Cootes Paradise. Exposure via food chain uptake was not identified as a significant exposure pathway.

## 5.5.2 Exposure to Surface Water

Aquatic plants, aquatic invertebrates, fish and the larval stage of amphibians can be directly exposed to surface water COPCs (e.g., uptake of contaminants through the roots, gills and/or through the skin). Aluminum, iron, nitrite, TP and *E. coli* were retained as final COPCs in surface water for the protection of aquatic life; therefore, complete and potentially significant exposure pathways were identified for aquatic plants, aquatic invertebrates, fish and amphibians.

Reptiles such as turtles and snakes may be directly exposed to COPCs in surface water via dermal contact. Although these receptor groups (including SAR) were identified as ROCs, based on their habitat affinities and availability of food in Cootes Paradise, turtles and reptiles are unlikely to spend a significant amount of time within the study area.

Mammal and bird receptors can potentially use surface water within the study area as a source of drinking water. No substances were retained as final COPCs in surface water for the protection of wildlife; however, select metals, nutrients and bacterial parameters were identified as uncertain COPCs. Although direct ingestion of surface water is recognized as a pathway of exposure, protection for aquatic organisms living directly within the surface waters should provide a higher level of protection than is required for organisms merely drinking the water (MOE 2011b). Therefore, since no final COPCs were identified, the ingestion of surface water as drinking water by wildlife was not further assessed. Exposure to uncertain COPCs are discussed in Section 9.0.

The ingestion of contaminated food items and the incidental ingestion of contaminated sediment was identified as a complete but insignificant exposure pathway for aquatic-dependent wildlife based on the distribution of the COPCs and on the foraging ranges of the aquatic dependent wildlife ROCs. As per MOE (2008) the biomagnifying potential of the COPCs was qualitatively evaluated. Mercury was the only COPC identified as a biomagnifying COPC. As indicated in Section 5.3.3, mercury exceeded the SQG LEL in one sediment sample only, and was not detected in surface water.

### 5.6 Conceptual Site Model

CSMs combine information on COPCs, ROCs, and exposure pathways to provide an overall picture of site related exposures. The CSM for ecological receptors is presented in Drawing 4. Complete exposure pathways carried forward in the risk assessment were shaded green on the CSM drawing. Some exposure pathways were considered potentially complete but were associated with a low likelihood of significant exposure (i.e., exposure would be very infrequent or the dose from exposure would be very low). These pathways were shaded yellow on the CSM drawing. Incomplete pathways are those through which exposure does not occur and were not shaded in the CSM drawing. Only complete and significant exposure pathways were evaluated further in the ERA.

In addition to the flow-chart CSM, a summary of the complete and potentially significant exposure pathways to be quantified in the risk assessment is provided in Table 5-9, below. This summary is based on the environmental media investigated in the Study Area and the COPCs identified as final COPCs.

**Table 5-9: Summary of Potential Exposure Pathways** 

| Environmental<br>Medium | Receptors of<br>Concern            | Exposure<br>Pathway | Final COPCs                                                                                                                                                                                                                                                                                                                                                      | Further Qualitative or<br>Quantitative Assessment of Risk<br>in the ERA? |
|-------------------------|------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Sediment                | Aquatic plants                     | Uptake              | Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene,                                                                                                                                                                                                                                                     | Yes, complete and potentially significant exposure pathway               |
| Sediment                | Benthic<br>Invertebrates           | Direct<br>contact   | benz(a)anthracene, benzo(g,h,i)perylene<br>benzo(k)fluoranthene, benzo(a)pyrene, chrysene,<br>dibenz(a,h)anthracene, fluoranthene, fluorene,<br>indeno(1,2,3-cd)pyrene,<br>2- methylnaphthalene, naphthalene,<br>phenanthrene, pyrene, total PAHs, TKN,<br>phosphorus                                                                                            | Yes, complete and potentially significant exposure pathway               |
| Sediment                | Fish                               | Direct<br>contact   | Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus | Yes, complete and potentially significant exposure pathway               |
| Sediment                | Amphibians<br>(frog)               | Direct<br>Contact   | benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus                                                                                                                                                      | Yes, complete and potentially significant exposure pathway               |
| Sediment                | Reptile (turtles<br>& snakes)      | Direct<br>contact   | Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus | No, complete but insignificant exposure pathway                          |
| Sediment                | Wildlife<br>(birds and<br>mammals) | Direct<br>Contact   | Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs, TKN, phosphorus | No, complete but insignificant exposure pathway                          |

| Environmental<br>Medium | Receptors of<br>Concern            | Exposure<br>Pathway             | Final COPCs                                                                                                                                                                                                                                                                                                                                     | Further Qualitative or<br>Quantitative Assessment of Risk<br>in the ERA? |
|-------------------------|------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                         | Amphibians<br>(frog)               | Direct<br>Contact               | Arsenic, cadmium, chromium, copper, lead, manganese, mercury, zinc Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene, total PAHs | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Aquatic Plants                     | Uptake                          |                                                                                                                                                                                                                                                                                                                                                 | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Zooplankton                        | Direct contact                  | Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>                                                                                                                                                                                                                                                                              | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Benthic<br>Invertebrates           | Direct contact                  |                                                                                                                                                                                                                                                                                                                                                 | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Fish                               | Direct contact                  | Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>                                                                                                                                                                                                                                                                              | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Reptile (turtles & snakes)         | Direct<br>Contact               | Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>                                                                                                                                                                                                                                                                              | No, complete but insignificant exposure pathway                          |
| Surface Water           | Amphibians<br>(frog)               | Direct<br>Contact               | Aluminum, iron (total), nitrite (as N), phosphorus, <i>e.coli.</i>                                                                                                                                                                                                                                                                              | Yes, complete and potentially significant exposure pathway               |
| Surface Water           | Wildlife<br>(birds and<br>mammals) | Direct<br>Contact,<br>ingestion | None                                                                                                                                                                                                                                                                                                                                            | No, no COPCs                                                             |
| Food Items              | Fish                               | Ingestion                       | Cadmium, copper, and zinc *                                                                                                                                                                                                                                                                                                                     | No, complete but insignificant exposure pathway                          |
| Food Items              | Amphibians                         | Ingestion                       | Cadmium, copper, and zinc                                                                                                                                                                                                                                                                                                                       | No, complete but insignificant exposure pathway                          |
| Food Items              | Reptile (turtles & snakes)         | Ingestion                       | Cadmium, copper, and zinc                                                                                                                                                                                                                                                                                                                       | No, complete but insignificant exposure pathway                          |
| Food Items              | Wildlife                           | Ingestion                       | Cadmium, copper, and zinc                                                                                                                                                                                                                                                                                                                       | No, complete but insignificant exposure pathway                          |

<sup>\*</sup>Based on bioassessment; source of COPCs is sediment, no bioaccumulative COPCs identified in surface water.

## 5.7 ERA Risk Analysis Plan

The development of a risk analysis plan represents the final stage of the problem formulation process: it presents the overall implementation strategy of the ERA (EC 2012). An overview of the preliminary Risk Analysis Plan for the ERA is provided in this section, including selection of assessment and measurement endpoints and proposed methods to evaluate potential risks to aquatic plants, aquatic invertebrates, fish, amphibians and aquatic-dependent wildlife.

## 5.7.1 Assessment and Measurement Endpoints

Assessment endpoints define the values or attributes of the receptors which must be protected. The CCME (1996) defines an assessment endpoint as the "characteristic of the risk assessment that is the focus of the risk assessment." Azimuth (2012) defines an assessment endpoint as "an explicit expression of the environmental value to be protected" and includes an entity (a "thing" to be protected such as a receptor group" and "a specific property of that receptor (an attribute)"). The selection of assessment endpoints is an essential element of the overall risk assessment

process because it provides a means of focussing assessment activities on the key environmental values (e.g., survival of benthic invertebrates) that could be negatively affected by exposure to environmental contaminants.

Measurement endpoints are the criteria to measure the potential effects. Measurement endpoints can include measures of exposure such as concentrations of COPCs in environmental media, and measures of effects such as literature-based receptor-specific TRVs. The assessment and measurement endpoints which have been used in this ERA are outlined in Table 5-10 and pertain to the four receptor groups retained for assessment. As it would not be practical or possible to incorporate all possible measurement endpoints, the measurement endpoints that inform the assessment endpoints and provide the most useful information for evaluating the risks associated with exposure to the COPCs, have been identified.

**Table 5-10: ERA Assessment and Measurement Endpoints** 

| December                  | -                                                                                               | •                                                                |                                                 | Liı | nes of Evidence                                                                                                                                                                                              |
|---------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Receptor<br>Group         | Assessment Endpoint                                                                             | LOE                                                              | Measurement<br>Endpoint                         |     | Overview of the Risk Evaluation Framework                                                                                                                                                                    |
| Aquatic<br>Plants         | Structure and ecological function (i.e. food and habitat for invertebrates, fish, and wildlife) | Chemistry<br>(surface<br>water and<br>sediment)                  | Final COPC concentrations                       | -   | HQs derived using literature-based TRVs HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks HQs distribution Field observations                                                           |
| Aquatic<br>Invertebrates* | Structure and ecological function (i.e. food for fish, and wildlife)                            | Chemistry (surface water and sediment)  Toxicity test (sediment) | Final COPC concentrations  Survival, and growth | -   | HQs derived using TRV based on site-specific and literature toxicity information  HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks HQs distribution  Comparisons to laboratory control |
|                           |                                                                                                 | Biological assessment                                            | Abundance and richness                          | -   | Comparisons among year and sampling locations                                                                                                                                                                |
| Fish                      | Viability of local fish populations (ability for the population to                              | Chemistry<br>(surface<br>water and                               | Final COPC concentrations                       | -   | HQs derived using TRV based on site-specific and literature toxicity information                                                                                                                             |
|                           | sustain itself over the long term)                                                              | sediment)                                                        |                                                 | -   | HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks                                                                                                                                       |
| Amphibian                 | Viability of local<br>amphibian<br>populations                                                  | Chemistry<br>(surface<br>water and<br>sediment)                  | Final COPC concentrations                       | -   | HQs derived using TRV based on site-specific and literature toxicity information HQs ≤1.0 indicate negligible risks; HQs > 1.0 indicate potential risks                                                      |

<sup>\*</sup>Listed species assessment endpoint will be protective of the individual as opposed to the viable population

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 49 of 406
SLR Project No.: 209.40666.00000

SLR Project No.: 209.40666.00000 February 2020

## 6.0 EXPOSURE ASSESSMENT

Exposure is defined as the contact of a receptor with a chemical or a physical agent. The goal of the exposure assessment is to quantify complete exposure pathways identified in the problem formulation and summarized in the conceptual site model. In doing so, exposure point concentrations (EPCs) are defined for each COPC carried forward in the ERA.

The measure of exposure for aquatic life is generally not discussed in terms of specific exposure pathways, but rather as concentrations in the exposure media, in this case surface water and/or sediment. For this reason, EPCs representing the concentrations of individual COPCs at the point of contact with a receptor (aquatic plant, aquatic invertebrate, fish and/or amphibian), are provided in the exposure assessment for aquatic life. The EPC are based on the data obtained by Wood in 2018 and by SLR in 2019. The environmental studies considered in the ERA are described in Sections 3.0 and 4.0 and the data used in the exposure assessment are presented in Section 5.6.1. Exposure assessment uncertainties are discussed in Section 9.2.

## 6.1 COPCs Spatial Distribution and Trends

The following section discusses the spatial distribution of the COPC groups in the surficial sediment and/or surface water, as well as comparisons to MECP guidelines.

#### 6.1.1 Metals

Metals in surface sediment reflect the various inputs present in an urban watershed such as Chedoke Creek. Arsenic, cadmium, chromium (III+VI), lead, manganese, mercury and zinc concentrations in sediment exceeded the PSQG LELs, but were below the SELs in all samples. Copper was the only metal to exceed the PSQG SEL. In surface water, aluminum, iron and zinc exceeded the PWQO for the protection of freshwater aquatic life. The spatial distribution of these COPCs is briefly described below (for each COPC).

In surface water, total aluminum ranged from 160  $\mu$ g/L to 598  $\mu$ g/L, which exceeded the PWQO of 75  $\mu$ g/L. The lowest concentration was obtained immediately downstream of the King/Main CSO (C-1) and the highest concentration was obtained at the most downstream location (C5-East). Dissolved aluminum concentrations were significantly lower, ranging from non-detected (<2  $\mu$ g/L) to 14  $\mu$ g/L, indicating that total aluminum is mostly associated with particulates.

In surface water, total iron ranged from 202  $\mu$ g/L to 1180  $\mu$ g/L. The PWQO (300  $\mu$ g/L) was exceeded in six out of eight samples. The highest concentration was observed at C5 East. Iron was not retained as a COPC in sediment as concentrations were less than the sediment background value published by MECP (MOE 2008).

Arsenic in sediment exceeded the PSQG LEL (6 mg/kg) in one out of twenty-two samples (12 mg/kg, C-5 East in September 2018). All arsenic concentrations were below the SEL (33 mg/kg). Arsenic concentrations in surface water were below the PWQO.

Cadmium in sediment exceeded the PSQG LEL (0.6 mg/kg) in thirteen out of twenty-samples. The highest cadmium concentrations were obtained at location C5-East (8.5 mg/kg) and C-4 West (6.1 mg/kg) in September 2018. All cadmium concentrations were below the SEL (10 mg/kg). Cadmium was not detected in surface water (<0.1  $\mu$ g/L).

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 50 of 406
SLR Project No.: 209.40666.00000
February 2020

Chromium (III+VI) in sediment exceeded the PSQG LEL (26 mg/kg) in six out of twenty-samples. Chromium exceedances were seen at locations C-3, C-4 and C-5. The highest chromium concentrations were obtained at location C-4 West (41 mg/kg) and C5-East (37 mg/kg) in September 2018. All chromium concentrations were below the SEL (110 mg/kg). Chromium concentrations in surface water were below the CCME WQGs.

Copper in sediment exceeded the PSQG LEL (16 mg/kg) in all samples (n=15). Copper also exceeded the severe effect level (**SEL**) (110 mg/kg) at locations C-3 West (170 mg/kg) in September 2018, and C-4 West (125 mg/kg) in October 2019 and C-5 East (136 mg/kg) in September 2018. Copper concentrations in surface water were below the PWQO.

Lead in sediment exceeded the PSQG LEL (31 mg/kg) in eleven out of fifteen samples. The highest lead concentration was obtained at location C-3 West (87 mg/kg). All lead concentrations were below the SEL (250 mg/kg). Lead concentrations in surface water were below the PWQO.

Manganese in sediment exceeded the PSQG LEL (460 mg/kg) in five out of six samples. Manganese concentrations ranged from 390 mg/kg at G-6 Comp to 623 mg/kg at G-5 Comp. All manganese concentrations were below the SEL (1100 mg/kg). Manganese concentrations in surface water were below the PWQO.

Mercury in sediment exceeded the PSQG LEL (0.2 mg/kg) in one out of six samples (0.255 mg/kg; C3-West). All mercury concentrations were below the SEL (2 mg/kg). Mercury was not detected in surface water.

Zinc in sediment exceeded the PSQG LEL (120 mg/kg) in all samples (n=15). The highest zinc concentration was obtained at location C-4 West (532 mg/kg) in 2019. The second highest concentration (505 mg/kg) was obtained at C3-West in 2018. Zinc in surface water ranged from 15 to 22  $\mu$ g/L. The maximum concentration exceeded the PWQO of 20  $\mu$ g/L.

The concentrations of metal COPCs in sediment generally increased from upstream to downstream, with the highest concentrations typically observed at locations C5-East and C3-West. The metals distribution in sediment indicates that the storm sewers located immediately upstream of C3-West and C5-East may also contribute metals to the study area.

Generally, the concentrations of metals COPCs in the surficial sediments of Chedoke Creek and Chedoke Bay do not show an enrichment following the 2014-2018 discharge compared to historical results with the potential exception of copper. Environment Canada investigated metals concentrations in sediment in Chedoke Creek in 2002 (Dove et al 2003). Several surface (<5 cm) sediment sub-samples (e.g. mid-channel, left-bank, right-bank) were collected upstream of the mouth of Chedoke Creek. The concentrations in the composited sediment sample obtained by Environment Canada in 2003 were compared to the range of concentrations obtained in 2018 and 2019 (Table 6-1). The results generally show comparable concentrations. In 2018 and 2019 combined, two out of fifteen samples had copper in higher concentrations than in 2002 and four out of 22 samples had cadmium in higher concentrations than in 2003. In 2018 and 2019, the samples with the highest concentrations of copper also had the highest concentrations of zinc and TP.

Table 6-1: Chedoke Creek COPC Concentrations in 2002, 2018 and 2019

| COPC      | 2002* | 2018**     | 2019**        |
|-----------|-------|------------|---------------|
| Arsenic   | 11    | 3 - 12     | 3.56-5.76     |
| Cadmium   | 1     | 0.27 - 8.5 | 0.601-1.32    |
| Chromium  | 39    | 16 - 41    | 19.8-35.9     |
| Copper    | 86    | 30 - 170   | 38.1-125      |
| Lead      | 70    | 13 - 145   | 24.5-51.3     |
| Manganese | 547   | na         | 390 - 623     |
| Mercury   | 0.403 | na         | 0.057 - 0.255 |
| Zinc      | 551   | 167 - 505  | 214- 532      |

<sup>\*</sup>one sample made up of several combined sub-samples representative of the overall conditions.

All concentrations are in mg/kg.

In addition to the samples collected in Chedoke Creek, four sediment samples were obtained from Chedoke Bay (C6 East, C6-Centre, and C6-West in 2018; G7 in 2019). Cadmium, chromium (III+VI), copper, lead, manganese, mercury and zinc concentration in sediment exceeded the SQG LELs, but were below the SELs in these samples.

Sediment samples were also collected from Chedoke Bay in 2006 (CC-1) and in 2013 (CC-2). Cadmium, copper, iron, manganese, lead, nickel and zinc exceeded the PSQG LELs, but were below the SELs in these samples (Bowman and Theÿsmeÿer, 2014). The 2013 sediment study showed that metals exceeding the PSQG LELs were observed at most locations in Cootes Paradise and Grindstone Marsh, with copper exceeding the LEL at all ten locations investigated (Bowman and Theÿsmeÿer, 2014). Comparison of metals concentrations obtained in 2006 and 2013 to concentrations obtained in 2018 and 2019 shows similar results, except for copper showing a possible increase (Table 6-2). Note that the maximum copper concentration in West Pond in 2013 was 90.5 mg/kg. A study on contaminant loadings and concentrations to Hamilton Harbour reported "concerns about the concentration levels of copper in the sediments of Cootes Paradise and the Grindstone Creek Estuary. The Technical Team hypothesized that sources could include copper pipes and roofs in the area or residue from copper now used in brake pads instead of asbestos" (Hamilton Harbour Remedial Action Plan Office 2018).

Table 6-2: Chedoke Bay Historical and Current Surface Sediment Metal Maximum COPC Concentrations

| COPC      | 2006 | 2013 | 2018 | 2019 |
|-----------|------|------|------|------|
| Cadmium   | 2.1  | 2.1  | 0.96 | 0.96 |
| Copper    | 73   | 55   | 76   | 99.8 |
| Manganese | -    | 630  | -    | 537  |
| Lead      | 69   | 50   | 63   | 61   |
| Zinc      | 400  | 340  | 303  | 451  |

All concentrations are in mg/kg.

<sup>\*\*</sup>min-max

na - not available

### 6.1.2 PAHs

PAHs were widespread in the study area. All sediment sampling locations except for G3 had one or more PAHs and total PAHs<sup>13</sup> in concentrations exceeding the SQG LELs. All individual PAHs except for pyrene in one sample (C1-West) are below the SELs adjusted to the lowest TOC level obtained in Chedoke Creek (2 percent). SLR re-sampled location C1-West in 2019. Pyrene was below the SEL in 2019. Total PAHs were below the SEL in all samples in 2018 and 2019. PAHs were not detected in surface water.

Total PAHs concentrations in 2018 ranged from 2.97 to 98.69 mg/kg (n=16) and total PAHs in 2019 ranged from 5.3 to 13 mg/kg (n=6). The maximum concentration of total PAHs was obtained in C1-West by Wood in 2018. SLR re-sampled this location in 2019 and measured a total PAH concentration of 6.7 mg/kg for this location.

The distribution of total PAHs shows variability among stations located within the same area. Generally, total PAHs were highest at the location downstream of the King/Main CSO, decreased at locations G3 and G4, and increased downstream of Macklin Street Bridge. Total PAHs concentrations between Macklin Street Bridge and Princess Point appeared similar (based on the geomean; Table 6-3).

In all samples, fluoranthene was the dominant PAH, followed by pyrene and phenanthrene or chrysene. Benz(a)anthracene and benzo(a)pyrene were the fifth or sixth most dominant PAHs, depending on the sample. The similar distribution of individual PAHs in the samples across the study area points to a common source. A study on PAHs in Cootes Paradise Marsh and select tributaries completed by Chow-Fraser et al (1996) indicated that PAHs in sediment of Spencer, Borer's and Chedoke Creeks most likely originated from automobile exhaust and residual asphalt based on the high levels of fluoranthene and pyrene which are derivatives of engine combustion.

Based on the 2018 and 2019 results, PAH concentrations do not seem to be correlated with nutrient levels. For example, in 2018 the sampling location with the highest total PAH concentrations was the only sampling location with TP concentration below the PSQG LEL. TKN was also below the LEL in that sample.

Environment Canada investigated PAH concentrations in sediment in Chedoke Creek in 2002 (Dove et al 2003). Most of the individual PAHs and total PAHs (14. 5 mg/kg) exceeded the SQG LELs in the sediment sample obtained in 2002. Similar to the samples obtained in 2018 and 2019, pyrene, fluoranthene, phenanthrene and benz(a)anthracene were the dominant PAHs in the sample.

SLR 35

-

<sup>&</sup>lt;sup>13</sup> PAH (total) is the sum of 16 PAH compounds: Acenaphthene, Acenaphthylene, Anthracene, Benzo[k]fluoranthene, Benzo[b]fluoranthene, Benzo[a]anthracene, Benzo[a]pyrene, Benzo[g,h,i]perylene, Chrysene, Dibenzo[a,h]anthracene, Fluoranthene, Fluorene, Indeno[1,2,3-cd]pyrene, Naphthalene, Phenanthrene, and Pyrene (MOE, 2008).

Table 6-3: Total PAHs Results in Chedoke Creek

| Location   | Date      | Total PAHs Conc. | Geomean |  |  |
|------------|-----------|------------------|---------|--|--|
| G-1 Comp   | 9/18/2018 | 42.2             |         |  |  |
| C-1 West   | 9/18/2018 | 98.7             |         |  |  |
| C-1 West   | 10/2/2019 | 6.7              | 20.1    |  |  |
| G-2 Comp   | 9/18/2018 | 5.1              |         |  |  |
| C-2 West   | 9/18/2018 | 23.0             |         |  |  |
| G-3 Comp   | 9/18/2018 | 3.0              | 3.0     |  |  |
| G-4 Comp   | 9/18/2018 | 4.4              | 4.0     |  |  |
| G-4 Comp   | 10/2/2019 | 5.3              | 4.9     |  |  |
| G-5 Comp   | 9/19/2018 | 8.2              |         |  |  |
| G-5 Comp   | 10/2/2019 | 5.7              |         |  |  |
| C-3 West   | 9/18/2018 | 11.0             | 9.0     |  |  |
| C-3 West   | 10/2/2019 | 13.0             | 9.0     |  |  |
| C-3 Centre | 9/18/2018 | 16.0             |         |  |  |
| C-3 East   | 9/18/2018 | 4.9              |         |  |  |
| C-4 West   | 9/19/2018 | 20.5             |         |  |  |
| C-4 West   | 10/1/2019 | 7.8              | 0.7     |  |  |
| C-4 Centre | 9/19/2018 | 8.9              | 9.7     |  |  |
| C-4 East   | 9/19/2018 | 6.2              |         |  |  |
| C-5 West   | 9/19/2018 | 6.5              |         |  |  |
| C-5 Centre | 9/19/2018 | 5.3              | 7.9     |  |  |
| C-5 East   | 9/19/2018 | 16.0             | V.9     |  |  |
| G-6 Comp   | 10/1/2019 | 7.3              |         |  |  |

### 6.1.3 Nutrients

Nutrients are a component of raw sewage. Nutrients were retained as COPCs in sediment (TKN and TP) and in surface water (nitrite and TP).

In sediment, TKN exceed the PSQG LEL (550 mg/kg) in twelve (600 to 1900 mg/kg) of twentytwo samples. TKN showed a decrease in concentrations in October 2019 and none of the samples had TKN concentrations above the LEL. The maximum TKN concentration in 2018 was 814 mg/kg obtained at C3-West and the maximum TKN concentration in 2019 was 330 mg/kg obtained at C-4 West. Ammonia also decreased between 2019 (maximum 400 mg/kg) and 2018 (maximum 130 mg/kg).

TP was widespread in the study area and exceeded the PSQG LEL (600 mg/kg) in twenty-one out of twenty-two sediment samples obtained in 2018 and 2019. The maximum TP concentration in 2018 was 1622 mg/kg obtained in sample C-3 West and the maximum TP concentration in 2019 was 1560 mg/kg obtained in sample C-4 West.

All samples had TKN and TP concentrations below the SELs (4800 and 2000 mg/kg, respectively).

Studies that included sediment samples analyzed for nutrients in Chedoke Creek before the Main/King CSO discharge were not found. However, sediment samples were collected in Cootes Paradise and Grindstone Marsh in 2006 and 2013, including two sediment samples from Chedoke Bay (CC-1 and CC-2) (Bowman and Theijsmeijer, 2014). These sediment samples were analyzed for TKN and TP and exceeded the LELs at all locations in Cootes Paradise and Grindstone Marsh. TP also exceeded the SEL in Desjardin Canal in 2006 and 2013 (Bowman and Theijsmeijer, 2014). Comparison of TP and TKN concentrations obtained from Chedoke Bay in 2006 and 2013 to concentrations obtained in 2018 and 2019 in sediment (within the top 15 cm of sediment) shows similar TP concentrations and a decrease in TKN concentrations (Table 6-4).

Table 6-4: Chedoke Bay Historical and Current Maximum Sediment TKN and TP Concentrations in Surface Sediment

| COPC | 2006 | 2013 | 2018 | 2019 |
|------|------|------|------|------|
| TKN  | 1250 | 1390 | 814  | 120  |
| TP   | 1100 | 1100 | 1000 | 1140 |

Unit in 2006 and 2013 are in µg/g and unit in 2018 and 2019 are in mg/kg; both are ppm.

In surface water, total nitrite exceeded the CCME long-term WQG (60  $\mu$ g/L) at all 2019 study area sample locations, ranging from 70 to 220  $\mu$ g/L. There is no PWQO for nitrite. The lowest concentration was obtained at the most downstream location (C5-East) and the highest concentration was obtained immediately downstream of the Main/King CSO outlet (C-1). TKN was retained as an uncertain COPC in surface water as no PWQO is available. Waters not influenced by excessive organic inputs typically range from 100 to 500  $\mu$ g/L (Environment Canada 1979). Measured concentrations within the study area ranged from 500 to 1500  $\mu$ g/L, with the highest concentration obtained at the most downstream location (C-5 East). It is noted that the concentrations measured in 2019 at Red Hill reference locations R-1 and R-2 were also below this range (300 and <200  $\mu$ g/L, respectively).

TP concentrations exceeded PWQO (30  $\mu$ g/L) to prevent excessive algae growth in river at all sample locations and were within a comparable range across the study area (314 to 428  $\mu$ g/L). The maximum TP concentration was obtained in sample G-1 Comp West collected immediately downgradient of the CSO outlet, while the minimum was collected at the most downstream location (C5-East). Dissolved phosphorus concentrations were generally consistent with the total concentrations measured immediately downstream of the CSO outlet (C-1 and G-1) but were lower than the total concentrations measured at downstream locations. This indicates that particulates likely play a larger role in total phosphorus concentrations at downstream locations. TP was not detected in the Red Hill reference samples in 2019.

TP concentrations were measured in the study area (CP-11) before (2009 to 2013), during (May 2014 to July 2018) and after the discharge (August 2018 to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that TP concentrations were significantly higher in 2018 during the Gate 2 failure. After the discharge, TP concentrations returned to pre-discharge concentrations (Table 6-5).

City of Hamilton Ecological Risk Assessment – Chedoke Creek

Table 6-5: Surface Water TP Concentrations Before, During and After the Discharge

| Period         | Year                     | N  | Range    | Median |
|----------------|--------------------------|----|----------|--------|
| Pre-discharge  | 2009                     | 12 | 84-271   | 194    |
| Pre-discharge  | 2010                     | 11 | 111-269  | 185    |
| Pre-discharge  | 2011                     | 11 | 100-469  | 195    |
| Pre-discharge  | 2012                     | 11 | 158-365  | 290    |
| Discharge      | 2014                     | 8  | 156-956  | 350    |
| Discharge      | 2015                     | 17 | 113-1250 | 369    |
| Discharge      | 2016                     | 19 | 226-1004 | 433    |
| Discharge      | 2017                     | 27 | 130-740  | 359    |
| Discharge      | 2018 (until end of July) | 16 | 276-2780 | 1130   |
| Post-discharge | 2018 (August-October)    | 10 | 195-935  | 233    |

Nutrients in Chedoke Creek surface water have been evaluated in several studies. Chow-Fraser reported a mean nutrient TKN concentration for May to September 1996 of 2840 µg/L for Chedoke Creek. The mean TP concentration in the same study was reported to be 375 µg/L. Chow-Fraser (1996) indicates that high nutrient levels in Chedoke Creek were probably linked to the several CSOs discharging into the creek. In addition, urban runoff has been recognized as a major nonpoint source of TP in the growing season, for example urban runoff has been identified as the second most important nonpoint loading source of TP to Cootes Paradise (Dong-Kyun et al 2016).

#### 6.1.4 Bacteria

E. coli and fecal coliform were identified as an uncertain COPC in sediment and surface water based on the lack of guidelines specific to ecological receptors. While samples were also analyzed for fecal coliform, E. coli is a better indicator of bacterial fecal contamination. MOEE 1994 states that E. coli was selected for the guidelines for the protection of human health as "studies have determined that, among bacteria of the coliform group, E. coli is the most suitable and specific indicator of fecal contamination".

E. coli levels in sediment in 2019 ranged from 5,400 to 2,400 MPN/100g. E coli were not analyzed in sediment in 2018. Fecal coliforms in sediment were analyzed in both 2018 and 2019 and decreased from 2018 to 2019 at all sampling locations. Levels in 2018 ranged from 8,000 to 45,000 MPN/100g with a median concentration of 20,000 MPN/100g. In 2018, the highest levels were observed at C-3 West and C-3 East. Levels in 2019 ranged from 5,400 to 2,400 MPN/100g with a median concentration of 4450 MPN/100g. In 2018, the highest levels were observed at C-3 West, C-3 East and C-5 East.

E. coli levels in surface water in 2019 ranged from 390 to 4100 cfu/100 ml. E coli counts were higher at upstream location C1-West and lowest at downstream location C5-East. The 2019 median concentration was 1450 cfu/100 ml. Wood (2019) reported a median for E. coli during the discharge event of 12300 cfu/100 ml.

E. coli counts are elevated throughout the Chedoke Creek subwatershed. E coli levels were measured in the study area (CP-11) and at three locations upstream of the Main/King CSO (CC-3, CC-7 and CC-9; locations provided in Appendix A) in 2018. The results are provided in Table 6-6

for two time period, during the discharge (April to July 2018) and after the discharge (August to October 2018) (HCA data as provided by City of Hamilton, 2019). The results show that *E. coli* levels were significantly higher at station CP-11 than in the upstream stations at CC-2, CC-7, and CC-9, during the discharge. After the discharge, *E coli* decreased to levels lower than those observed at the upstream locations.

Table 6-6: Chedoke Creek E. Coli Levels in Surface Water Downstream and Upstream of Main/King CSO in 2018

|                           | Downs | stream of M<br>CSO | lain/King |         |            | U      | lpstream of Main/King CSO |          |        |    |           |        |  |  |
|---------------------------|-------|--------------------|-----------|---------|------------|--------|---------------------------|----------|--------|----|-----------|--------|--|--|
|                           | СР    | -11 (study         | area)     | CC-3 CC |            |        |                           |          |        |    | CC-9      |        |  |  |
|                           | N     | Range              | Median    | N       | Range      | Median | N                         | Range    | Median | N  | Range     | Median |  |  |
| 2018<br>(April -July)     | 11    | 290000-<br>4900000 | 1800000   | 8       | 590-104000 | 15900  | 8                         | 570-6600 | 2800   | 8  | 590-18000 | 3200   |  |  |
| 2018 (August-<br>October) | 10    | 190-<br>20000      | 3300      | 5       | 800-610000 | 6400   | 5                         | 440-6000 | 1600   | 5  | 1630-9000 | 7100   |  |  |
| 2019                      |       | 390-4100           | 1450      | na      | na         | na     | na                        | na       | na     | na | na        | na     |  |  |

na - not available

Unit are in CFU/100ml

April-July 2018 – during discharge

August-October 2018 – after discharge

Samples collected on the same dates at all locations but location CC-11 included duplicate.

2018 dates during discharge: April:11 and 25; May: 9 and 23: June: 7 and 20; July 4 and 18

2018 dates after discharge: August:1, 15 and 29; September 11 and 27; October: 10.

# 6.1.5 Biochemical Oxygen Demand (BOD) and Dissolved Oxygen (DO)

While BOD and DO were not selected as COPCs, the two parameters provide information on the potential indirect effect of natural organic detritus and/or organic waste. BOD is a measure of the amount of oxygen that bacteria will consume while decomposing organic matter under aerobic conditions thus reducing available dissolved oxygen for fish and other aquatic biota (e.g., invertebrates) (Wood 2019). BOD in the 2019 sediment sample (measured in the porewater) ranged from 6.4 to 31 mg/L. The highest BOD was observed at C-4 West. BOD measured at C-1 West, downstream of the CSO, was 8.5 mg/L. DO was measured in surface water at each location in the field and ranged from 2.96 to 10.23 mg/L. The location with the highest DO level was C-1 West and the location with the lowest DO level was C5-East/G6. Both locations with the highest BOD (C-4 West: 31 mg/l and C5-East/G6: 17 mg/L) also showed the lowest DO (4.85 and 2.96 mg/L respectively). Sampling locations C-4 West and C5-East/G6 had DO levels lower than the CCME minimal DO guideline levels for the protection of warm water biota (6 mg/L). Surface water DO in the study area prior to the King/Main CSO discharge event ranged from 3 mg/L to 16 mg/L with the lowest DO levels observed in the summer.

Total organic carbon measured in sediment in 2019 ranged from 2.6% to 4.7% and was comparable to total organic carbon observed in the study area in 2002 (3.8% - Dove et al 2003).

Page 57 of 406 SLR Project No.: 209.40666.00000 February 2020

# **6.2** Exposure Point Concentrations (EPC)

Aquatic plants and benthic invertebrates are sessile and thus, may be exposed to higher or lower concentrations in discrete area(s) of Chedoke Creek. For this reason, the concentrations of the individual sediment samples obtained in Chedoke Creek were used as EPCs.

EPCs for fish and amphibians are based on the calculated 95% UCLM concentrations because fish are mobile receptors and thus, may be exposed to the entire length of Chedoke Creek within the study area.

The EPCs for the individual samples and the 95% UCLM concentrations are presented in Table 4 after the text.

For surface water COPCs, the maximum concentrations were adopted as the EPCs for aquatic plant, invertebrates (benthic and zooplankton), fish and amphibians. The maximum concentrations were conservatively selected because surface water samples in the study area were only collected on one occasion (2019) from 8 locations, providing limited information on the temporal and spatial variations in surface water quality. The surface water EPCs are summarized below in Table 6-7.

The method followed to calculate the 95% UCLMs and the detailed results of the analyses are presented in Appendix F.

| COPC                        | EPC  | Unit | Statistic |
|-----------------------------|------|------|-----------|
| Aluminum                    | 598  | μg/L | Maximum   |
| Iron (total)                | 1340 | μg/L | Maximum   |
| Nitrite (as N)              | 280  | μg/L | Maximum   |
| Total Phosphorus            | 450  | μg/L | Maximum   |
| Total Phosphorus (Filtered) | 420  | μg/L | Maximum   |

**Table 6-7: Surface Water Exposure Point Concentrations** 

The EPCs are carried forward to the risk characterization section of this ERA.

### 7.0 EFFECTS ASSESSMENT

Exposure to COPCs in sediment and surface water has the potential to negatively affect aquatic organisms. Toxicity reference values (**TRVs**) were compiled for each of the COPCs to assess the potential effects and characterize the potential risks. A TRV is a receptor-specific concentration of a chemical, above which adverse effects have the potential to occur, and below which there is a low likelihood that adverse effects will occur. The selected TRVs were then used to quantify the potential risks (Section 8.0).

Concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated to bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood and vary on a site-specific basis, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including biological observations, controlled toxicity tests and measures of effects on benthic communities inhabiting sediments (Ingersoll et al., 1997). The following information was compiled and presented as part of the effect assessment:

Page 58 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

- Sediment toxicity testing was completed using benthic invertebrates exposed to sediments
  collected from impacted locations to identify whether exposure to the COPCs caused
  decreases in survival, reproduction and/or growth compared to a laboratory control;
- BICS analysis was conducted to assess the benthic community composition at various locations; and
- Both toxicity testing and BICS analysis rely upon site-specific information to assess whether potential effects are due to elevated chemical concentrations and/or other biological and physical stressors (e.g., particle size, competition/predation).

The effects assessment presents key information used in the risk characterization presented in Section 8.0. Effects assessment uncertainties are discussed in Section 9.3.

# 7.1 Literature-Based Toxicity Reference Values

The TRVs were selected in accordance with ERA guidance (EC 2012, MECP 2019) and are outlined in the subsection below.

## 7.1.1 Sediment TRVs for Aquatic Life

While screening-level sediment quality guidelines (i.e., lowest effect level-type SQGs) were used to identify the COPCs, aquatic life, probable-effect level (PEL) type SQGs were adopted as TRVs to assess risks to aquatic life associated with exposure to sediment COPCs for non listed species. This approach was adopted because the results of the reliability evaluations of various types of SQGs indicate that PEL-type SQGs tend to be more predictive of sediment toxicity than threshold effect level SQGs (Long et al. 1995; MacDonald et al. 2000, 2003). In addition, for non-listed species, the goal of the ERA was not to protect each individual from a toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. More specifically, the following hierarchical approach was applied to select TRVs for aquatic life:

- MacDonald D.D., Ingersoll C.G. and Berger T.A. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Archives of Environmental Contamination and Toxicology 39(1). 20-31.
- Canadian SQGs for the protection of freshwater aquatic life (i.e., PELs; CCME 1999 and updates).
- USEPA Assessment and Remediation of Contaminated Sediment (ARCS) probable effect concentrations (PECs) (Ingersoll et al. 1996).
- Persaud D. R. Jaagumagi and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy.

The consensus-based probable effect concentrations (**PECs**) developed by MacDonald *et al.* (2000) were developed by averaging probable effect-level concentrations from several guidelines to yield consensus-based PECs. The consensus-based PECs have been evaluated for their reliability in predicting toxicity in sediments by using matching sediment chemistry and toxicity data from field studies. The results of the reliability evaluation showed that most of the consensus-based values for individual contaminants provide an accurate basis for predicting the presence or absence of toxicity (MacDonald et al. 2000). The consensus-based PECs were adopted for all of the COPCs for which they were developed. The consensus-based PECs are lower than the PSQG SELs.

The CCME PEL represents the lower limit of the range of chemical concentrations that are usually or always associated with adverse biological effects. The PELs are calculated as the square root of the product (i.e., the geometric mean) of the 50th percentile concentration of the effect dataset and the 85th percentile concentration of the no-effect dataset (CCME 1999). The CCME PELs were adopted for those COPCs for which consensus-based PECs were not available. The CCME PEL based are lower than the PSQG SELs.

The PSQG SELs were selected as the TRV for COPCs for which consensus-based PECs or CCME PELs were not available.

As indicated in Section 5.2.3, aquatic life species of concern include freshwater mussels which have documented presence immediately downstream of the study area. While not observed in the study area, these species could potentially be present in Chedoke Creek. For this reason, lower-level SQGs from the above listed sources were used as TRV. The sediment background concentration (MOE 2008) was selected as the iron TRV.

As toxicity information for sediment COPCs relevant to aquatic plants, fish and amphibians is limited, the benthic invertebrate based TRVs have been applied to all aquatic life receptors. TRVs selected for aquatic life are summarized below in Table 7-1.

Table 7-1: Sediment Toxicity Reference Values for the Protection of Aquatic Life (mg/kg)

|                         |        | Non-Lis | ted Species             |                   | Listed Spe              | ecies                   |  |  |
|-------------------------|--------|---------|-------------------------|-------------------|-------------------------|-------------------------|--|--|
| COPC                    | TRV    | Туре    | Source                  | TRV               | Туре                    | Source                  |  |  |
| Arsenic                 | 33     | PEC     | Mac Donald et al (2000) | 9.79              | TEC                     | Mac Donald et al (2000) |  |  |
| Cadmium                 | 4.98   | PEC     | Mac Donald et al (2000) | 0.99              | TEC                     | Mac Donald et al (2000) |  |  |
| Chromium (III+VI)       | 111    | PEC     | Mac Donald et al (2000) | 43.3              | TEC                     | Mac Donald et al (2000) |  |  |
| Copper                  | 149    | PEC     | Mac Donald et al (2000) | 31.6              | TEC                     | Mac Donald et al (2000) |  |  |
| Iron                    | 40000  | SEL     | Persaud (1993)          | 30000             | Background              | MOE 2008                |  |  |
| Lead                    | 128    | PEC     | Mac Donald et al (2000) | 35.8              | TEC                     | Mac Donald et al (2000) |  |  |
| Manganese               | 1100   | SEL     | Persaud (1993)          | 460               | LEL                     | Persaud (1993)          |  |  |
| Mercury                 | 1.06   | PEC     | CCME PEL                | CCME PEL 0.18 TEC |                         |                         |  |  |
| Silver                  | -      | -       |                         | -                 | -                       |                         |  |  |
| Zinc                    | 450    | PEC     | Mac Donald et al (2000) | 121               | Mac Donald et al (2003) |                         |  |  |
| Acenaphthylene          | 0.128  | PEL     | CCME (1999)             | 0.01              | CCME (1999)             |                         |  |  |
| Acenaphthene            | 0.0889 | PEL     | CCME (1999)             | 0.006             | ISQG                    | CCME (1999)             |  |  |
| Anthracene              | 0.845  | PEC     | Mac Donald et al (2000) | 0.22              | LEL                     | Persaud (1993)          |  |  |
| Benz(a)anthracene       | 1.05   | PEC     | Mac Donald et al (2000) | 0.32              | LEL                     | Persaud (1993)          |  |  |
| benzo(g,h,i)perylene    | 6.40   | SEL     | Persaud (1993)          | 0.17              | LEL                     | Persaud (1993)          |  |  |
| benzo(k)fluoranthene    | 1.45   | PEC     | Mac Donald et al (2000) | 0.24              | LEL                     | MOE 2008                |  |  |
| Benzo(a)pyrene          | 1.45   | PEC     | Mac Donald et al (2000) | 0.37              | LEL                     | Persaud (1993)          |  |  |
| Chrysene                | 1.29   | PEC     | Mac Donald et al (2000) | 0.34              | LEL                     | Persaud (1993)          |  |  |
| Dibenz(a,h)anthracene   | 0.135  | PEC     | Mac Donald et al (2000) | 0.06              | LEL                     | Persaud (1993)          |  |  |
| Fluoranthene            | 2.223  | PEC     | Mac Donald et al (2000) | 0.75              | LEL                     | Persaud (1993)          |  |  |
| Fluorene                | 0.536  | PEC     | Mac Donald et al (2000) | 0.19              | LEL                     | Persaud (1993)          |  |  |
| Indeno(1,2,3-c,d)pyrene | 6.40   | SEL     | Persaud (1993)          | 0.2               | Persaud (1993)          |                         |  |  |

|                         |       | Non-Lis | ted Species             | Listed Species |      |                         |  |  |  |  |
|-------------------------|-------|---------|-------------------------|----------------|------|-------------------------|--|--|--|--|
| COPC                    | TRV   | Туре    | Source                  | TRV            | Туре | Source                  |  |  |  |  |
| 2- Methylnaphthalene    | 0.201 | PEL     | CCME (1999)             | 0.02           | ISQG | CCME (1999)             |  |  |  |  |
| Naphthalene             | 0.561 | PEC     | Mac Donald et al (2000) | 0.176          | TEC  | Mac Donald et al (2003) |  |  |  |  |
| Phenanthrene            | 1.17  | PEC     | Mac Donald et al (2000) | 0.56           | LEL  | Persaud (1993)          |  |  |  |  |
| Pyrene                  | 1.52  | PEC     | Mac Donald et al (2000) | 0.49           | LEL  | Persaud (1993)          |  |  |  |  |
| PAHs (sum of total)     | 22.8  | PEC     | Mac Donald et al (2000) | 4              | LEL  | Persaud (1993)          |  |  |  |  |
| Kjeldahl nitrogen total | 4800  | SEL     | Persaud (1993)          | 550            | LEL  | Persaud (1993)          |  |  |  |  |
| Phosphorus              | 2000  | SEL     | Persaud (1993)          | 600            | LEL  | Persaud (1993)          |  |  |  |  |

# 7.1.2 Surface Water TRVs for Aquatic Life

This section presents the selected TRVs for each of the selected surface water COPCs. The MECP has not developed aquatic protection values for the final surface water COPCs, therefore the PWQO rationale document and more recent literature sources were reviewed for the selection of TRVs. Sources reviewed included:

- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ontario Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ontario Ministry of the Environment.
- Technical supporting documents published by CCME as part of the Canadian Environmental Quality Guidelines for the protection of aquatic life.
- Technical supporting documents published by BC MOE as part of the BC Approved WQG and Working WQG.

Preferences in TRV selection were given to chronic sublethal toxicity data for reproduction and growth for species representative of a warm water system, if available. For non-listed species, preferences were given to the lowest observed effect level (**LOEL**) or EC<sub>20</sub>, where available. In the ERA the goal was not to protect each individual from any toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. Therefore, LOELs or EC<sub>20</sub>s were considered appropriate TRVs where available for non-listed species. To account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area, a no observed adverse effect level (NOAEL) was also selected for invertebrates following MECP guidance (MECP 2019).

The selected TRVs for aquatic life are summarized in Table 7-2 and discussed Appendix G.

Table 7-2: Surface Toxicological Reference Values for the Protection of Aquatic Life (µg/L)

| COPC           | Invertebrates                                            | Aquatic Plants           | Fish               | Amphibians |  |  |  |  |  |
|----------------|----------------------------------------------------------|--------------------------|--------------------|------------|--|--|--|--|--|
| Aluminum       | 320 (non-listed)<br>100 (listed-species) <sup>c</sup>    | 460                      | 200                | 320        |  |  |  |  |  |
| Iron (total)   | 1740 (non-listed)<br>300 (listed-species) <sup>c</sup>   | 1740                     | 300a               | 1740       |  |  |  |  |  |
| Nitrite (as N) | 60 (Listed and                                           | non-listed) <sup>b</sup> | 5,000 (warm water) | 60ª        |  |  |  |  |  |
| Phosphorus     | 30 μg/L (benchmark to prevent algal growth) <sup>d</sup> |                          |                    |            |  |  |  |  |  |

- a- PWQO guideline retained as TRV due to limited toxicity information for amphibians
- b- PWQO guideline retained as TRV due to limited ROC-specific toxicity information available
- c- A NOAEL was selected, where available, to account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area. If the NOAEL was below the provincial guideline, the guideline was retained as the TRV
- d- No TRVs were available for phosphorus, a target benchmark of 30  $\mu$ g/L was selected to prevent excessive algal growth.

## 7.2 Sediment Toxicity Tests

Select sediment samples were submitted to Bureau Veritas Laboratory<sup>14</sup> (BV) for toxicity tests. BV test methods and detailed results are presented in Appendix E. This section presents a summary of results.

Toxicity tests were completed using the freshwater midge *Chironomus dilutus* and the freshwater amphipod, *Hyalella azteca*. Both lethal (i.e., survival) and sublethal (i.e., growth endpoints) were measured. The tests were completed using the following testing protocols.

- Bureau Veritas Laboratories Standard Operating Procedure: Chironomus dilutus 10-Day Survival and Growth Test (BBY2SOP-00010) based on Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (Chironomus tentans or Chironomus riparius) (Environmental Protection Series (EPS) 1/RM/32), and
- Bureau Veritas Laboratories SOP: Hyalella azteca 14-Day Survival and Growth Test (BBY2SOP-00011) based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod Hyalella azteca (EPS 1/RM/33).

These two tests were selected as they are the two aquatic species that are the most highly recommended for most freshwater sediment quality assessments and have been used to evaluate sediment toxicity in Hamilton Harbour.

In addition to the toxicity tests, the overlying waters were analysed for ammonia (as N), hydrogen sulphide, temperature and pH at test initiation and completion to evaluate the potential influence on the toxicity test results (Appendix A of the BV Toxicity Testing Report).

SLR 44

-

<sup>&</sup>lt;sup>14</sup> Maxxam Analytics changed their name to Bureau Veritas Laboratory (BVL) in June, 2019.

Toxicity testing response endpoints (survival and growth) were evaluated statistically by BV to determine whether the impacted sediments differed significantly from the laboratory control sediment. These results are presented in Appendix E and summarized in Table 7-3.

Table 7-3: Summary of Chironomus dilutus and Hyalella azteca Percent Difference

| Sample          |               | s Percent Decreased to Lab Control | Hyalella azteca Toxicity Results Percent Decreased Compared to Lab Control |             |  |  |  |
|-----------------|---------------|------------------------------------|----------------------------------------------------------------------------|-------------|--|--|--|
|                 | Mean Survival | Mean Weight                        | Mean Survival                                                              | Mean Weight |  |  |  |
| C-5 East / G6   | 6.3           | 140                                | 61.2*                                                                      | 71.4*       |  |  |  |
| C-4 West        | 18.8          | 116                                | 98*                                                                        | 57.1*       |  |  |  |
| C-3 West        | 2.1           | 148                                | 51*                                                                        | 78.6*       |  |  |  |
| C-3 Centre / G5 | 10.4          | 152                                | 12.2                                                                       | 42.9*       |  |  |  |
| G-4             | 12.5          | 150                                | 34.7*                                                                      | 64.3*       |  |  |  |
| C-1 West        | 16.7          | 148                                | 8.4                                                                        | 28.6*       |  |  |  |

<sup>\*</sup> Statistically significant decrease observed by BV compared to the laboratory control.

The toxicity tests completed with C. dilutus did not show any significant differences between the samples versus the negative control for either the survival or growth endpoints. Therefore, organism survival and growth were not significantly impacted by the presence of COPCs.

The toxicity tests completed with H. azteca shows that all samples except for C3 Centre/G5, G4 and C1 West had a statistically significant decrease in mean survival compared to the negative control. All samples showed a statistically significant decrease in mean dry weight compared to the negative control (Table 7-3). *H. azteca* survival and growth were negatively affected by the presence of COPCs.

# 7.3 Benthic Invertebrate Community Structure Analysis

A BICS analysis was completed to characterize the benthic invertebrate communities; and thus, to provide a direct measurement of potential COPC-related effects to the ecological integrity of the benthic community metrics under actual field conditions.

### 7.3.1 Benthic Invertebrate Community Structure Analysis Method

SLR obtained sediment samples for BICS analysis from 10 locations in 2019 (eight in the study area, one in Red Hill Creek and one in Chedoke Bay). The samples were submitted to Entomogen where they were sorted under a dissecting microscope and identified to the lowest practicable taxonomic level (typically species or genus).

Entomogen employed Excel and R version 6.1 (including *iNext*, *vegan*, *stats* and *SpadeR* packages) to evaluate similarities and differences in the metrics, listed below, of benthic invertebrate community structure. A description of these indices and the associated formulae to calculate them are provided in the Entomogen report in Appendix E.

Biologica evaluated the data to further assess changes in the benthic community over time. In doing so, Biologica conducted a two-way analysis of variance (**ANOVA**) to examine the effect of year and site on species richness and the Hilsenhoff's Biotic Index. Biologica also completed cluster analysis in PRIMER-E v. 6.0 to assess differences in community structure among the 2019 macroinvertebrate community stations.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 63 of 406

SLR Project No.: 209.40666.00000 February 2020

Benthic invertebrate community metrics used to describe the health of the benthic invertebrate communities, included:

- Species Richness
- Hilsenhoff biotic index (HBI);
- Simpsons Diversity Index (1-D);
- Shannon-Weiner Diversity Index (H);
- Pielou's eveness (J');
- % Chironomidae; and
- % Ephemeroptera, Plecoptera, Trichoptera (EPT).

The assessment of BICS carried out by Entomogen, including assessment of overall ecological condition, was provided to SLR in a summary report (report included in Appendix E). In addition, Biologica provided further statistical analysis of the benthic invertebrate community between sampling sites and year over year (2018 and 2019).

# 7.3.2 Benthic Invertebrate Community Structure Analysis Results

Benthic invertebrate taxa that are tolerant to environmental stress dominated the species composition of all sites sampled in 2018 and 2019. No sensitive species (EPT *spp.*) were observed in 2018 or 2019. Although chironomids, oligochaetes and isopods are generally considered tolerant to pollution, each group contains species with varying tolerance levels. Dominant organisms often characterize sediment pollution (Lenat, Smock and Penrose 1980). In 2018, each location sampled in Chedoke Creek was dominated by tubificids and chironomids; species known to dominate areas of higher organic pollution (Brinkhurst and Gelder 1991). These same species also were observed in high relative proportions in 2019, with a noted increase in isopod % contribution at G5 and G1. Coles et al (2012) note that "isopods are found in slower moving streams that have relatively low dissolved oxygen concentrations". Leeches were also observed at G1 and C-3 Centre/G5. "Leeches are most common in warm, protected shallows where stream velocities are relatively low" (Coles 2012). The dominant genus of chironomids was Chironomus (for both 2018 and 2019) which has been shown to increase in density in watercourses with domestic sewage input (Oliveira, Martins, Alves 2010, Gower and Buckland 1978).

Grain size analysis was completed for all benthic invertebrate sampling locations, with the exception of G1 and R1, due to the coarseness of substrate. Entomogen found that "sediment grain size data was not sufficient to describe variation in taxa at the sites and that other variables may be driving the system". This statement does not include G1 and R1, since the grain size at G1 and R1 at these locations could not be analyzed by the laboratory.

As with 2018 results, the Hilsenhoff Biotic Index (HBI) scores calculated in 2019 are similar between sampling locations (Table 7-4). A two-way ANOVA indicated a statistically significant increase in Hilsenhoff HBI values between 2018 and 2019 but that HBI values between sample sites within each sampling year were not statistically different (i.e., HBI for G1 in 2019 is not statistically different from G6 in 2019). Biologica indicated that the observed increase in HBI values was due to an increase in the relative abundance of the more pollution tolerant taxa. Mean species richness increased at all sampling site in 2019 compared to 2018, with the exception of G1 (Table 7-4). A two-way ANOVA indicated a statistically significant increase in species richness between 2018 and 2019 and between sites within each year (i.e., G1 compared to G4 in 2019). Lower species richness observed at G1 is likely driven by differences in habitat (increased substrate coarseness).

Table 7-4: Mean Species Richness and Hilsenhoff's Biotic Index (HBI) in 2018 and 2019

| Sampling<br>Location | 2        | 018  | 2019     |      |  |  |  |
|----------------------|----------|------|----------|------|--|--|--|
| Location             | Richness | HBI  | Richness | HBI  |  |  |  |
| G1                   | 3.00     | 6.19 | 3.33     | 8.18 |  |  |  |
| G4                   | 2.33     | 6.00 | 11.33    | 9.41 |  |  |  |
| G5                   | 2.33     | 6.00 | 6.67     | 9.37 |  |  |  |
| G6                   | 1.67     | 4.00 | 4.67     | 9.87 |  |  |  |

To assess differences in community structure among the 2019 benthic invertebrate sampling locations a cluster analysis was performed using the Bray-Curtis Similarity to evaluate variation in 2019 benthic community. This cluster analysis indicated that the invertebrate communities were not statistically distinguishable, except for the community at location G1. This observation should be interpreted with caution given: 1) chemistry and toxicity data are not available for the Red Hill Creek; 2) Substrate at G1 is larger/more course than at the other sampling stations; 3) consideration of hydrological effects on benthic communities has not been considered (i.e., differences of water level and velocity fluctuations experiences at each sampling location).

### 8.0 RISK CHARACTERIZATION

Risk characterization integrates the results of the exposure and effects assessments to identify potential unacceptable risks from exposure to COPCs. The first step within the risk characterization involves the evaluation of hazard quotients (HQs) on a study area-wide basis. Hazard quotients (HQs) relate the EPC with the TRV as follows:

Hazard Quotient = Exposure Point Concentration (mg/kg or μg/L) / TRV (mg/kg or μg/L).

Hazard quotients greater than one indicate that <u>potential</u> risks are present; however, hazard quotients above 1.0 do <u>not</u> necessarily indicate that risks are likely or certain.

For sediment the HQs were calculated on an individual sample basis for sessile aquatic organisms (aquatic plants and invertebrates). HQs for aquatic plants and invertebrates were also calculated on a site-wide basis using EPCs (95% UCLM) representative of the entire study area. HQs for fish were calculated using 95% UCLM concentrations. The HQs based on the 95% UCLMs provide "a conservative estimate of risk, particularly for a small site with relatively few environmental sampling points" (Golder, 2006).

For surface water, the HQs were calculated using the maximum COPC concentrations. The HQs above are discussed below in Section 8.1.

SLR also implemented a WOE approach using a subset of samples that involved integrating the results for the following three key LOEs: sample specific HQs, benthic invertebrate toxicity testing and BICS analysis. The additional LOEs and WOE are presented in Section 8.2.

Risk Characterization uncertainties are discussed in Section 9.4.

### 8.1 Sediment HQ

## 8.1.1 Aquatic Plants and Benthic Invertebrates

SLR calculated HQs based on each sample to evaluate the risks to aquatic plants and benthic invertebrates. The sample-specific HQs also provide information on the spatial distribution of HQs. Sample-specific HQs are provided in Table 4 after the text.

Sample-specific HQs greater than 1.0 for aquatic plants, benthic invertebrates and fish assessed at the community level (non-listed species) are summarized in Table 8-1. These HQs indicates that, for the COPCs for which TRVs were available, PAHs contribute the most to the potential risks. In order to evaluate the relative degree of PAHs contamination of the sediment samples and to make comparisons among locations, a mean HQ quotient (mean HQ-Q) was also calculated for PAHs. The mean HQ-Q was calculated according to the general guidance for calculating mean concentration quotients (e.g. PEC-Qs) and SedQC-Q (ENV, non-dated). The mean HQ-Q for PAHs was calculated by summing the individual PAH HQs obtained with reliable TRV (PEC or PEL) and dividing this number by the number of individual PAHs included in the sum (n=11). The HQ-Qs are presented in Table 8-1. Since PAHs were identified as potential risk-drivers, the HQ-Qs were used to attribute risk categories to the individual samples. Risk categories and criteria used are presented in Table 8-2. HQs greater than 1.0 are furthers discussed after the tables.

Table 8-1: Summary of Sediment Samples with HQs > 1.0

|                     |            |           |                |              |            |                   | _                    |                |          |                       |              |          |                       |             |              |        |                     |           |         |        |      |      |                    |
|---------------------|------------|-----------|----------------|--------------|------------|-------------------|----------------------|----------------|----------|-----------------------|--------------|----------|-----------------------|-------------|--------------|--------|---------------------|-----------|---------|--------|------|------|--------------------|
| ROCs                | Location   | Date      | acenaphthylene | acenaphthene | anthracene | benz(a)anthracene | benzo(k)fluoranthene | benzo(a)pyrene | chrysene | dibenz(a,h)anthracene | fluoranthene | fluorene | methylnaphthalene, 2- | naphthalene | phenanthrene | pyrene | PAHs (sum of total) | PAHs HQ-Q | Cadmium | Copper | Lead | Zinc | Risk<br>Categories |
|                     | G-1 Comp   | 9/18/2018 |                | 9.3          | 1.2        | 2.8               |                      | 1.7            | 2.5      | 2.7                   | 4.1          | 1.6      | 1.5                   | 1.7         | 8.1          | 4.4    | 1.9                 | 3.8       |         |        |      |      | High               |
|                     | C-1 West   | 9/18/2018 |                | 16.8         | 5.6        | 6.3               | 1.6                  | 4.1            | 5.5      | 5.9                   | 11.0         | 3.3      |                       |             | 14.1         | 12.4   | 4.3                 | 7.7       |         |        |      |      | High               |
|                     | C-2 West   | 9/18/2018 |                | 2.9          |            | 1.7               |                      | 1.2            | 1.7      | 1.6                   | 2.4          |          |                       |             | 3.1          | 2.7    | 1.0                 | 1.7       |         |        |      |      | Moderate           |
| Aguatia             | C-3 West   | 10/2/2019 |                | 3.0          |            |                   |                      |                | 1.2      | 1.2                   | 1.4          |          |                       |             | 2.1          | 1.5    | 0.6                 | 1.3       |         |        |      |      | Moderate           |
| Aquatic plants and  | C-3 West   | 9/18/2018 |                |              |            |                   |                      |                |          |                       | 1.2          |          |                       |             |              | 1.4    | 0.5                 | 0.6       |         | 1.1    |      | 1.2  | Low                |
| benthic             | C-3 Centre | 9/18/2018 |                | 3.0          |            |                   |                      |                |          |                       | 1.7          |          |                       |             | 2.8          | 1.8    | 0.7                 | 1.3       |         |        |      |      | Moderate           |
| invertebrates       | C-4 West   | 10/1/2019 |                |              |            |                   |                      |                |          | 1.3                   |              |          |                       |             |              | 1.1    | 0.3                 | 0.6       |         |        |      | 1.2  | Low                |
|                     | C-4 West   | 9/19/2018 |                | 2.8          |            | 1.6               |                      |                | 1.6      | 1.5                   | 2.0          |          |                       |             | 2.8          | 2.3    | 0.9                 | 1.7       | 1.2     |        |      |      | Moderate           |
|                     | C-4 Centre | 9/19/2018 |                |              |            |                   |                      |                |          |                       |              |          |                       |             |              | 1.1    | 0.4                 | 0.5       |         |        |      |      | Low                |
|                     | C-5 East   | 9/19/2018 | 1.4            |              |            | 1.9               |                      | 1.2            | 1.4      | 1.9                   | 1.3          |          |                       |             |              | 1.9    | 0.7                 | 1.0       |         |        | 1.6  |      | Moderate*          |
| Fish and amphibians | Study Are  | ea-Wide   |                | 3.8          |            | 1.7               |                      | 1.2            | 1.7      | 1.8                   | 3.1          |          |                       |             | 3.8          | 3.3    | 1.2                 | 2.1       |         |        |      |      | Moderate           |

<sup>\*</sup>A moderate risk ranking was provided because three HQs were close to 2.0 (1.9),seven individual PAHs had HQs>1.0 and lead HQ >1.0

This table only present HQs>1.0. Sample-specific HQs are provided in Table 4 after the text.

Table 8-2: Risk Categories and Associated Criteria Used to Rank Sediment Samples Presented in Table 8-1 Based on Analytical Chemistry

| Chemistry Risk<br>Categories | Criteria                                               |
|------------------------------|--------------------------------------------------------|
| Low                          | Mean HQ-Q for PAHs < 1 and all HQ < 2;                 |
| Moderate                     | Mean HQ-Q for PAHs > 1 and at least one HQ ≥ 2 but < 5 |
| High                         | Mean HQ-Q for PAHs > 1 and at least one HQ ≥ 5         |

For metals, HQs greater than 1.0 were obtained for cadmium, copper, lead and zinc, each in one sample only. These HQs were of low magnitude (1.1 to 1.6). An HQ of 1.2 was obtained for cadmium for sample C-4 West collected in September 2018. Note that SLR re-sampled location C-3 West and C-4 West in October 2019 and found that the HQs for copper and zinc were below 1.0 in this sample. Study area-wide HQs for metals were less than 1.0. indicating negligible risk based on the community level. Based on the above observations, metals in surface sediment are not considered to be risk drivers in the study area for non-SAR species.

The HQs obtained for nutrients (for which TRVs were available) were less than 1.0, indicating that direct risks from nutrients exposure were negligible.

HQs greater than 1.0 were obtained for one or more individual PAHs at several locations including: G-1 Comp, C-1 West, C-2 West, C-3 West and Centre, C-4 West and Centre, and C-5 East (Table 8-1). The HQs summarized in Table 8-1 indicate that potential risks are present in the study area for aquatic plants and benthic invertebrates exposed to PAHs in sediment. Generally, the magnitude of HQs and number of individual PAHs with HQs above 1.0 are highest at the upstream locations. HQs greater than 4 were only obtained at G-1 Comp and G-1 West in September 2018.

The individual PAH HQs presented in Table 8-1 were obtained by dividing individual PAH concentrations by the corresponding TRV. The resulting HQs show that the sediment samples have generally more than one PAH with an HQ greater than 1.0, and that the magnitudes of the HQs vary among individual PAHs and sampling locations. In addition, Table 8-1 shows that an HQ for total PAHs may be less than 1.0, while in the same sample several individual PAHs have HQs greater than 1.0. The PAHs HQ-Qs indicate that, based on chemistry only, location G-1 Comp and C-1 West (in 2018) contributed the most to the potential risks.

## 8.1.2 Fish and Amphibians

Study-area wide HQs greater than 1.0 for fish and amphibians were obtained for exposure to PAHs only (Table 8-1; Study Area wide HQs). These HQs indicates that there is a potential risk for fish and amphibians exposed to PAHs in sediment.

## 8.1.3 Invertebrates Species at risk

As indicated in Section 5.2.3, one SAR mussel species, Lilliput (*Toxolasma parvum*), has been observed in Cootes Paradise and Princes Point near the study area. For this reason, potential risks were conservatively assessed for SAR invertebrates based on lower-level TRVs. The resulting HQs are provided in Table 5 after the text. HQs above 1.0 were found at all sampling locations for most individual PAHs, metals and nutrients and indicated that risks to SAR invertebrates from exposure to sediment were likely.

Page 67 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

### 8.2 Surface Water HQs

SLR calculated HQs based on the maximum concentration to evaluate the risk to aquatic plants, invertebrates, amphibians and fish. For invertebrates, HQs were calculated using TRVs protective of both the community as a whole and individual species, to account for the potential presence of SAR. HQs were also calculated on an individual sample-basis for COPC for which potential risks were identified on a study area wide basis. HQs for all final COPCs are provided in Table 6 following the text.

### 8.2.1 Invertebrates

The HQs for invertebrates (benthic and zooplankton) exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for invertebrates on a community level were calculated for aluminum and nitrite (as N). HQs were above 1 for aluminum, nitrite (as N) and iron when calculated on an individual basis.

Table 8-3: Invertebrate Hazard Quotients (HQ) for Surface Water

| COPC           | EPC    |                                                 | <b>RV</b><br>g/L) | HQ<br>(EPC / TRV)          |                        |  |  |  |
|----------------|--------|-------------------------------------------------|-------------------|----------------------------|------------------------|--|--|--|
| COPC           | (µg/L) | (μg/L) Community Individ<br>(Non-listed) (Liste |                   | Community (Non-<br>listed) | Individual<br>(Listed) |  |  |  |
| Aluminum       | 598    | 320                                             | 100               | 1.9                        | 6.0                    |  |  |  |
| Iron (total)   | 1340   | 1740                                            | 300               | 0.8                        | 4.5                    |  |  |  |
| nitrite (as N) | 280    | 60                                              | 60                | 4.7                        | 4.7                    |  |  |  |

Bold HQ >1

On a sample-specific basis, six of seven samples had HQs above 1 for invertebrates exposed to iron (total) when calculated on an individual (SAR) level. All HQs were below 1 for invertebrates (community-level). HQs for nitrite (as N) were above 1.0 at all sample locations on both a community and individual level.

Four of seven samples had HQs above 1 for aluminum (total) for invertebrates (community level), while all sample locations had HQs > 1 when calculated on an individual (SAR) level. However, all HQs were below 1 when calculated using dissolved aluminum concentrations.

## 8.2.2 Aquatic Plants

The HQs for aquatic plants exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for aquatic plants were calculated for aluminum and nitrite (as N).

Table 8-4: Aquatic Plant Hazard Quotients (HQ) for Surface Water

| COPC           | EPC<br>(µg/L) | TRV<br>(µg/L) | HQ<br>(EPC / TRV) |
|----------------|---------------|---------------|-------------------|
| Aluminum       | 598           | 460           | 1.3               |
| Iron (total)   | 1340          | 1740          | 0.8               |
| nitrite (as N) | 280           | 60            | 4.7               |

Bold HQ >1

On a sample-specific basis, HQs greater than 1.0 were calculated for nitrite (as N) at all seven sample locations. HQs greater than 1.0 were also calculated for total aluminum (2 of 7 locations), however all HQs were below 1.0 when calculated using dissolved aluminum concentrations. HQs for iron (total) were below 1.0 for aquatic plants at all sample locations.

### 8.2.3 Fish

The HQs for fish exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for fish were calculated for aluminum, iron and nitrite (as N).

Table 8-5: Fish Hazard Quotients (HQ) for Surface water

| COPC           | EPC<br>(µg/L) | TRV<br>(µg/L) | HQ<br>(EPC / TRV) |
|----------------|---------------|---------------|-------------------|
| Aluminum       | 598           | 200           | 3                 |
| Iron (total)   | 1340          | 300           | 4.5               |
| nitrite (as N) | 280           | 60            | 4.7               |

Bold HQ >1

On a sample-specific basis, six of seven samples had HQs above 1 for fish exposed to iron (total) in surface water. HQs > 1 were also calculated at 6 of 7 samples for aluminum (total), however all HQs were below 1 when calculated using dissolved aluminum concentrations. HQs were also below 1 for fish exposed to nitrite (as N) for all surface water samples.

## 8.2.4 Amphibians

The HQs for amphibians exposed to COPCs in surface water are presented in the table below. HQs greater than 1 for fish were calculated for aluminum and nitrite (as N).

- Chedoke Creek February 2020

Table 8-6: Amphibian Hazard Quotients (HQ) for Surface water

| COPC           | EPC<br>(μg/L) | TRV<br>(µg/L) | HQ<br>(EPC / TRV) |
|----------------|---------------|---------------|-------------------|
| Aluminum       | 598           | 320           | 1.9               |
| Iron (total)   | 1340          | 1740          | 0.8               |
| nitrite (as N) | 280           | 60            | 4.7               |

Bold HQ >1

On a sample-specific basis, all seven samples had HQs above 1 for amphibians exposed to nitrite (as N) in surface water. HQs > 1 were also calculated at 4 of 7 samples for aluminum (total), however all HQs were below 1 when calculated using dissolved aluminum concentrations. HQs were also below 1 for amphibians exposed to iron (total) in all surface water samples.

## 8.2.5 Interpretation of Surface Water Results

Potential risks were identified for invertebrates (non-listed), aquatic plants and amphibians due to aluminum (total) and nitrite (as N) concentrations in surface water. Potential risks were also identified for fish and invertebrate SAR (if present) due to exposure to all final COPCs (aluminum, iron and nitrite (as N)).

HQs for aluminum in surface water were above 1 for total aluminum concentrations only. When using dissolved aluminum concentrations, calculated HQs were below or equal to 1 for all receptor groups. It is noted that most of the bio-reactive aluminum is likely to be in the dissolved fraction, and the dissolved aluminum concentration excludes particulate aluminum which is less likely to be biologically reactive (BC ENV 2001). Based on the HQs for dissolved aluminum, risks to aquatic receptors are considered negligible.

Although aluminum, iron (total) and nitrite were identified as final COPCs in surface water, with the exception of nitrite these parameters were not identified as COPCs in sediment. No final sediment COPCs were identified as final COPCs in surface water, indicating that sediment is likely acting as a contaminant sink rather than a source. As noted in Section 5.4.1, most of the stream flow directly results from storm water input (HC 2008), therefore surface water concentrations are likely to vary significantly between high and low-flow events. In addition, as noted in Section 6.1.3, Chow-Fraser (1996) documented historically high nutrient conditions in the creek (circa 1996) and linked the high nutrients levels in Chedoke Creek to the CSOs prior to the discharge event.

Although potential risks to select receptors were identified due to exposure to surface water, based on the COPCs present compared to those in sediment, the historical water quality conditions in Chedoke Creek and the variability in surface water concentrations, surface water is unlikely to be the risk-driver for aquatic life within the study area.

HQs were not calculated for phosphorus as no TRVs were available. Although phosphorus concentrations in surface water within the study area exceed the benchmark for excessive algal growth of 30  $\mu$ g/L, surface water phosphorus levels are expected to be highly variable, and no algae blooms were observed within Chedoke Creek during the site visits.

Page 70 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

# 8.3 Lines of Evidence (LOEs) for Select 2019 Sediment Samples

As indicated in Section 4.0, SLR collected several lines of evidences (LOEs) including, chemistry, toxicity and benthic invertebrate community structure data to assess potential risks to benthic invertebrates from sediment contamination.

Concentrations of contaminants in sediment may exceed the applicable guidelines; however, contaminant concentrations are not necessarily strongly correlated with bioavailability and toxicity. Because relationships between concentrations of contaminants in sediment and their bioavailability are poorly understood, determining effects of contaminants in sediment on aquatic organisms often requires a combination of approaches, including controlled toxicity tests and measures of effects on benthic communities inhabiting sediments (Ingersoll et al., 1997).

While individual measurement tools for assessing sediment contamination each have an inherent level of uncertainty associated with their application, the uncertainty associated with an overall risk assessment of sediment contamination is reduced by integrating these tools. The use of sediment chemistry, sediment toxicity, and benthic community data together establishes a weight of evidence linking contaminants in sediment to adverse biological effects (EC and MOE, 2008). The integration of multiple LOEs using a weight of evidence approach has the potential to substantially reduce uncertainty associated with risk assessment of contaminated sediments and will improve management decisions.

# 8.3.1 Approach

Additional assessment was conducted on a sub-set of locations in 2019 to obtain information from multiple LOEs for integration into a WOE analysis. The rationale for sample selection for the toxicity testing and BICS analysis LOEs is summarized below:

- Samples with a range of COPC concentrations were selected to represent the range detected across the study area; and
- Sediment samples were collected from areas noted to have the "worst-case" COPC concentrations based on previous sediment sampling events.

The locations that comprised the multiple LOEs assessment are presented below in Table 8-7.

Table 8-7: Summary of 2019 Sediment Samples with Additional Lines of Evidence

|                 | Lines of Evidence |           |           |
|-----------------|-------------------|-----------|-----------|
| Location        | Chemistry         | Toxicity  | BICS      |
| C-1 West        | √                 | $\sqrt{}$ |           |
| G1*             | -                 | -         |           |
| G4              | $\sqrt{}$         | $\sqrt{}$ | V         |
| C-3 West        | √                 | √         |           |
| C-3 Centre / G5 |                   |           | V         |
| C-4 West        |                   | $\sqrt{}$ | $\sqrt{}$ |
| C-5 East / G6   | V                 |           | V         |
| R1 (Red Hill)   | -                 | -         | $\sqrt{}$ |

<sup>\*</sup>substrate at G1 and R1 are comparable and consist of cobble/gravel which did not allow for chemistry or toxicity analysis

Page 71 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

Toxicity tests were used as a line of evidence to evaluate sediment quality at AEC 5, consistent with the Canada-Ontario Decision-Making Framework for assessment of contaminated sediment (EC and MOE, 2008) and Federal Contaminated Sites Action Plan (FCSAP) Guidance (EC, 2012). These documents recommend toxicity testing when bulk chemistry indicates that adverse effects may occur such as when one or more sediment COPCs exceed the applicable guidelines and/or background concentrations.

BICS analysis considers site-specific information integrating the fact that the potential effects may be due to elevated chemistry but also to other biological and physical stressors (e.g., particle size, competition/predation).

The results of each of the LOEs are discussed independently below and integrated in a weight of evidence (WOE).

## 8.3.2 Chemistry Line of Evidence

The 2019 sampling program targeted the locations with highest PAHs concentrations. However, the 2019 results had lower PAHs concentrations than those obtained in 2018. Only two samples, C-3 West and C-4 West had HQs greater than 1.0 for individual PAHs (Table 4, after the text). The categories and criteria used to describe the risks potentially associated with the 2019 samples are presented in Table 8-2. The following risk categories were obtained for the 2019 sediment samples using these criteria.

| Location        | Risk Category                                                             |
|-----------------|---------------------------------------------------------------------------|
| C-1 West        | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |
| G1              | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |
| G4              | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |
| C-3 West        | Moderate – HQ-Q for PAHs was 1.3 and 2 HQs $\geq$ 2 but < 5 (2.1 and 3.0) |
| C-3 Centre / G5 | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |
| C-4 West        | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |
| C-5 East / G6   | Low – HQ-Q for PAHs was 0.6 and no HQs > 2                                |

Table 8-8: 2019 Sediment Samples Risk Categories

## 8.3.3 Toxicity Test Line of Evidence

The toxicity test LOE identifies risk categories based on the survival and growth results for the freshwater midge (*C. dilutus*) and the freshwater amphipod (*H. azteca*), as described in Section 7.2.

According to the framework provided by EC and MOE (2008), "sediments with less than a 20% difference between controls and test/reference sediments are not considered to be toxic, even if the difference is statistically significant". For this reason, the toxicity test results were further assessed using the typical approach in a sediment quality triad to interpret the magnitude of the response (McDonald 2003, EC and MOE, 2008). The toxicity tests results were categorized into one of three risk categories based on the adverse effect (toxic response) elicited, as shown below in Table 8-9.

Table 8-9: Risk Categories and Criteria for Toxicity LOE

| Risk Categories | Criteria                                                                                                                                                                                                   |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low             | A reduction of less than 20% in all of the test endpoints is considered indicative of a negligible biological effect (e.g., more than 80% survival).                                                       |
| Moderate        | A reduction greater than 20% but less than 50% in one or more of the test endpoints is considered indicative of a moderate biological effect (e.g., less than 80% survival but greater than 50% survival). |
| High            | A reduction greater than 50% in one or more of the test endpoints is considered indicative of a severe biological effect (e.g., less than 50% survival).                                                   |

HQ = hazard quotient

The resulting risk categories and a summary of the results used to assign the categories to each sample are presented in the table below.

Table 8-10: Risk Categories for the Toxicity Testing LOE

| Sample          | Risk Category (based on the magnitude of toxicity response relative to lab control)                                                              |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C-1 West        | Moderate no reduction in <i>C. dilutus</i> survival or growth; 8% decrease in <i>H. azteca</i> survival, 29% decrease in <i>H. azteca</i> growth |  |
| G1              | -                                                                                                                                                |  |
| G4              | High - no reduction in <i>C. dilutus</i> survival or growth; 35% decrease in <i>H. azteca</i> survival, 64% decrease in <i>H. azteca</i> growth  |  |
| C-3 West        | High - no reduction in <i>C. dilutus</i> survival or growth; 51% decrease in <i>H. azteca</i> survival, 79% decrease in <i>H. azteca</i> growth  |  |
| C-3 Centre / G5 | Moderate no reduction <i>C. dilutus</i> survival or growth; 12% decrease in <i>H. azteca</i> survival, 43% decrease in <i>H. azteca</i> growth   |  |
| C-4 West        | High - no reduction in <i>C. dilutus</i> survival or growth; 98% decrease in <i>H. azteca</i> survival, 57% decrease in <i>H. azteca</i> growth  |  |
| C-5 East / G6   | High - no reduction in <i>C. dilutus</i> survival or growth; 39% decrease in <i>H. azteca</i> survival, 71% decrease in <i>H. azteca</i> growth  |  |

There were no differences (significant or greater than 20%) in *C. dilutus* survival and growth between any of the sample locations and the negative laboratory control. A low risk ranking is obtained for all samples based on the *C. dilutus* toxicity test. The moderate and high risks rankings are based on the *H. hazteca* toxicity test.

A review of the chemistry results was completed to identify the potential risk-drivers. The review focuses on the *H. azteca* survival endpoint. The sample with the greatest reduction in mean percent survival (98%) for *H. azteca* were C-4 West followed by C-5 East/G6 and C-3 West. A comparison of the chemistry results to the TRV indicated that 2 PAHs and zinc were above the TRVs in C4-West and that 6 PAHs were above the TRVs in C-3 West. PAHs and metals in all other samples were below the TRVs (Table 8-11). BV noted that a strong hydrocarbon odour was noticed in all replicates of sample C-4 West at the end of the test. The results indicated that PAHs likely contributed to the adverse effects seen in C-4 West and C-3 West. *H. azteca* difference in sensitivity to PAH mixtures in sediment appears to be two-fold compared to chironomids (Verrhiest et al. 2001). While TKN and phosphorus were below the sediment TRV, the highest level of TKN and phosphorus were obtained in C-4 West and C-3 West. In addition, the highest level of total ammonia in sediment and in the overlying water at the test initiation were obtained in C-4 West and C-5 East. Total ammonia decreased during the 14-day toxicity test, which indicates that it is linked to the study area and not an artifact of the tests. Total ammonia likely

contributed to the observed adverse effects as *H. azteca* is more sensitive to ammonia than *C. dilutus*.

C-4 West, C-3 West and C-5 East/G6 also had the highest porewater BOD. The toxicity test procedure included aeration of the samples and dissolved oxygen, measured every second days, ranged from 8.2 mg/L to 8.6 mg/L. Environment Canada (2017) indicated that H. azteca can be exposed to low levels of oxygen for an extended period of time, with reported 96-h and 30-d LC50s less than 0.3 mg  $O_2/L$ . For this reason, in controlled laboratory conditions, dissolved oxygen levels are not considered to have contributed to the observed toxicity.

| Sample          | PAHs                                                                        | Metals                                          | Nutrients           |
|-----------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| C-5 East / G6   | <trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<> | <trv< td=""><td><trv< td=""></trv<></td></trv<> | <trv< td=""></trv<> |
| C-4 West        | 2 PAHs > TRV                                                                | Zinc >TRV                                       | <trv< td=""></trv<> |
| C-3 West        | 6 PAHs > TRV                                                                | <trv< td=""><td><trv< td=""></trv<></td></trv<> | <trv< td=""></trv<> |
| C-3 Centre / G5 | <trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<> | <trv< td=""><td><trv< td=""></trv<></td></trv<> | <trv< td=""></trv<> |
| G-4             | <trv< td=""><td><trv< td=""><td><trv< td=""></trv<></td></trv<></td></trv<> | <trv< td=""><td><trv< td=""></trv<></td></trv<> | <trv< td=""></trv<> |

<TRV

<TRV

<TRV

Table 8-11: COPCs above TRV in Samples Submitted for Toxicity Tests

#### 8.3.4 BICS Line of Evidence

C-1 West

The sediment samples were submitted for BICS analysis as described in Section 7.3. A reference location with a comparable substrate was not found during the 2019 field sampling program. For this reason, an evaluation of potential risks based on comparison to a reference site with soft sediment could not be completed.

The benthic community in the study area is dominated by taxa that are tolerant to environmental stress and urbanization. The cluster analysis completed to assess differences in community structure among the 2019 benthic invertebrate sampling locations indicated that the invertebrate communities were not statistically distinguishable, except for the community at location G1 which had a lower number of species and total specimens count. Based on these results, there was little support for classifying degrees of impairment among locations (except for G1). Therefore, a very poor impairment rating (based on the HBI) was assigned to all locations based on the presence of pollution stress-tolerant taxa in 2019.

#### 8.3.5 Weight of Evidence

The final step within the benthic community assessment was to integrate the three LOEs (results of the chemistry, toxicity and BICS) into an overall weight of evidence (WOE) on a sample by sample basis. Each location was assigned a final risk ranking based on the integrated risk category results for the three LOEs.

The final WOE risk rankings were assigned as follows:

- Negligible Risk Ranking risk category of low in the chemistry and toxicity LOEs; BICS
  does not show impairment.
- Low Risk Ranking risk category is low in at least 2 of the 3 LOEs. None of the LOEs have a risk category of high; BICS shows minimal impairment (HBI very good to good).

- **Moderate Risk Ranking** risk category of low or moderate in at least 2 of 3 LOEs. Only one LOE with a high LOE risk category if combined with at least one low LOE risk category.
- **High Risk Ranking** risk category of high in 2 of 3 LOEs, or one high combined with two moderate LOE risk categories. Shows a severe level of effects (reduction greater than 50% in survival in one or more toxicological endpoints).

BICS data is usually considered as the strongest LOE and can be assigned more weight compared with the other LOEs; for example, EC and OMOE (2008) recommend that remediation decisions be based on biology (i.e., BICS results). However, there is a moderate level of uncertainty related to the results of the BICS analysis as an adequate reference could not be found for comparison. Therefore, equal weighting was assigned to both the toxicity and BICS LOEs, rather than weighting one over the other. In addition, the results of the toxicity tests and BICS were aligned in that there was no toxicity observed in the chironomid toxicity test and chironomids were observed to be the dominant species in the study area.

The LOE risk classifications assigned to the seven sediment locations are summarized in Table 8-12. Uncertainties related to the LOEs are discussed in Section 9.0.

WOE Risk Risk Categories Ranking Location Chemistry **Toxicity LOE Toxicity LOE** BICS LOE LOE C. dilutus H. azteca Impaired -C-1 West Low Moderate Moderate Low HBI very poor High (only one Impaired -G1 LOE high HBI very poor uncertainty) Impaired -High (growth G4 Low Low High end point only) HBI very poor Impaired -C-3 West Moderate Low High High HBI very poor Impaired -C-3 Centre / G5 Low Moderate Moderate Low HBI very poor Impaired -C-4 West High High Low Low HBI very poor Impaired -C-5 East / G6 Low Low High High HBI very poor

**Table 8-12: WOE Risk Rankings for Sediment Samples** 

# 9.0 UNCERTAINTY ANALYSIS

There are four broad types of uncertainty which parallel each of the main stages of a risk assessment, and their inherent assumptions. These types of uncertainty are listed below and briefly discussed in the context of the ERA in the remainder of this section.

- Problem formulation uncertainties
- Exposure assessment uncertainties
- Toxicity/effects assessment uncertainties
- Risk characterization uncertainties

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 75 of 406

SLR Project No.: 209.40666.00000 February 2020

#### 9.1 Problem Formulation Uncertainties

#### 9.1.1 Data Collection and Evaluation Uncertainties

Quantitative components within risk assessments are only as accurate as the accuracy of chemical characterization of media in both space and time. Data representative of current conditions to which receptors may be exposed have been considered in this risk assessment.

Risk assessments rely on the accuracy of the parameter characterization and analysis performed at a site. The data used in this report was collected by several agencies over the period of 2018 to 2019 and data used to analyze trends dated back to 2003. All of the data considered in the risk assessment is believed to be of good quality. The chemical analyses for the 2018 and 2019 data were performed by BV and the City of Hamilton laboratory. Both laboratories are accredited by the Canadian Association for Laboratory Accreditation. Laboratory Quality Assurance Quality Control (QA/QC) samples including blanks, duplicates, and matrix spikes are routinely run with analytical samples, and laboratory data meets all quality objectives prior to being released. SLR also has a standardized corporate QA/QC program which includes following SLR's standard operating procedures and standard industry practices, performing quality checks on historical data.

No PAHs were detected in surface water during the surface water sampling program, however the laboratory detection limits were above the PWQOs or CCME WQGs for select PAH parameters (anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene, perylene, phenanthrene and pyrene).

With the exception of phenanthrene, all of the PAH parameters with detection limits above criteria are high molecular weight (HMW) PAHs with low solubility. PAHs released into water bodies will strongly adsorb to sediments and suspended matter, and HMW PAHs tend to be less soluble than LMW PAHs, therefore HMW PAHs are unlikely to be present in surface water. Phenanthrene is a LMW PAH, and therefore has the potential to be in surface water. However, although the detection limit for phenanthrene is above the PWQO, it is below the CCME WQG, therefore uncertainty associated with phenanthrene concentrations in surface water is low.

Based on the comprehensive QA/QC protocols performed on the data by the laboratory and by SLR, the analytical data is considered to be of good quality and suitable for use in the ERA. Consequently, it is considered unlikely that the uncertainties associated with the laboratory analytical data may have significantly underestimated media concentrations so as to impact the identification of COPCs in the study area.

Though every effort was made to include a local sediment reference location in a comparable urban creek, i.e., Red Hill Creek, due to the nature of the substrate (i.e., cobble) no reference sediments suitable for chemical or toxicological analyses were identified.

#### 9.1.2 COPC Screening Uncertainties

The COPC screening process is designed to be conservative to avoid inadvertently omitting substances which may adversely affect ecological receptor populations during the screening analysis. The conservative nature of the screening process is predicated on using the maximum concentrations from each dataset and using low level type screening values (e.g., PWGO or PSQG LELs).

Page 76 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

# 9.1.2.1 Depth-Specific COPC Screening

Ecological Risk Assessment – Chedoke Creek

As noted in Section 4.3.1, COPC screening was completed for the shallow sediment (0-0.15 m) dataset to assess risks where the majority of ecological life may be exposed (MOE 2008). Following MECP guidance, deeper sediment (i.e., greater than 0.15 m) has also been considered to determine whether significant depth-specific differences were present, and to evaluate uncertainties should surficial sediment be removed and deeper sediment exposed. The deep (>0.15 m) sediment dataset was provided in Appendix D, and the results of the COPC screening for the deep dataset is provided in Appendix H. A summary of the COPCs for the deep sediment dataset is provided in the table below. For comparison, the shallow COPC screening results are also provided.

Table 9-1: Depth-Specific Sediment COPC Summary

| COPC Group | Sediment (0-0.15)<br>(See Section 5.4.2.1)                                                                                                                                                                                                                                     | Sediment (>0.15)                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals     | Arsenic, cadmium, chromium, copper, lead, manganese, mercury and zinc                                                                                                                                                                                                          | Arsenic, cadmium, chromium (III+VI), copper, lead and zinc                                                                                                                                                                                                     |
| PAHs       | Acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs | Acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs |
| Nutrients  | Total Kjeldahl nitrogen (TKN) and phosphorus                                                                                                                                                                                                                                   | Total Kjeldahl nitrogen (TKN) and phosphorus                                                                                                                                                                                                                   |

As shown in Table 9-1, all shallow sediment COPCs were also identified as COPCs in the deep dataset (0.15+) with the exception of manganese, mercury and acenaphthylene. There is uncertainty associated with the concentrations of manganese and mercury in deep sediment, since these parameters were not analysed as part of the 2018 program. Acenaphthylene was not selected as a COPC since it was not detected in the deep sediment. Although the detection limit exceeded the screening benchmark (ISQG), uncertainty with the selection of this parameter as a COPC is low, since it is also assessed as part of total PAHs.

#### 9.1.2.2 Uncertain COPCs

For sediment and surface water, a parameter was retained as a COPC if the maximum concentration exceeded the applicable screening benchmark described in Section 2.0. If no benchmark was available for a parameter, it was retained as an uncertain COPC. Uncertain COPCs retained in sediment and surface water are summarized in the table below.

Table 9-2 Uncertain COPC Summary

| COPC Group | Uncertain<br>COPC                                                  | Receptor Group (Exposure Pathway)                                    | Uncertainty Level<br>(Low/Medium/High)                                                                                                                                                          |
|------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                    | Sediment                                                             |                                                                                                                                                                                                 |
|            | Aluminum                                                           |                                                                      | Low; naturally occurring in aluminosilicate silts and clays, which are common in southern Ontario.                                                                                              |
| Metals     | Antimony                                                           | Aquatic Life<br>(Direct Contact)                                     | Low; 95%UCLM for antimony of 0.93 mg/kg is below the Table 1 background concentration for soil of 1 mg/kg (MOE 2011a).                                                                          |
|            | Silver                                                             |                                                                      | No aquatic TRVs available for sediment                                                                                                                                                          |
| PAHs       | 1-<br>methylnaphthalene                                            | Aquatic Life<br>(Direct Contact)                                     | Low; 2-methylnaphthalene assessed. No guidelines or toxicity values specific to 1-methylnaphthalene are available.                                                                              |
| Nutrients  | Ammonia and<br>ammonium (as N)<br>ammonia as N<br>nitrogen (total) | Aquatic Life<br>(Direct Contact)                                     | Low; algae blooms not observed during site visits.  Nutrients generally elevated in the watershed.                                                                                              |
| Bacteria   | Fecal Coliforms                                                    | Aquatic Life<br>(Direct Contact)                                     | Low; E. coli is the most suitable and specific indicator of fecal contamination (MOE 1994).                                                                                                     |
|            |                                                                    | Surface Water                                                        |                                                                                                                                                                                                 |
| Metals     | Iron (total),<br>manganese                                         | Wildlife<br>(Ingestion of Drinking<br>Water)                         | Low; below available human health drinking water guidelines <sup>15</sup>                                                                                                                       |
| PAHs       | None                                                               | None                                                                 | -                                                                                                                                                                                               |
| Nutrients  | Kjeldahl nitrogen<br>total<br>silicon                              | Aquatic Life (Direct Contact) Wildlife (Ingestion of Drinking Water) | Low; algae blooms not observed during site visits.  Nutrients generally elevated in the watershed. Other nutrients considered as COPCs in surface water based on available screening benchmark. |
| Bacteria   | -                                                                  | -                                                                    | Low; addressed as sediment COPCs, main concern is human health                                                                                                                                  |

# 9.1.3 Receptor Identification Uncertainties

Aquatic plants were assessed at the community level. There are no documented aquatic plants at risk in the study area. The level of uncertainty associated with considering this receptor at the community level is considered to be low.

Aquatic invertebrates were assessed at the community level and at the individual level. There are no documented aquatic invertebrates at risk in the study area; however, one SAR mussel species

SLR 60

-

 $<sup>^{15}</sup>$  Ontario human health drinking water values for iron and manganese are based on aesthetic objectives (, therefore the Health Canada maximum allowable concentration (MAC) was selected for manganese (120  $\mu g/L$ ). No MAC was available for iron, therefore BC Contaminated Sites Regulation drinking water value for iron (6500  $\mu g/L$ ) was selected.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 78 of 406

SLR Project No.: 209.40666.00000 February 2020

has been documented in Cootes Paradise near the outlet of Chedoke Creek. Based on the lack of survey sites within Chedoke itself, this SAR species has been retained for further assessment. The level of uncertainty associated with considering aquatic invertebrates at the community and individual levels is low.

Aquatic-dependent wildlife receptors were selected by identifying the bird and mammal species potentially using the study area for all or parts of their life cycles. Field surveys were not conducted specifically to determine the occurrence of potential wildlife species thus SLR wildlife observations were incidental in nature and may have missed seasonal presence of some organisms. Information on aquatic-dependent wildlife receptors was gathered from specialised databases and past consultant reports, and a comprehensive list of species potentially present in the study area was developed. The level of uncertainty associated with the selection of receptors of concern is considered to be low.

# 9.1.4 Exposure Pathway Uncertainties

Only pathways considered to be complete and potentially significant were included for quantification in the ERA. Identification of a complete exposure pathway is based on a rigorous process. Pathways are considered complete if one or more constituents are present in a medium under consideration, and if a route of entry (i.e., direct contact) is present. The decision regarding whether a pathway is significant is based on several factors, including expected magnitude of exposure (e.g., contaminant concentration, frequency and duration of exposure, etc.), likelihood of exposure (e.g., based on site physical features, presence or absence of habitat), properties of a parameter in a given medium, and availability of methods to quantify exposure.

# 9.2 Exposure Assessment Uncertainties

# 9.2.1 Estimated Exposure Concentrations

Use of the selected EPCs (95% UCLM for sediment, maximum for surface water) is conservative and will tend to overestimate exposure. EPCs are not distributed evenly throughout the site. Therefore, sediment EPCs are expected to overestimate exposure to aquatic ecological receptors on a study area-wide basis.

Although there is uncertainty associated with a lack of seasonal data for surface water, the use of maximum concentrations is likely to result in an over estimation of risk within the study area.

#### 9.2.1.1 Depth-Specific EPCs

To assess the differences between sediment EPCs for the shallow and deep dataset, 95 UCLMs were calculated for both datasets and compared. For PAHs, 13 of the 17 PAH parameters analysed in both datasets were lower in the deep dataset than the shallow dataset, including total PAHs, which was 27% lower in the deep dataset (26.4 mg/kg in shallow, 19.3 mg/kg in deep). The 95% UCLMs for the deep dataset were above the shallow dataset for acenaphthene, fluorene, 2-methylnaphthalene and naphthalene. Based on the 95%UCLM concentration for total PAHs in the shallow dataset vs. the deep dataset, higher risks to aquatic receptors due to PAH exposure are expected to result from exposure to shallow sediment, therefore uncertainty is expected to be low.

95% UCLMs for 7 of the 16 metals parameters analysed in both datasets were higher in the deep dataset than the shallow dataset (antimony, arsenic, barium, cadmium, chromium (total), lead and

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 79 of 406

SLR Project No.: 209.40666.00000 February 2020

silver). Of these parameters, arsenic, cadmium, chromium (total) and lead were retained as final COPCs in shallow sediment, while antimony and silver were identified as uncertain COPCs. There is some uncertainty with the selection of EPCs for arsenic, cadmium, chromium (total) and lead as the 95%UCLM concentrations for the deep sediment dataset would have resulted in higher HQs for these parameters. However, since the shallow dataset represents the area where most sediment-dwelling organisms live, uncertainty under current conditions is considered low. For antimony uncertainty is low as the 95%UCLM for antimony is only marginally above the Table 1 Background Concentration for Soil (1.2 mg/kg vs. the Table 1 background concentration of 1 mg/kg). Uncertainty due to depth-specific differences in barium is also considered low as the 95%UCLM concentration for barium of 205 mg/kg in the deep dataset is below the Table 1 background concentration (210 mg/kg). The 95% UCLMs for the deep dataset were below the shallow dataset for beryllium, boron, copper, molybdenum, nickel, thallium, uranium, vanadium and zinc.

For nutrients, both the TKN and phosphorus 95% UCLM concentrations were higher in the deep sediment dataset than the shallow, however the concentrations were comparable to the historical ranges of TKN (120 to 1250 mg/kg) and TP (1000 to 1140 mg/kg) in sediment described in Section 6.1.3. Depth-specific uncertainty related to nutrients is considered low.

#### 9.3 Effects Assessment Uncertainties

Toxicity information for many parameters is often limited. Consequently, there are varying degrees of uncertainty associated with the toxicity values used to determine risk estimates. These uncertainties may result in overestimates or underestimates of risk. PEL-type TRVs were selected for sediment for non-listed species and lower-level SQGs were selected for SAR invertebrates (based on the potential presence of the Lilliput mussel).

TRVs for aquatic plants, fish and amphibians in sediment were not available from the sources of information reviewed.

The PEC and PEL are developed based toxicity tests with benthic invertebrates as it is assumed that benthic invertebrates are generally the organisms most exposed to the sediment and the most sensitive of the aquatic life receptors. Based on this assumption, the uncertainty associated with applying TRVs for benthic invertebrates to evaluate the potential risk to aquatic life is considered to be low.

A TRV could not be identified for silver in sediment. Silver was retained as a COPC based on the maximum concentration (3.3. mg/kg) exceeding the ON Sediment Table 1 Background concentration of 0.5 mg/kg in eight out of the twenty-two sediment samples. The ERA indicated that metals were not the risk drivers in the study area. The level of uncertainty associated with the lack of a TRV for silver is expected to be low.

For surface water, LOAELs and NOAELs were selected from reputable agencies for listed and non-listed species, respectively. The use of PEL- type TRVs for non-listed species and LOAELs or NOAELs for listed species was considered a conservative approach since these values have been based on standardized approaches used by regulatory agencies using carefully scrutinized toxicity datasets. The use of these values as TRVs is not expected to lead to underestimates of risk.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 80 of 406

SLR Project No.: 209.40666.00000 February 2020

#### Iron Precipitate

Toxicity values for iron were selected based on reviewed toxicological studies, rather than physical effects due to precipitation and creation of iron floc. The PWQO derivation document for iron (MOE 1979) indicated that while there is considerable variation in acceptable concentrations of iron, there is general agreement that the hydroxide precipitate interferes with respiration through the chorion in fish eggs and impairs gill function of gill-breathing organisms by occlusion of the lamellae. The PWQO for total iron was set at 300 µg/L to prevent the formation of ferric hydroxide precipitate or "floc". Evidence of significant iron precipitate within the study area was not observed by SLR during the sit visits, therefore a toxicology based TRV was considered more appropriate for assessment of iron effects to aquatic life. Should signs of iron precipitate be observed in the future, further assessment may be required.

# 9.3.1 Toxicity Testing and BICS Analysis

Additional quantitative assessment was completed to assess risks to benthic invertebrates exposed to COPCs in sediment. Chronic sediment toxicity tests were completed using 10 and 14-day survival and growth tests for the freshwater midge, *C. dilutus* and freshwater amphipod, *H. azteca*, respectively. Testing evaluated significant differences between laboratory controls and impacted samples for either survival or growth endpoints. A total of six impacted samples in the study area were tested. The health histories of the test organisms used in the exposures were acceptable as organism mortality did not exceed 10% during shipping. The tests met all validity criteria outlined in the applicable reference methods. The level of uncertainty associated with the toxicity testing LOE is moderate. A relatively high number of sediment samples were submitted for toxicity testing based on the size of the study area; however, the sediment samples did not necessarily capture the elevated chemistry associated with the highest HQs. There is a high level of ecological relevance associated with this LOE as it assesses potential impacts using biologically relevant organisms under controlled laboratory conditions.

The level of uncertainty associated with the BICS LOE is high. The data suggest that there is an altered community structure due to past and ongoing point sources and nonpoint sources of pollution and urbanization, and an adequate reference location could not be identified. However, there is a high level of ecological relevance associated with this LOE as it directly measures site-specific benthic community impacts.

Measurement errors can also influence the results of the BICS analysis, for example, misidentification of benthic invertebrate species can affect the calculations of the metrics that are used to classify sediment samples as impaired or not impaired. Since 100% of each sample was identified (i.e. no sub sampling), measurement errors related to the BICS analyses are unlikely to influence the results of the risk evaluation.

#### 9.4 Risk Characterization Uncertainties

A combination of tools was used in this risk assessment to qualitatively and quantitatively characterize risks to aquatic receptors. The derivation of a hazard quotient using a conservative TRV to assess risk is a quantitative estimate designed to result in overestimation of risks. Risk estimates attempt to address the variability in exposure point concentrations, or variability in toxicity amongst individuals, by using conservative estimates for these factors. In doing so, the deterministic approach generally overestimates risk, due to compounding/magnification of conservative decisions and assumptions a risk assessor will make in each step or value used in

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 81 of 406
SLR Project No.: 209.40666.00000

February 2020

the risk assessment. In addition, the uses of multiple LOEs to characterize overall risk to the benthic invertebrates lowers the uncertainty.

#### 10.0 SUMMARY AND CONCLUSIONS

The purpose of the ERA was to evaluate the potential risks to aquatic plants and invertebrates, fish, amphibians and aquatic-dependent wildlife associated with exposure to contaminants of potential concern (**COPCs**) in sediment and surface water in the study area. The ERA was conducted in response to the sewage discharge.

Sediment (22 samples) and surface water (8 samples) samples collected in 2018 and 2019 represent the water and sediment quality within the study area. The sediment samples used to assess risk in the ERA are located within the top 0 to 0.15 metres of sediment, which is most commonly inhabited by aquatic organisms.

The conceptual site model (CSM) developed in this ERA identified potential pathways by which aquatic life within the study area may be exposed to contaminants in sediment and surface water (termed "complete exposure pathways"). Those exposure pathways include the following:

- Aquatic life such as aquatic plants and algae, invertebrates, fish and amphibians may have direct contact with (i.e. ingest or absorb through skin contact) metals (arsenic, cadmium, chromium, copper, lead manganese, mercury and zinc), PAHs (acenaphthylene, acenaphthene, anthracene, benz(a)anthracene, benzo(g,h,i)perylene, benzo(k)fluoranthene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene indeno(1,2,3-cd)pyrene, 2- methylnaphthalene, naphthalene, phenanthrene, pyrene and total PAHs) and nutrients (TKN and total phosphorus) in sediment; and
- Aquatic life such as aquatic plants and algae, invertebrates, fish and amphibians may have direct contact with (i.e. ingest or absorb through skin contact) metals (aluminum and iron) and nutrients (nitrite and total phosphorus) in surface water.

Mammals and birds are not expected to have significant contact with contaminants in sediment and surface water within the study area. Species in these groups are unlikely to spend significant time within the study area due to the lack of food-sources and habitat within the study area and the presence of more suitable habitat in nearby Cootes Paradise Marsh. In addition, based on the results of the ERA, contaminants in sediment and surface water within the study area are not likely to significantly accumulate in the food chain, and are therefore unlikely to pose a risk to higher trophic level wildlife (i.e. carnivorous birds, mammals and reptiles).

The ERA assessed risks by calculating risk estimates known as hazard quotients, (or "HQs") and comparing to MECP recommended risk target levels. Risk estimates were calculated for both mobile wildlife (i.e. amphibians, reptile and fish) and less mobile communities (i.e. aquatic plants and invertebrates) by assessing exposure on a study wide, and on individual sample location basis. Potential risks to aquatic life due to direct contact with contaminants in surface water were calculated conservatively using the maximum measured concentration within the study area. Where a potential species at risk (SAR) was identified, more conservative values were used to calculate the risk estimate.

In summary, the risk estimate (i.e. HQ) evaluation identified the following:

• For the majority of aquatic life (i.e. non-species at risk), risks due to direct contact with metals in sediment and surface water were low to negligible.

City of Hamilton Ecological Risk Assessment – Chedoke Creek Page 82 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

- Risks were also negligible for non-SAR aquatic life and amphibians due to direct contact
  with nutrients in sediment, however toxicity information was limited for some species
  groups, so there is some uncertainty in the risk estimates for these receptors. Potential
  risks were identified for these aquatic life and amphibians for nitrite in surface water.
- Potential risks were identified for aquatic life and amphibians for direct contact with PAHs in sediment on a study-area basis. HQs greater than the risk target level were calculated for one or more individual PAHs at several locations including: G-1 Comp, C-1 West, C-2 West, C-3 West and Centre, C-4 West and Centre, and C-5 East. Generally, the magnitude of HQs and number of individual PAHs with HQs above 1.0 are highest at the upstream locations.
- One SAR mussel species, Lilliput (Toxolasma parvum), has been observed in Cootes Paradise Marsh and Princess Point near the study area. For this reason, potential risks were assessed more conservatively for SAR invertebrates using lower toxicity values protective of individuals rather than the overall community. HQs above the target level of 1.0 were found at all sampling locations for metals and/or PAHs in sediment and nutrients in surface water, indicating likely risks to SAR invertebrates from exposure to sediment and surface water.

The aquatic vegetation in the study area was qualitatively evaluated by SLR biologists during the 2019 field program. The aquatic plant life that was observed was consistent with what would be expected, considering the context of the study area (i.e., based on the physical features and water flow patterns of Chedoke Creek) and the surrounding urban landscape.

A weight of evidence (WOE) assessment was completed on a subset of sediment samples (seven in total) to further evaluate risks to benthic invertebrates. Based on the WOE results, there is a moderate to high potential for risks to benthic invertebrates inhabiting sediments in the study area. However, the benthic community observed in the study area is consistent with that observed in streams in similar urban watersheds (Coles et al, 2012). Urban development is often associated with a loss of sensitive species and an increasing percentage of pollution tolerant species due to a high percentage of impervious cover (i.e. concrete, asphalt, roof tops etc.) (Cole et al 2012).

The results of the ERA indicate that the contaminants in the study area sediment, as well as the sediment oxygen demand resulting from the degradation of natural organic detritus (plants, organisms etc.) and/or organic waste, likely limits the benthic invertebrate community makeup to stress tolerant organisms. Review of the contaminant distribution indicates that elevated levels of PAHs, certain metals, nutrients and bacteria have been an ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 83 of 406

SLR Project No.: 209.40666.00000 February 2020

#### 11.0 RECOMMENDATIONS

Ecological Risk Assessment – Chedoke Creek

City of Hamilton

As indicated in the Introduction section this ERA was prepared in response to Director's Order Number 1-MRRCX. Item 1 of the Order required a written report to include: 'an evaluation of the environmental impact to the creek from sewage discharged by the City between January 28, 2014 and July 18, 2018, an identification and evaluation of sewage remaining in the creek, identification of any anticipated on-going environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek.'

The findings of this ERA and Wood (2019) indicated that some of the COPCs within the study area sediment are likely associated with the 2014-2018 Main/King CSO discharge event. However, both this ERA and the Wood Report (2019) indicated that the COPCs, as well as sediment depositions within the study area, have many different point and nonpoint sources. In addition, the various CSO and stormwater outfalls in the Chedoke Creek sub-watershed have discharged sewage and stormwater prior to, during and subsequent to the 2014-2018 Main/King CSO discharge. Wood completed an analysis of sediment in the study area to support the design of remediation options and reported that "the sediment characteristics from the prior discharge events are likely to be similar to, and indistinguishable from, the 2014-2018 Main/King CSO discharge event" (Wood 2019). SLR agrees with this statement. In addition, the findings of the ERA indicate that elevated concentrations of COPCs have been a persistent and ongoing issue in Chedoke Creek sediment and/or surface water prior to and after the 2014-2018 discharge event, including in areas upstream of the Main/King CSO.

Remediation options discussed in the Wood Report (2019) targeted solids and TKN loading from the discharge. Wood (2019) indicated that approximately 90% of the total phosphorus mass load appeared to have already been solubilized or transported downstream immediately following taking corrective actions at the Main/King CSO tank overflow gate. Subsequent sediment sampling has shown that TKN in surface sediment was below the PSQG LEL in all sediment samples obtained in 2019. For the above reasons, it is not possible to target remediation to COPCs and sediments solely associated with the 2014-2018 Main/King CSO discharge.

Although effects may be related in part to storm water and urban runoff and sewage, based on the degraded conditions generally observed in the study area, and the fact that fecal bacteria are still found in sediment, remediation may be beneficial, nonetheless. The proposed remediation action plan (RAP) provided by Wood (2019) evaluated the following options:

- Physical Capping
- Chemical Inactivation
- Direct Removal
- No-Action Alternative

The above proposed remediation options and no-action alternative are described in Wood (2019) and briefly summarized and evaluated below using additional information not yet available when Wood (2019) was prepared.

# Physical Capping

"Physical capping is accomplished by applying a cover of clean material on top of the contaminated sediment to effectively eliminate or reduce biogeochemical and physical interaction with the overlying water column" (Wood 2019).

Page 84 of 406 SLR Project No.: 209.40666.00000

Appendix "A" to Report PW19008(g)/LS19004(g)

February 2020

Physical capping was not recommended by Wood (2019) based on the minimal water depth and high flows within the study area, which would limit the effectiveness of this method. In addition, the surface water sampling program completed in 2019 indicated that the metals and PAHs present in elevated concentrations in the sediment were not COPCs in surface water. Based on the findings of the ERA, physical capping is **not recommended**.

# **Chemical Inactivation**

"Chemical inactivation of sediment is utilized worldwide to reduce the release of phosphorus from sediments to the water column via processes such as diffusion and resuspension" (Wood 2019).

Chemical inactivation only addresses phosphorus and 90 percent of the phosphorus load is no longer in the study area. The ERA indicates other sediment COPCs such as PAHs and certain metals likely are primary contributors to the degraded sediment quality observed within the study area. Chemical inactivation would not address these COPCs. Therefore, chemical inactivation is not recommended.

# **Direct Removal**

Wood (2019) recommended physical removal of the organic sediment within the study area as it would "directly address the three primary sources of potential impairment including nutrient contamination, bacteriological contamination, and habitat loss". Hydraulic dredging was the recommended method as it provides "an efficient means to remove the target sediments down to a specific elevation without the need to disturb areas outside of the necessary dredge footprint". A conceptual dredge design is provided in Wood (2019).

While Wood (2019) identified the three primary sources of potential impairment as 'nutrient contamination, bacteriological contamination, and habitat loss', SLR would identify additional persistent COPCs such as PAHs, and certain metals. Hydraulic dredging would likely address the fecal coliform remaining in the surface sediment (<0.15 m). Except for one location (C3-West), fecal coliforms were not detected in deeper sediment in 2018. However, hydraulic dredging may not address nutrient contamination. Sediment results in 2019 indicated that TKN was below the LEL. In addition, most of the total phosphorus load is no longer in the study area and total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical concentrations. Thus, removal of key parameters associated with sewage discharge by dredging may not be warranted as these parameters have not persisted subsequent to the Main/King CSO discharge event. However, hydraulic dredging may address other COPC such as PAHs and certain metals (e.g., copper) that are likely contributing to the adverse effects. In addition, dredged areas would be subject to re-contamination resulting in temporary benefits of sediment removal. For these reasons, advantages and disadvantages associated with dredging are shown in Table 11-1.

Table 11-1: Some Effects Associated with Sediment Removal by Dredge in Chedoke Creek.

| Advantages                                                                                                                                                                                                                                                                                           | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Improved sediment quality after removal of COPCs</li> <li>The ongoing presence of fecal bacteria that are still found in sediment</li> <li>Opportunity to enhance riparian and aquatic habitat in dredged areas (although habitat enhancement could occur even without dredging)</li> </ul> | <ul> <li>Disruption of aquatic habitat in dredged areas including removal of benthic organisms and aquatic plants</li> <li>Sediment removal may cause potential harm to a species at risk mussel</li> <li>Short-term benefit given likelihood of recontamination of sediments given persistent presence of COPCs in Chedoke Creek sediments, unless management of input water quality occurs</li> <li>Temporary benefit may be shortened further if natural re-colonization of dredged area is delayed given the likely paucity of benthic invertebrate populations in the upstream concrete channel reaches to provide individuals to drift and re-populate lower reaches of the Creek</li> <li>Low dissolved oxygen and continued inputs from upstream urban runoff may limit re-colonization by sensitive species</li> <li>Nutrient contamination typically associated with sewage discharge have reduced to the extent that TKN concentration is below LEL and most of the total phosphorus load is no longer in the study area. Furthermore, total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical concentrations, thus the rationale to address potential effects of the CSO discharge are largely abated.</li> </ul> |

Given the strength of the disadvantages associated with direct sediment removal (dredging), and that nutrients appear comparable to historical concentrations, this remedial activity is **not recommended** at this time.

# No-Action Alternative

The ERA has shown that PAHs, certain metals, nutrients and bacteria in surface water and/or sediment have been an ongoing concern (above PSQG LELs or PWQOs) in Chedoke Creek and/or Chedoke Bay and that the benthic invertebrate community makeup is limited to stress tolerant organisms. In addition, toxicity tests completed in controlled laboratory conditions indicated that the sediment elicited adverse effects in the amphipod *H. azteca*. Finally, while fecal coliform concentrations have decreased since 2018, fecal coliforms are still detectable in surface sediment. Fecal bacteria in sediment can form a reservoir of viable organism that can enter the water column when the sediment is stirred (Mallin et al. 2007). However, these observed effects are associated with numerous upstream sources other than the Main/King CSO discharge.

As reported above, most of the total phosphorus load is no longer in the study area and total phosphorus concentrations in sediment in Chedoke Bay were comparable to historical

Appendix "A" to Report PW19008(g)/LS19004(g)

Page 86 of 406 SLR Project No.: 209.40666.00000

February 2020

City of Hamilton Ecological Risk Assessment – Chedoke Creek

concentrations in 2019. In addition, sediment samples show fecal coliform levels had decreased in October 2019 compared to September 2018 and TKN in surface sediment was below the PSQG LEL in all sediment samples obtained in 2019. These findings suggest no persistent, elevated levels of nutrients in Chedoke Creek downstream from the King/Main CSO.

The Director's Order required "an identification and evaluation of sewage remaining in the creek, anticipation of any ongoing environmental impacts to the creek as a result of the sewage spill, and a review of options designed to remediate the creek and monitor the environmental condition of the creek."

Options to remediate and monitor the creek were contingent on the assessment of impact. Given that post-discharge levels of contaminants appear consistent with pre-discharge levels, no ongoing impacts to the creek as a result of the sewage spill persist. Monitoring the environmental condition of the creek as it relates to ongoing operations for the Main/King CSO is occurring. Thus, remediation would appear unnecessary to address effects from the sewage discharge that occurred from 2014 to 2018, and the '**no action**' alternative is recommended.

#### 12.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for the City of Hamilton referred to as the "Client". It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.

This report has been prepared for specific application to this site and conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion based on limited investigations including visual observation of the study area, environmental investigation at discrete locations and depths, and laboratory analysis of specific parameters. The results cannot be extended to previous or future site conditions, portions of the site that were unavailable for direct investigation, subsurface locations which were not investigated directly, or parameters and materials that were not addressed. Substances other than those addressed by the investigation may exist within the study area; and substances addressed by the investigation may exist in areas of the creek not investigated in concentrations that differ from those reported. SLR does not warranty information from third party sources used in the development of investigations and subsequent reporting.

Nothing in this report is intended to constitute or provide a legal opinion. SLR expresses no warranty to the accuracy of laboratory methodologies and analytical results. SLR expresses no warranty with respect to the toxicity data presented in various references or the validity of toxicity studies on which it was based. Scientific models employed in the evaluations were selected based on accepted scientific methodologies and practices in common use at the time and are subject to the uncertainties on which they are based.

SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations or policies established by federal, provincial or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

The Client may submit this report to the Ministry of Environment Conservation and Parks and/or related Ontario environmental regulatory authorities or persons for review and comment purposes. These agencies may rely on the information contained in this report regarding the study area, as described in this report. These agencies may copy the report as required to fulfil regulatory obligations.

Report Author's:

Kathryn Matheson Risk Assessor

Celine Totman
Senior Environmental Scientist

Reviewed by:

Sam Reimer

Technical Director – Risk Assessment

Gord Wichert

Technical Director - Ecology

and Wichert

City of Hamilton Ecological Risk Assessment – Chedoke Creek Page 88 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

#### 13.0 REFERENCES

- ATSDR (Agency for Toxic Substances and Disease Registry). 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons (PAHs). US Department of Health and Human Services, Public Health Service. August 1995.
- Bleeker, E.A.J., and Verbruggen, E.M.J. 2009. Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Aquatic Organisms.
- Brinkhurst, R.O. and S.R. Gelder. 1991. Annelida: Oligchaeta and Branchiobdella. In Ecology and classification of North America freshwater invertebrates. J.H. Thorp and A.P. Covich (eds.) Academic Press Inc. San Diego, p. 401 433.
- Bowlby, J.N., K. McCormack, and M.G. Heaton. 2009. Hamilton Harbour and Watershed Fisheries Management Plan. Ontario Ministry of Natural Resources and Royal Botanical Gardens.
- Bowman, J.E., and T. Theijsmeijer. 2014. 2013 Marsh Sediment Quality Assessment. RBG Report No. 2014-14. Royal Botanical Gardens. Hamilton, Ontario.
- Butcher. G.A. 1988. Water Quality Criteria for Aluminum. Technical Appendix. BC Ministry of Environment and Parks. Water Quality Unit. Resource Quality Section. Water Management Branch.
- Dove A., S. Painter and J. Kraft. 2003. Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte). A Screening-Level Survey. Environment Canada, Ecosystem Health Division, Ontario Region Environmental Conservation Branch.
- Canadian Council of Ministers of the Environment (CCME) 1997. Canadian Council of Ministers of Environment. A Framework for Ecological Risk Assessment: Technical Appendices. March 1997.
- CCME 2000. Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Methylmercury. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2001. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Arsenic. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2008. Canadian Water Quality Guidelines, Canadian Council of Ministers of the Environment. November 2008.
- CCME 2009. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Boron. Canadian Environmental Quality Guidelines Canadian Council of Ministers of the Environment.
- CCME 2016. Guidance Manual for Developing Nutrient Guidelines for Rivers and Streams.
- CCREM. 1987. Canadian Council of Resource and Environment Ministers. Canadian water quality guidelines. Environment Canada (1987).

- Chow-Fraser P. Crosbie B., Bryant D and McCarry B. 1996. Potential Contribution of Nutrients and Polycyclic Aromatic Hydrocarbons from the Creeks of Cootes Paradise Marsh. Water Qual. Res. 1. Canada, 1996. Volume 31, No. 3, 485-503.
- CSAP. 2015. Bioaccumulation Research Project. Prepared by SLR Consulting (Canada) Ltd. August 2015.
- Coles, J.F., McMahon, Gerard, Bell, A.H., Brown, L.R., Fitzpatrick, F.A., Scudder Eikenberry, B.C., Woodside, M.D., Cuffney, T.F., Bryant, W.L., Cappiella, Karen, Fraley-McNeal, Lisa, and Stack, W.P., 2012, Effects of urban development on stream ecosystems in nine metropolitan study areas across the United States: U.S. Geological Survey Circular 1373, 138 p. Available online at http://pubs.usgs.gov/circ/1373/
- COSEWIC. 2007a. COSEWIC assessment and status report on the Eastern Pondmussel Ligumia nasuta in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii+34pp.
- COSEWIC. 2007b. COSEWIC assessment and update status report on the northern brook lamprey Ichthyomyzon fossor (Great Lakes Upper St. Lawrence populations and Saskatchewan Nelson population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi+30 pp.
- COSEWIC. 2013. COSEWIC assessment and status report on the Lilliput Toxolasma parvum in Canada. Committee on the Status of Endangered.
- COSEWIC. 2016. COSEWIC assessment and status report on the Mapleleaf Quadrula quadrula, Great Lakes Upper St. Lawrence population and Saskatchewan Nelson Rivers population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 86 pp.
- Cootes Paradise Water Quality Group. 2012. Cootes Paradise Marsh: Water Quality Review and Phosphorus Analysis. Hamilton Harbour Remedial Action Plan
- DFO. 2019. Department of Fisheries and Oceans, 2019. Aquatic Species at Risk Mapping Date modified: 2019-08-23, Accessed On-line January 3, 2020. https://www.dfo-mpo.gc.ca.
- Dong-Kyun, K., T. Peller, Z. Gozum, T. Theysmeye, T. Long, D. Boyd, S. Watson, Y. R. Rao, and George B. Arhonditsis. 2016. Modelling phosphorus dynamics in Cootes Paradise Marsh: Uncertainty assessment and implications for eutrophication management. Aquatic Ecosystem Health & Management, 19:4, 368-381.
- Dove A., S. Painter and J. Kraft. 2003. Sediment Quality in Canadian Lake Ontario Tributaries: Part One (West of the Bay of Quinte). A Screening-Level Survey. Ecosystem Health Division, Ontario Region Environmental Conservation Branch Environment Canada.
- Eakins, R. J. 2019. Ontario Freshwater Fishes Life History Database. Version 4.88. Online database. (http://www.ontariofishes.ca), accessed 03 January 2020.
- eBIRD Canada, 2019. Online Dundas Marsh/Cootes Paradise (general location), Accessed at https://ebird.org/canada/hotspot.
- Environment Canada 1979. Water Quality Sourcebook, A Guide to Water Quality Parameters, Inland Waters Directorate, Water Quality Branch, Ottawa, Canada.

City of Hamilton Ecological Risk Assessment – Chedoke Creek Page 90 of 406 SLR Project No.: 209.40666.00000 February 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

- ENV. 2019. "Contaminated Sites Regulation", BC Reg. 375/96, effective April 1, 1997 (including amendments up to BC Reg. 13/2019, October 1, 2019).
- Environment Canada (EC). 2012. Federal Contaminated Sites Action Plan (FCSAP) Ecological Risk Assessment Guidance. March 2012.
- Government of Ontario, 2019. Government of Ontario, 2019. O. Reg. 230/08: Species at Risk in Ontario List Under Endangered Species Act, 2007, S.O. 2007, c. 6 Accessed On-line January 3 2020. Current to E-Laws currency date December 8, 2019.
- Gower, AM. and Buckland, PJ. 1978. Water quality and the occurrence of *Chironomus riparius* Meigen (Diptera: Chironomidae) in a stream receiving sewage effluent. Freshwater Biology. 8(2):153 164.
- HCA 2008. Hamilton Conservation Authority (HCA) 2008. Chedoke Creek Subwatershed Stewardship Action Plan.
- HCA 2018. Chedoke Creek Watershed Fact Sheet, 2018. http://conservationhamilton.ca/wp-content/uploads/sites/5/2018/04/Chedoke-Creek-Factsheet-2018.pdf.
- Hamilton Harbour Remedial Action Plan Office. 2017. Hamilton Harbour Remedial Action Plan Monitoring Catalogue 2017 Season.
- Hamilton Harbour Remedial Action Plan Office. 2018. Contaminant Loadings and Concentrations to Hamilton Harbour: 2008-2016 Update.
- Health Canada, 2010c. Federal Contaminated Site Risk Assessment in Canada, Part V: Guidance on Human Health Detailed Quantitative Risk Assessment for Chemicals (DQRA<sub>CHEM</sub>).
- Hylland, K. 2006. Polycyclic aromatic hydrocarbon ecotoxicology in marine ecosystems. Journal of Toxicology and Environmental Health, Part A. 69 (1–2): 109–123.
- Ingersoll C.G., P. S. Haverland, E. L. Brunson, T. J. Canfield, F. J. Dwyer, C.Henke, N. E. Kemble, D. R. Mount, and R. G. Fox. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod *Hyalella azteca* and the midge *Chironomus riparius*. National Biological Service Final Report for the U.S. Environmental Protection Agency Great Lakes.
- Lee, H.T., W.D. Bakowsky, J. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurray, 1998. Ecological Land Classification for Southern Ontario: First Approximation and Its Application. Ontario Ministry of Natural Resources, Southcentral Science Section, Science Development and Transfer Branch. SCSS Field Guide FG-02. North Bay, Ontario. 225 pp.
- Lenat, DR., Smock, LA., and Penrose, DL. 1980. Use of Benthic Macroinvertebrates as Indicators of Environmental Quality. In *Biological Monitoring for Environmental Effects*. By Douglas Wolf. LexingtonBooks, Toronto, Canada.
- Linton, T.K., M.A.W. Pacheco D.O. McIntyre W.H. Clement and J. Goodrich-Mahoney. 2007. Development of bioassessment-based benchmarks for iron. *Environ. Toxicol. Chem.* 26(6): 1291-1298. In: Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron. Overview Report.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Journal of Environmental Management 19(1):81-97.

- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 39:20-31.
- Macdonald, D.D and C.G. Ingersoll. 2003. A Guidance Manual to Support the Assessment of Contaminated Sediments in Freshwater, Estuarine, and Marine Ecosystems in British Columbia. Prepared for British Columbia Ministry of Water, Land and Air Protection Pollution Prevention and Remediation Branch and addressed to Mike Mcfarlane. November 2003.
- Mallin A.M., Lawrence B. Cahoon, Byron R. Toothman, Douglas C. Parsons, Matthew R. McIver, Michelle L. Ortwine, Renee N. Harrington. 2007 Impacts of a raw sewage spill on water and sediment quality in an urbanized estuary. Marine Pollution Bulletin 54 (2007) 81–88.
- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ministry of the Environment.
- MOE 1992. Ontario's Water Quality Objective Development Process. March 1992. Ministry of the Environment.
- MOE 2008. Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario.
- MOE 2011a. Soil, ground water and sediment standards for use under Part XV.1 of the Environmental Protection Act.
- MOE 2011b. Rationale for the Development of the Soil and Groundwater Standards for Use at Contaminated Sites in Ontario. Ministry of the Environment Standards Development Branch. April 15, 2011.
- Morris et al., 2015. Freshwater Mussel Sampling in Cootes Paradise, Lake Ontario, with emphasis on Eastern Pondmussel (*Ligumia nasuta*). Report to the Mollusc Specialist Subcommittee of the Committee on the Status of Endangered Wildlife in Canada.
- Ministry of Environment Conservation and Parks (MECP) 2017. Procedures for the Use of Risk Assessment under Part XV.1 of the Environmental Protection Act. Published August 18, 2017, Updated May 15, 2019.
- Oliveira, V., Martins, R. and Alves, R. 2010. Evaluation of water quality of an urban stream in southeastern Brazil using Chironomidae larvae (Insecta: Diptera). Neotropical Entomology. 39(6):873-878.
- Persaud D. R. Jaagumagi and A. Hayton. 1993. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Ontario Ministry of Environment and Energy.
- Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron.

Appendix "A" to Report PW19008(g)/LS19004(g) Page 92 of 406 SLR Project No.: 209.40666.00000

SLR Project No.: 209.40666.00000 ment – Chedoke Creek February 2020

- Radassao, F., Barr, L., and Peirce, M. 2019. 2018 Environmental Review of Hendrie Valley. RBG Report No. 2019-6. Royal Botanical Gardens. Burlington, ON.
- Schwetz, N. 2014. Hamilton Conservation Authority. Nature Counts. Hamilton Natural Areas Inventory Project, 3rd Edition. Site Summaries, Species Checklists. 753 pp + 287 pp.
- Oldham, M., Bakowsky, W. and Sutherland, D. 1995. Floristic quality assessment for southern Ontario. Natural Heritage Information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario.
- SNC Lavalin, 2010. City of Hamilton B-Line Light Rapid Transit Draft Environmental Project Report, Appendix B.1 Natural Heritage Features.
- SNC Lavalin. 2017. City of Hamilton and Metrolinx Hamilton Light Rail Transit (LRT) Environmental Project Report (EPR) Addendum. Appendix C: Technical Supporting Document. Appendix C3: Ecology Report.
- Texas Commission on Environmental Quality (TCEQ). 2014. Conducting Ecological Risk Assessments at Remediation Sites in Texas. Draft January 2014. Available on-line at
- Theijsmeijer T., J. Bowman, A. Court & S. Richer. 2016. Wetlands Conservation Plan 2016-2021. Natural Lands Department. Internal Report No. 2016-1. Royal Botanical Gardens. Hamilton, Ontario.
- USEPA. 2015. ProUCL, Statistical Software for Environmental Applications.
- Vander Hout J., D. Brouwer, and E. Berkelaar. 2015. Water Quality Monitoring of the Chedoke Creek Subwatershed, Subwatersheds of Cootes Paradise, and the Red Hill Watershed.
- Vincent, K. 2017. 2017 Environmental Condition of Cootes Paradise South Shore. RBG Report No. 2018-12. Royal Botanical Gardens. Burlington, ON.
- Wedemeyer, G.A. and W.T. Yasatake. 1978. Prevention and treatment of nitrite toxicity in juvenile steelhead trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 35: 822-827. (Cited in MOE 1979).
- Wyshynski, S.A. and T.L. Pulfer. 2015. Recovery Strategy for the Golden Eagle (Aquila chrysaetos) in Ontario. Ontario Recovery Strategy Series. Prepared for the Ontario Ministry of Natural Resources and Forestry, Peterborough, Ontario. vi + 43 pp.

KM/JW/SR/at/ijk

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 93 of 406

# **TABLES**

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

| 6    |  |
|------|--|
| ~    |  |
| Page |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |
|      |  |

|                   |                                   |                                   |        |                       | TAE                    | 3LE 1. CONT | AMINAN | TS OF POTENTI.               | AL CONCE                  | RN (COPC) SC                   | SREENING F | OR AQUATIC LIFE   | TABLE 1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SEDIMENT (0-0.15 mbss) | nbss)                       |                      |                                 |                                      |
|-------------------|-----------------------------------|-----------------------------------|--------|-----------------------|------------------------|-------------|--------|------------------------------|---------------------------|--------------------------------|------------|-------------------|-------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|---------------------------------|--------------------------------------|
| •                 |                                   |                                   |        |                       |                        | SEDIMENT    | CHARAC | CHARACTERIZATION             |                           |                                |            |                   |                                                                                                       |                             | EC                   | ECOLOGICAL HEALTH SCREENING     | NG                                   |
|                   |                                   |                                   |        | Maximum Concentration | ncentration            |             |        | Second Highest Concentration | Concentration             |                                | 95% UCLM   | ProUCL            | Background                                                                                            | puno                        | Screening Benchmarks | tenchmarks                      |                                      |
| Contaminant       | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | mg/kg  | Sample ID             | Sample Depth<br>(mbss) | Sample Date | mg/kg  | Sample ID                    | Sample<br>Depth<br>(mbss) | Sample Date                    | mg/kg      | Method applied    | Table 1 Background<br>Standards for Soil                                                              | MOE 2008, 2011 <sup>a</sup> | ON PSQG LEL          | CCME SedQG Freshwater<br>(ISQG) | COPC?                                |
| Metals            |                                   |                                   |        |                       |                        |             |        |                              | Sha                       | Shallow Depth (0 to 0.15 mbss) | 0.15 mbss) |                   |                                                                                                       |                             |                      |                                 |                                      |
| Aluminum          | (0+) 9                            | (0+) 9                            | 13,200 | C-4 West              | 0-0.15                 | 10/1/2019   | 12200  | C-3 West                     | 0-0.15                    | 10/2/2019                      | 11987      | 95% BCA Bootstrap |                                                                                                       |                             |                      |                                 | Uncertain                            |
| Antimorry         | 22 (+0)                           | 7 (+0)                            | 1.54   | C-4 West              | 0-0.15                 | 10/1/2019   | 1.3    | C-5 East                     | 0-0.15                    | 9/19/2018                      | 0.932      | 95% KM (BCA)      | 1.0                                                                                                   |                             |                      |                                 | Uncertain                            |
| Arsenic           | 22 (+0)                           | 22 (+0)                           | 12     | C-5 East              | 0-0.15                 | 9/19/2018   | 5.76   | C-4 West                     | 0.0.15                    | 10/1/2019                      | 5.517      | 95% BCA Bootstrap |                                                                                                       | 4.0                         | 9                    | 5.9                             | Yes; maximum > LEL                   |
| Barium            | 22 (+0)                           | 22 (+0)                           | 210    | C-5 East              | 0-0.15                 | 9/19/2018   | 141    | C-4 West                     | 0.0.15                    | 9/19/2018                      | 117.9      | 95% BCA Bootstrap | 210.0                                                                                                 |                             |                      |                                 |                                      |
| Beryllium         | 22 (+0)                           | 22 (+0)                           | 29'0   | C-4 West              | 0-0.15                 | 10/1/2019   | 9:0    | C-3 West                     | 0.0.15                    | 10/2/2019                      | 0.477      | 95% BCA Bootstrap | 2.5                                                                                                   |                             |                      |                                 | No; maximum < Table 1<br>background  |
| Вогоп             | 22 (+0)                           | 15 (+0)                           | 23.5   | C-1 West              | 0-0.15                 | 10/2/2019   | 23.4   | C-4 West                     | 0.0.15                    | 10/1/2019                      | 19         | 95% BCA Bootstrap | 0'9£                                                                                                  |                             |                      |                                 |                                      |
| Cadmium           | 22 (+0)                           | 22 (+0)                           | 8.5    | C-5 East              | 0-0.15                 | 9/19/2018   | 6.1    | C-4 West                     | 0.0.15                    | 9/19/2018                      | 2.427      | 95% BCA Bootstrap |                                                                                                       | 1.0                         | 9.0                  | 9:0                             | Yes; maximum > LEL                   |
| Chromium (III+VI) | 22 (+0)                           | 22 (+0)                           | 14     | C-4 West              | 0-0.15                 | 9/19/2018   | 37     | C-5 East                     | 0.0.15                    | 9/19/2018                      | 27.52      | 95% BCA Bootstrap |                                                                                                       | 31.0                        | 36                   | 87.78                           | Yes; maximum > LEL                   |
| Соррег            | 22 (+0)                           | 15 (+0)                           | 170    | C-3 West              | 0-0.15                 | 9/18/2018   | 145    | C-4 West                     | 0.0.15                    | 9/18/2018                      | 91.01      | 95% BCA Bootstrap |                                                                                                       | 25.0                        | 16                   | 2'98                            | Yes; maximum > LEL                   |
| Iron              | (+0)                              | 6 (+0)                            | 25,600 | C-4 West              | 0-0.15                 | 10/1/2019   | 24,800 | C-3 West                     | 0.0.15                    | 10/2/2019                      | 23967      | 95% BCA Bootstrap |                                                                                                       | 30,000                      | 20,000               |                                 | No; maximum < background             |
| Lead              | 22 (+0)                           | 15 (+0)                           | 145    | C-5 East              | 0-0.15                 | 9/19/2018   | 87     | C-3 West                     | 0.0.15                    | 9/18/2018                      | 92.90      | 95% BCA Bootstrap |                                                                                                       | 23.0                        | 31                   | 35                              | Yes; maximum > LEL                   |
| Manganese         | 6 (+0)                            | 6 (+0)                            | 623    | G-5 Comp              | 0-0.15                 | 10/2/2019   | 594    | C-4 West                     | 0-0.15                    | 10/1/2019                      | 689        | 95% BCA Bootstrap |                                                                                                       | 400.0                       | 460                  |                                 | Yes; maximum > LEL                   |
| Mercury           | (+0)                              | 6 (+0)                            | 0.255  | C-3 West              | 0-0.15                 | 10/2/2019   | 0.197  | C-4 West                     | 0.0.15                    | 10/1/2019                      | 0.187      | 95% BCA Bootstrap |                                                                                                       | 0.1                         | 0.2                  | 0.17                            | Yes; maximum > LEL                   |
| Molybdenum        | 22 (+0)                           | 22 (+0)                           | 2.4    | C-3 West              | 0-0.15                 | 9/18/2018   | 2.34   | C-4 West                     | 0.0.15                    | 10/1/2019                      | 1.407      | 95% BCA Bootstrap | 2.0                                                                                                   |                             |                      |                                 | No; maximum < Table 1<br>background  |
| Nickel            | 22 (+0)                           | 15 (+0)                           | 36     | C-5 East              | 0-0.15                 | 9/19/2018   | 32     | C-4 West                     | 0-0.15                    | 9/19/2018                      | 24.34      | 95% BCA Bootstrap | •                                                                                                     | 31.0                        | 16                   |                                 | No; maximum within 20% of background |
| Selenium          | 22 (+0)                           | 5 (+0)                            | 1      | C-3 West              | 0-0.15                 | 9/18/2018   | 1      | C-5 East                     | 0.0.15                    | 9/19/2018                      | NC         |                   | 1.2                                                                                                   |                             |                      |                                 | No; maximum < Table 1<br>background  |
| Silver            | 22 (+0)                           | 22 (+0)                           | 3.3    | C-4 West              | 0-0.15                 | 9/19/2018   | 8      | C-5 East                     | 0-0.15                    | 9/19/2018                      | 1.126      | 95% BCA Bootstrap |                                                                                                       | 0.5                         |                      |                                 | Uncertain, maximum ><br>background   |
| Sodium            | (+0)                              | 6 (+0)                            | 447    | C-4 West              | 0-0.15                 | 10/1/2019   | 363    | C-1 West                     | 0-0.15                    | 10/2/2019                      | 360.7      | 95% BCA Bootstrap | •                                                                                                     |                             |                      |                                 | Uncertain                            |
| Thallium          | 22 (+0)                           | 22 (+0)                           | 0.263  | C-4 West              | 0-0.15                 | 10/1/2019   | 0.255  | C-3 West                     | 0-0.15                    | 10/2/2019                      | 0.177      | 95% BCA Bootstrap | 1.0                                                                                                   |                             |                      |                                 | No; maximum < Table 1<br>background  |
| Tin               | 6 (+0)                            | 6 (+0)                            | 6.31   | G-4 Comp              | 0-0.15                 | 10/2/2019   | 5.05   | C-4 West                     | 0-0.15                    | 10/1/2019                      | 4.822      | 95% BCA Bootstrap |                                                                                                       |                             |                      |                                 | Uncertain                            |
| Titanium          | 6 (+0)                            | 6 (+0)                            | 150    | C-4 West              | 0-0.15                 | 10/1/2019   | 139    | C-3 West                     | 0.0.15                    | 10/2/2019                      | 137.3      | 95% BCA Bootstrap | •                                                                                                     |                             |                      |                                 | Uncertain                            |

|                        |                                   |                                   |       |                       | TAE                    | ILE 1. CONT | -AMINAN1 | 'S OF POTENTI,               | AL CONCE               | RN (COPC) S. | CREENING F. | OR AQUATIC LIFE.  | TABLE 1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SEDIMENT (0-0.15 mbss) | mbss)           |                      |                                 |                                         |
|------------------------|-----------------------------------|-----------------------------------|-------|-----------------------|------------------------|-------------|----------|------------------------------|------------------------|--------------|-------------|-------------------|-------------------------------------------------------------------------------------------------------|-----------------|----------------------|---------------------------------|-----------------------------------------|
|                        |                                   |                                   |       |                       |                        | SEDIMENT    | CHARACT  | SEDIMENT CHARACTERIZATION    |                        |              |             |                   |                                                                                                       |                 | EC                   | ECOLOGICAL HEALTH SCREENING     | NG                                      |
|                        |                                   |                                   |       | Maximum Concentration | ncentration            |             |          | Second Highest Concentration | oncentration           | _            | 95% UCLM    | ProUCL            | Background                                                                                            | puno            | Screening Benchmarks | 3en chmarks                     |                                         |
| Contaminant            | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | mg/kg | Sample ID             | Sample Depth<br>(mbss) | Sample Date | mg/kg    | Sample ID                    | Sample<br>Depth (mbss) | Sample Date  | mg/kg       | Method applied    | Table 1 Background<br>Standards for Soil                                                              | MOE 2008, 2011ª | ON PSQG LEL          | CCME SedQG Freshwater<br>(ISQG) | совся                                   |
| Uranium                | 22 (+0)                           | 22 (+0)                           | 0.886 | C-4 West              | 0-0.15                 | 10/1/2019   | 0.88     | C-3 West                     | 0-0.15                 | 9/18/2018    | 0.687       | 95% BCA Bootstrap | 1,9                                                                                                   |                 |                      |                                 | No; maximum < Table 1<br>background     |
| Vanadium               | 22 (+0)                           | 15 (+0)                           | 28.7  | C-4 West              | 0-0.15                 | 10/1/2019   | 24.9     | C-3 West                     | 0.0.15                 | 10/2/2019    | 21.05       | 95% BCA Bootstrap | 86.0                                                                                                  |                 |                      |                                 | No; maximum < Table 1<br>background     |
| Zinc                   | 22 (+0)                           | 15 (+0)                           | 532   | C-4 West              | 0-0.15                 | 10/1/2019   | 505      | C-3 West                     | 0.0.15                 | 9/18/2018    | 349.3       | 95% BCA Bootstrap |                                                                                                       | 65.0            | 120                  | 123                             | Yes; maximum > LEL                      |
| PAHs                   |                                   |                                   |       |                       |                        |             |          |                              |                        |              |             |                   |                                                                                                       |                 |                      |                                 |                                         |
| Acenaphthylene         | 22 (+0)                           | 8 (+0)                            | 0.18  | C-5 East              | 0-0.15                 | 9/19/2018   | 0.11     | C-4 West                     | 0-0.15                 | 9/19/2018    | 0.0423      | 95% KM (BCA)      |                                                                                                       |                 |                      | 0.00587                         | Yes; maximum > ISQG                     |
| Acenaphthene           | 22 (+0)                           | 11 (+0)                           | 1.49  | C-1 West              | 0-0.15                 | 9/18/2018   | 0.83     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.341       | 95% KM (BCA)      |                                                                                                       |                 |                      | 0.00671                         | Yes; maximum > ISQG                     |
| Anthracene             | 22 (+0)                           | 16 (+0)                           | 4.69  | C-1 West              | 0-0.15                 | 9/18/2018   | 0.99     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.867       | 95% KM (BCA)      |                                                                                                       |                 | 0.22                 | 0.0469                          | Yes; maximum > LEL                      |
| Benz(a)anthracene      | 22 (+0)                           | 22 (+0)                           | 9.9   | C-1 West              | 0-0.15                 | 9/18/2018   | 2.96     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 1.83        | 95% BCA Bootstrap |                                                                                                       |                 | 0.32                 | 0.0317                          | Yes; maximum > LEL                      |
| Berzo[b]fluoranthene   | 22 (+0)                           | 22 (+0)                           | 8.37  | C-1 West              | 0-0.15                 | 9/18/2018   | 3.59     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 2.517       | 95% BCA Bootstrap | 6.0                                                                                                   |                 |                      |                                 | No; assessed as total PAHs <sup>b</sup> |
| Benzo(b+j)fluoranthene | (0+) 9                            | (0+) 9                            | 1.4   | C-3 West              | 0-0.15                 | 10/2/2019   | 1.3      | C-4 West                     | 0.0.15                 | 10/1/2019    | 1.267       | 95% BCA Bootstrap |                                                                                                       |                 |                      |                                 | No; assessed as total PAHs <sup>b</sup> |
| benzo(g,h,i)perylene   | 22 (+0)                           | 22 (+0)                           | 4.36  | C-1 West              | 0-0.15                 | 9/18/2018   | 1.45     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 1.236       | 95% BCA Bootstrap |                                                                                                       |                 | 71.0                 |                                 | Yes; maximum > LEL                      |
| benzo(k)fluoranthene   | 22 (+0)                           | 17 (+0)                           | 2.29  | C-1 West              | 0-0.15                 | 9/18/2018   | 1.37     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.71        | 95% KM (BCA)      |                                                                                                       |                 | 0.24                 |                                 | Yes; maximum > LEL                      |
| Benzo(a)pyrene         | 22 (+0)                           | 22 (+0)                           | 6.01  | C-1 West              | 0-0.15                 | 9/18/2018   | 2.4      | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 1.712       | 95% BCA Bootstrap |                                                                                                       |                 | 0.37                 | 0.0319                          | Yes; maximum > LEL                      |
| Chrysene               | 22 (+0)                           | 22 (+0)                           | 7.15  | C-1 West              | 0-0.15                 | 9/18/2018   | 3.24     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 2.155       | 95% BCA Bootstrap |                                                                                                       |                 | 0.34                 | 0.0571                          | Yes; maximum > LEL                      |
| Diberrz(a,h)anthracene | 22 (+0)                           | 13 (+0)                           | 62:0  | C-1 West              | 0-0.15                 | 9/18/2018   | 0.37     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.242       | 95% KM (BCA)      |                                                                                                       |                 | 90.0                 | 0.00622                         | Yes; maximum > LEL                      |
| Fluoranthene           | 22 (+0)                           | 22 (+0)                           | 24.5  | C-1 West              | 0-0.15                 | 9/18/2018   | 9.08     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 6.834       | 95% BCA Bootstrap |                                                                                                       |                 | 0.75                 | 0.111                           | Yes; maximum > LEL                      |
| Fluorene               | 22 (+0)                           | 13 (+0)                           | 1.76  | C-1 West              | 0-0.15                 | 9/18/2018   | 0.84     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.395       | 95% KM (BCA)      |                                                                                                       |                 | 0.19                 | 0.0212                          | Yes; maximum > LEL                      |
| indeno(1,2,3-cd)pyrene | 22 (+0)                           | 22 (+0)                           | 3.45  | C-1 West              | 0-0.15                 | 9/18/2018   | 1.34     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.997       | 95% BCA Bootstrap |                                                                                                       |                 | 0.2                  |                                 | Yes; maximum > LEL                      |
| Methylnaphthalene, 1-  | 16 (+0)                           | 2 (+0)                            | 0.2   | G-1 Comp              | 0-0.1                  | 9/18/2018   | 0.15     | C-4 West                     | 0-0.15                 | 9/19/2018    | NC          |                   | 0.05                                                                                                  |                 | ,                    |                                 | No; assessed as total PAHs <sup>b</sup> |
| Methylnaphthalene, 2-  | 22 (+0)                           | 6 (+0)                            | 0.3   | C-4 West              | 0-0.15                 | 9/19/2018   | 0.3      | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 0.0877      | 95% KM (BCA)      |                                                                                                       |                 |                      | 0.0202                          | Yes; maximum > ISQG                     |
| Naphthalene            | 22 (+0)                           | 11 (+0)                           | 0.98  | G-1 Comp              | 0-0.1                  | 9/18/2018   | 0.24     | C-3 Centre                   | 0-0.15                 | 9/18/2018    | 0.191       | 95% KM (BCA)      |                                                                                                       |                 |                      | 0.0346                          | Yes; maximum > ISQG                     |
| Phenanthrene           | 22 (+0)                           | 22 (+0)                           | 16.5  | C-1 West              | 0-0.15                 | 9/18/2018   | 9.53     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 4.336       | 95% BCA Bootstrap |                                                                                                       |                 | 99'0                 | 0.0419                          | Yes; maximum > LEL                      |
| Pyrene                 | 22 (+0)                           | 22 (+0)                           | 18.9  | C-1 West              | 0-0.15                 | 9/18/2018   | 6.75     | G-1 Comp                     | 0-0.1                  | 9/18/2018    | 4.973       | 95% BCA Bootstrap |                                                                                                       |                 | 0.49                 | 0.053                           | Yes; maximum > LEL                      |
| PAHs (sum of total)    | 6 (+0)                            | 6 (+0)                            | 13    | C-3 West              | 0-0.15                 | 10/2/2019   | 7.8      | C-4 West                     | 0-0.15                 | 10/1/2019    | 26.41       | 95% BCA Bootstrap |                                                                                                       |                 | 4                    |                                 | Yes; maximum > LEL                      |

City of Hamilton Ecological Risk Assessment – Chedoke Creek

|                             |                                   |                                   |        |           | 4                      | SEDIMENT    | CHARACT | SEDIMENT CHARACTERIZATION    | AL CONCE                  | (C) (C) (C) | CREENING | מי אפטאווס דווב   | TABLE 1. CONTAMINANTS OF FOLENTIAL CONCERN (COPU) SCREENING FOR AUGATIC LIFE - SEDIMENT (U-0.19 minss) SEDIMENT GHARACTERIZATION | noss)           | ECI                  | ECOLOGICAL HEALTH SCREENING     | NG                                |
|-----------------------------|-----------------------------------|-----------------------------------|--------|-----------|------------------------|-------------|---------|------------------------------|---------------------------|-------------|----------|-------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|---------------------------------|-----------------------------------|
|                             |                                   |                                   |        | Maximum G | Maximum Concentration  |             |         | Second Highest Concentration | Soncentration             | -           | 95% UCLM | ProUCL            | Background                                                                                                                       | punc            | Screening Benchmarks | enchmarks                       |                                   |
| Contaminant                 | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | mg/kg  | Sample ID | Sample Depth<br>(mbss) | Sample Date | mg/kg   | Sample ID                    | Sample<br>Depth<br>(mbss) | Sample Date | mg/kg    | Method applied    | Table 1 Background<br>Standards for Soil                                                                                         | MOE 2008, 2011" | ON PSQG LEL          | CCME SedQG Freshwater<br>(ISQG) | COPC?                             |
| Nutrients                   |                                   |                                   |        |           |                        |             |         |                              |                           |             |          |                   |                                                                                                                                  |                 |                      |                                 |                                   |
| ammonia and ammonium (as N) | 16 (+0)                           | (0+) 9                            | 400    | C-3 West  | 0-0.15                 | 9/18/2018   | 300     | C-4 West                     | 0.0.15                    | 9/19/2018   | NC       |                   |                                                                                                                                  |                 |                      |                                 | Uncertain                         |
| ammonia as N                | 6 (+0)                            | (0+) 9                            | 190    | C-4 West  | 0-0.15                 | 10/1/2019   | 130     | G-6 Comp                     | 0.0.15                    | 10/1/2019   | 122.7    | 95% BCA Bootstrap |                                                                                                                                  |                 |                      |                                 | Uncertain                         |
| kjeldahl nitrogen total     | 22 (+0)                           | 22 (+0)                           | 1,900  | C-3 West  | 0-0.15                 | 9/18/2018   | 1,600   | C-4 West                     | 0.0.15                    | 9/19/2018   | 841.8    | 95% BCA Bootstrap |                                                                                                                                  |                 | 920                  |                                 | Yes; maximum > LEL                |
| nitrogen (total)            | 6 (+0)                            | 3 (+0)                            | 4,000  | C-4 West  | 0-0.15                 | 10/1/2019   | 3,000   | C-3 West                     | 0.0.15                    | 10/2/2019   | NC       |                   |                                                                                                                                  |                 |                      |                                 | Uncertain                         |
| organic phosphorus          | 6 (+0)                            | 5 (+0)                            | 4.6    | C-4 West  | 0-0.15                 | 10/1/2019   | 3.1     | C-3 West                     | 0.0.15                    | 10/2/2019   | 3.25     | 95% KM (BCA)      |                                                                                                                                  |                 |                      |                                 | No; assessed as total phosphorus° |
| phosphorus total            | 22 (+0)                           | 22 (+0)                           | 1,622  | C-3 West  | 0-0.15                 | 9/18/2018   | 1,560   | C-4 West                     | 0.0.15                    | 10/1/2019   | 1020     | 95% BCA Bootstrap |                                                                                                                                  |                 | 009                  |                                 | Yes; maximum > LEL                |
| Fecal Coliforms             | 17 (+0)                           | 16 (+0)                           | 45,000 | C-3 West  | 0-0.15                 | 9/18/2018   | 43,000  | C-3 Centre                   | 0.0.15                    | 9/18/2018   | 25529    | 95% KM (BCA)      |                                                                                                                                  |                 |                      |                                 | Uncertain                         |

Independent of the control of the co

SLR Project No.: 209.40666 January 2020

|                   |                                   |                                   |             |                                |             | -      | ABLE 2. CONTA                | MINANTSO    | F POTENTIAL CONCERN (C | TABLE 2. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SURFACE WATER | DUATIC LIFE - SURFACE V | VATER                       |        |                                    |                 |
|-------------------|-----------------------------------|-----------------------------------|-------------|--------------------------------|-------------|--------|------------------------------|-------------|------------------------|----------------------------------------------------------------------------------------------|-------------------------|-----------------------------|--------|------------------------------------|-----------------|
|                   |                                   | SURFAC                            | E WATER CHA | SURFACE WATER CHARACTERIZATION |             |        |                              |             |                        |                                                                                              |                         | ECOLOGICAL HEALTH SCREENING | EENING |                                    |                 |
|                   |                                   |                                   | W.          | Maximum Concentration          | r.          | Sei    | Second Highest Concentration | intration   |                        |                                                                                              | Screening Benchmarks    |                             |        |                                    |                 |
| ntaminant         | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | Conc.       | Sample ID                      | Sample Date | Con c. | Sample ID                    | Sample Date | PWQO                   | CCME FWAL (long term)                                                                        | APVs                    | BC AWF                      | BC WQG | Preliminary COPC?                  | Final C         |
|                   | 7 (+1)                            | 7 (+1)                            | 598         | C-5 East - G6                  | 9/30/2019   | 489    | C-4 West                     | 9/30/2019   | 75                     |                                                                                              |                         |                             |        | Yes; maximum > PWQO                | Yes; maxim      |
|                   | 7 (+1)                            | 7 (+1)                            | 49.5        | C-5 East - G6                  | 9/30/2019   | 49.2   | C-4 West                     | 9/30/2019   |                        |                                                                                              | 2,300                   |                             |        | Uncertain                          | No; maxim       |
| (pe               | 7 (+1)                            | 7 (+1)                            | 48.6        | C-4 West                       | 9/30/2019   | 47.2   | C-5 East - 06                | 9/30/2019   |                        |                                                                                              | 2,300                   |                             |        | Uncertain                          | No; maxim       |
|                   | 7 (+1)                            | 7 (+1)                            | 206         | C-4 West                       | 9/30/2019   | 197    | C-3 Centre - G5              | 9/30/2019   | 200                    | 1500                                                                                         | 3550                    |                             |        | Yes; maximum > PWQO                | No; maxim       |
| î,                | 7 (+1)                            | 7 (+1)                            | 211         | C-3 Centre - G5                | 9/30/2019   | 209    | C-4 West                     | 9/30/2019   | 200                    | 1500                                                                                         | 3550                    |                             |        | Yes; maximum > PWQO                | No; maxim       |
| +VI) total        | 7 (+1)                            | 7 (+1)                            | -           | C-5 East - G6                  | 9/30/2019   | 0.8    | C-4 West                     | 9/30/2019   |                        |                                                                                              | 64                      |                             |        | Uncertain                          | No; maxim       |
| +VI) Filtered     | 7 (+1)                            | 2 (+0)                            | 0.1         | C-3 West                       | 9/30/2019   | 0.1    | G-1 Comp                     | 9/30/2019   |                        |                                                                                              | 64                      |                             |        | Uncertain                          | No; maxim       |
|                   | 7 (+1)                            | 7 (+1)                            | 1180        | C-5 East - G6                  | 9/30/2019   | 066    | C-4 West                     | 9/30/2019   | 300                    | 300                                                                                          |                         |                             | 1,000  | Yes; maximum > PWQO                | Yes; maximu     |
|                   | 7 (+1)                            | 7 (+1)                            | 98.9        | C-5 East - G6                  | 9/30/2019   | 88.2   | C-4 West                     | 9/30/2019   |                        | 320°                                                                                         |                         |                             |        | No; maximum < Draft CCME Guideline | No; maximun     |
| filtered)         | 7 (+1)                            | 7 (+1)                            | 76.2        | C-5 East - G6                  | 9/30/2019   | 63     | C-4 West                     | 9/30/2019   |                        | 320°                                                                                         |                         |                             |        | No; maximum < Draft CCME Guideline | No; maximun     |
|                   | 7 (+1)                            | 7 (+1)                            | 87,900      | G-4 Comp                       | 9/30/2019   | 84,200 | C-3 West                     | 9/30/2019   |                        |                                                                                              | 180,000                 |                             |        | Uncertain                          | No; maxim       |
| (pe               | 7 (+1)                            | 7 (+1)                            | 93,400      | G-4 Comp                       | 9/30/2019   | 89,800 | C-3 West                     | 9/30/2019   |                        |                                                                                              | 180,000                 |                             |        | Uncertain                          | No; maxim       |
|                   | 7 (+1)                            | 7 (+1)                            | 11.2        | C-5 East - G6                  | 9/30/2019   | 9.2    | C-4 West                     | 9/30/2019   |                        |                                                                                              |                         | 1,000                       |        | Uncertain                          | No; maximun     |
| (pe.              | 7 (+1)                            | 6 (+1)                            | 0.3         | C-1 West                       | 9/30/2019   | 0.2    | C-3 Centre - G5              | 9/30/2019   |                        |                                                                                              |                         | 1,000                       |        | Uncertain                          | No; maximur     |
|                   | 7 (+1)                            | 7 (+1)                            | 22          | C-1 West<br>(Field Duplicate)  | 9/30/2019   | 21     | C-3 West                     | 9/30/2019   | 20                     | 7                                                                                            | 68                      |                             |        | Yes; maximum > PWQO                | No; maxim       |
| g/L)<br>yen total | 7 (+1)                            | 7 (+1)                            | 1.5         | C-5 East - G6                  | 9/30/2019   | 1.4    | C-4 West                     | 9/30/2019   |                        |                                                                                              |                         |                             |        | Uncertain                          | Once            |
|                   | 7 (+1)                            | 7 (+1)                            | 2.07        | G-4 Comp                       | 9/30/2019   | 1.95   | C-1 West                     | 9/30/2019   |                        | 13 <sup>b</sup>                                                                              |                         |                             |        | No; maximum < interim guideline    |                 |
|                   | 7 (+1)                            | 7 (+1)                            | 0.28        | G-4 Comp                       | 9/30/2019   | 0.22   | C-1 West                     | 9/30/2019   |                        | 90:0                                                                                         |                         |                             |        | Yes; maximum > CCME                | Yes; maxim      |
| trite (as N)      | 7 (+1)                            | 7 (+1)                            | 2.35        | G-4 Comp                       | 9/30/2019   | 2.17   | C-1 West                     | 9/30/2019   |                        |                                                                                              |                         | 400                         |        | Uncertain                          | No; maximun     |
| ste (PO4-P)       | 7 (+1)                            | 7 (+1)                            | 0.44        | C-1 West                       | 9/30/2019   | 0.44   | G-1 Comp                     | 9/30/2019   |                        |                                                                                              |                         |                             |        | Uncertain                          | No; assessed as |
| otal              | 7 (+1)                            | 7 (+1)                            | 0.45        | C-1 West<br>(Field Duplicate)  | 9/30/2019   | 0.428  | G-1 Comp                     | 9/30/2019   | 0.01                   |                                                                                              |                         |                             |        | Yes; maximum > PWQO                | Yes; maxim      |

| TABLE 2. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR AQUATIC LIFE - SURFACE WATER | SURFACE WATER CHARACTERIZATION ECOLOGICAL HEALTH SCREENING | Maximum Concentration Second Highest Concentration Screening Benchmarks | (*Dup) Conc. Sample Date Conc. Sample Date PWOO COME FWAL (tong term) APV's BC AVF BC WQG PROPC? Final COPC? Final COPC? | (+1) 0.42 G-1 Comp 8/30/2019 0.41 (Field-Diplicate) 8/30/2019 0.41 (Field-Diplicate) 7/45; maximum > PWQO | (+1) 3.71 C-5 East-06 87302019 3.82 C-3/West 87302019 Uhoentain Uncertain | (+1) 2.8 C.3 West 8'502019 2.79 G-4.Comp 8'5020219 | (+1) 4,100 C-1 West 9/30/2019 2800 G-1 Comp 9/30/2019 Uhrenfah Uncortain |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
| TABLE 2. CONTAMINAR                                                                          | CHARACTERIZATION                                           |                                                                         | Sample Date Conc. Sample ID                                                                                              | 9/30/2019 0.41 C-1 West (Field Duplicate)                                                                 | 9/30/2019 3.62 C-3 West                                                   | 9/30/2019 2.79 G-4 Comp                            | 9/30/2019 2800 G-1 Comp                                                  |
|                                                                                              | SURFACE WATER C                                            |                                                                         | No. of Samples No. of Detectable Analyzed (+Dup) Conc. (+Dup) Conc.                                                      | 7 (+1) 7 (+1) 0.42                                                                                        | 7 (+1) 7 (+1) 3.71                                                        | 7 (+1) 7 (+1) 2.8                                  | 7 (+1) 7 (+1) 4,100                                                      |
|                                                                                              |                                                            |                                                                         | Contaminant An                                                                                                           | phosphorus (Filtered)                                                                                     | Silicon                                                                   | Silicon (filtered)                                 | E.coli                                                                   |

SLR Project No.: 209.40666 January 2020

|                            |                                   |                                   |                           |                               | TABLE 3.    | CONTAMI | NANTS OF POTE                | NTIAL CONC  | SERN (COPC) S         | TABLE 3. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR WILDLIFE - SURFACE WATER | LIFE - SURFACE WA             | TER                  |                                        |                                                          |                                               |
|----------------------------|-----------------------------------|-----------------------------------|---------------------------|-------------------------------|-------------|---------|------------------------------|-------------|-----------------------|------------------------------------------------------------------------------------------|-------------------------------|----------------------|----------------------------------------|----------------------------------------------------------|-----------------------------------------------|
|                            |                                   | SEDI                              | SEDIMENT CHARACTERIZATION | STERIZATION                   |             |         |                              |             |                       |                                                                                          |                               |                      |                                        |                                                          |                                               |
|                            |                                   |                                   | Ma                        | Maximum Concentration         | u           | Seco    | Second Highest Concentration | ration      |                       |                                                                                          | Screening Benchmark           |                      |                                        |                                                          |                                               |
| Contaminant                | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | нв/г                      | Sample ID                     | Sample Date | hg/L    | Sample ID                    | Sample Date | Red Hill Max<br>Value | CCME WQG Agricultural<br>(Livestock)                                                     | BC WQG Wildlife<br>(Approved) | BC CSR LW (Approved) | BC CSR LW or WQG<br>Wildlife (Working) | O.Reg 153/04 Standard -<br>Potable Water (GW1<br>values) | COPC?                                         |
| Metals (µg/L)              |                                   |                                   |                           |                               |             |         |                              |             |                       |                                                                                          |                               |                      |                                        |                                                          |                                               |
| Aluminum                   | 7 (+1)                            | 7 (+1)                            | 598                       | C-5 East - G6                 | 9/30/2019   | 489     | C-4 West                     | 9/30/2019   | 24                    | 2000                                                                                     | 2000                          | 2000                 |                                        |                                                          | No; maximum < CCME WQG                        |
| Barium                     | 7 (+1)                            | 7 (+1)                            | 49.5                      | C-5 East - G6                 | 9/30/2019   | 49.2    | C-4 West                     | 9/30/2019   | 62.6                  |                                                                                          |                               |                      |                                        | 1000                                                     | No; maximum < MECP GW1                        |
| Barium (filtered)          | 7 (+1)                            | 7 (+1)                            | 48.6                      | C-4 West                      | 9/30/2019   | 47.2    | C-5 East - G6                | 9/30/2019   | 62.4                  |                                                                                          |                               |                      | -                                      | 1000                                                     | No; maximum < MECP GW1                        |
| Boron (total)              | 7 (+1)                            | 7 (+1)                            | 206                       | C-4 West                      | 9/30/2019   | 197     | C-3 Centre - G5              | 9/30/2019   | 131                   | 9009                                                                                     | 2000                          | 2000                 |                                        | 2000                                                     | No; maximum < CCME WQG                        |
| Boron (filtered)           | 7 (+1)                            | 7 (+1)                            | 211                       | C-3 Centre - G5               | 9/30/2019   | 500     | C-4 West                     | 9/30/2019   | 141                   | 9009                                                                                     | 9000                          | 2000                 |                                        | 9009                                                     | No; maximum < CCME WQG                        |
| Chromium (III+VI) total    | 7 (+1)                            | 7 (+1)                            | 1                         | C-5 East - G6                 | 9/30/2019   | 0.8     | C-4 West                     | 9/30/2019   | <0.1                  |                                                                                          | -                             |                      | 50                                     | 90                                                       | No; maximum < BC LW/Wildlife                  |
| Chromium (III+VI) Filtered | 7 (+1)                            | 2 (+0)                            | 0.1                       | C-3 West                      | 9/30/2019   | 0.1     | G-1 Comp                     | 9/30/2019   | <0.1                  |                                                                                          |                               |                      | 50                                     | 90                                                       | No; maximum < BC LW/Wildlife                  |
| Iron (total)               | 7 (+1)                            | 7 (+1)                            | 1180                      | C-5 East - G6                 | 9/30/2019   | 066     | C-4 West                     | 9/30/2019   | 140                   |                                                                                          |                               |                      |                                        |                                                          | Uncertain                                     |
| Manganese                  | 7 (+1)                            | 7 (+1)                            | 98.9                      | C-5 East - G6                 | 9/30/2019   | 88.2    | C-4 West                     | 9/30/2019   | 136                   |                                                                                          |                               |                      |                                        |                                                          | Uncertain                                     |
| Manganese (filtered)       | 7 (+1)                            | 7 (+1)                            | 76.2                      | C-5 East - G6                 | 9/30/2019   | 63      | C-4 West                     | 9/30/2019   | 106                   |                                                                                          |                               |                      | -                                      | -                                                        | Uncertain                                     |
| Sodium                     | 7 (+1)                            | 7 (+1)                            | 87,900                    | G-4 Comp                      | 9/30/2019   | 84,200  | C-3 West                     | 9/30/2019   | 121000                |                                                                                          |                               |                      | -                                      | 200,000                                                  | No; maximum < MECP GW1                        |
| Sodium (filtered)          | 7 (+1)                            | 7 (+1)                            | 93,400                    | G-4 Comp                      | 9/30/2019   | 89,800  | C-3 West                     | 9/30/2019   | 124000                |                                                                                          |                               |                      |                                        | 200,000                                                  | No; maximum < MECP GW1                        |
| ttanium                    | 7 (+1)                            | 7 (+1)                            | 11.2                      | C-5 East - G6                 | 9/30/2019   | 9.2     | C-4 West                     | 9/30/2019   | -                     |                                                                                          |                               |                      | 100                                    |                                                          | No; maximum < BC LW/Wildlife                  |
| ttanium (filtered)         | 7 (+1)                            | 6 (+1)                            | 0.3                       | C-1 West                      | 9/30/2019   | 0.2     | C-3 Centre - G5              | 9/30/2019   | 0.1                   |                                                                                          |                               |                      | 100                                    |                                                          | No; maximum < BC LW/Wildlife                  |
| Zinc                       | 7 (+1)                            | 7 (+1)                            | 22                        | C-1 West<br>(Field Duplicate) | 9/30/2019   | 21      | C-3 West                     | 9/30/2019   | 5                     |                                                                                          |                               | 2000                 |                                        | 2000                                                     | No; maximum < BC LW                           |
| Nutrients (mg/L)           |                                   |                                   |                           |                               |             |         |                              |             |                       |                                                                                          |                               |                      |                                        | -                                                        |                                               |
| kjeldahl nitrogen total    | 7 (+1)                            | 7 (+1)                            | 1.5                       | C-5 East - G6                 | 9/30/2019   | 4.1     | C-4 West                     | 9/30/2019   | 0.3                   |                                                                                          |                               | ,                    |                                        |                                                          | Uncertain                                     |
| nitrate (as N)             | 7 (+1)                            | 7 (+1)                            | 2.07                      | G-4 Comp                      | 9/30/2019   | 1.95    | C-1 West                     | 9/30/2019   | 0.33                  |                                                                                          |                               |                      |                                        |                                                          | No; maximum of nitrate+nitrite <<br>CCME W.QG |
| nitrite (as N)             | 7 (+1)                            | 7 (+1)                            | 0.28                      | G-4 Comp                      | 9/30/2019   | 0.22    | C-1 West                     | 9/30/2019   | <0.05                 | 10                                                                                       | 10                            | 10                   |                                        |                                                          | No; maximum < CCME WQG                        |
|                            |                                   |                                   |                           |                               |             |         |                              |             |                       |                                                                                          |                               |                      |                                        |                                                          |                                               |

Page 1 of 2

City of Hamilton Ecological Risk Assessment – Chedoke Creek

TABLE 3. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING FOR WILDLIFE - SURFACE WATER

|                            |                                   | SEDI                              | MENT CHARA | SEDIMENT CHARACTERIZATION     |             |        |                               |             |                       |                                      |                               |                      |                                        |                                                          |                        |
|----------------------------|-----------------------------------|-----------------------------------|------------|-------------------------------|-------------|--------|-------------------------------|-------------|-----------------------|--------------------------------------|-------------------------------|----------------------|----------------------------------------|----------------------------------------------------------|------------------------|
|                            |                                   |                                   | W          | Maximum Concentration         | u           | puoses | ond Highest Concentration     | tration     |                       |                                      | Screening Benchmark           |                      |                                        |                                                          |                        |
| Contaminant                | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | Hg/L       | Sample ID                     | Sample Date | н9/L   | Sample ID                     | Sample Date | Red Hill Max<br>Value | CCME WQG Agricultural<br>(Livestock) | BC WQG Wildlife<br>(Approved) | BC CSR LW (Approved) | BC CSR LW or WQG<br>Wildlife (Working) | O.Reg 153/04 Standard -<br>Potable Water (GW1<br>values) | COPC?                  |
| nitrate and nitrite (as N) | 7 (+1)                            | 7 (+1)                            | 2.35       | G-4 Comp                      | 9/30/2019   | 2.17   | C-1 West                      | 9/30/2019   | 0.33                  | 100                                  | 100                           | 100                  |                                        |                                                          | No; maximum < CCME WQG |
| orthophosphate (PO4-P)     | 7 (+1)                            | 7 (+1)                            | 0.44       | C-1 West                      | 9/30/2019   | 0.44   | G-1 Comp                      | 9/30/2019   | <0.05                 |                                      |                               |                      |                                        |                                                          | Uncertain              |
| phosphorus                 | 7 (+1)                            | 7 (+1)                            | 0.45       | C-1 West<br>(Field Duplicate) | 9/30/2019   | 0.428  | G-1 Comp                      | 9/30/2019   | <0.01                 |                                      |                               |                      |                                        |                                                          | Uncertain              |
| phosphorus (Filtered)      | 7 (+1)                            | 7 (+1)                            | 0.42       | G-1 Comp                      | 9/30/2019   | 0.41   | C-1 West<br>(Field Duplicate) | 9/30/2019   | <0.01                 |                                      |                               |                      |                                        |                                                          | Uncertain              |
| Silicon                    | 7 (+1)                            | 7 (+1)                            | 3.71       | C-5 East - G6                 | 9/30/2019   | 3.62   | C-3 West                      | 9/30/2019   | 3.97                  |                                      |                               |                      |                                        |                                                          | Uncertain              |
| Silicon (filtered)         | 7 (+1)                            | 7 (+1)                            | 2.8        | C-3 West                      | 9/30/2019   | 2.79   | G-4 Comp                      | 9/30/2019   | 4.41                  |                                      |                               |                      |                                        |                                                          | Uncertain              |
| E.coli                     | 7 (+1)                            | 7 (+1)                            | 4,100      | C-1 West                      | 9/30/2019   | 2800   | G-1 Comp                      | 9/30/2019   | 10                    |                                      |                               |                      |                                        |                                                          | Uncertain              |

Note:

My continue of the cont

Endernooms:
ONE WOOD Charles Provincial Water Quality Objectives. July 1994
CORE WOOD Frankwater Aquatic Life (ontry learn)
CORE WOOD Frankwater Aquatic Life (ontry learn)
MOE 2011. Radionate for the Development of the Sal and Groundwater Standards for the all Contaminated Sites in Omation. Ministry of the Environment Standards Development Branch. April 15, 2011.

1.126

0.104

390

0.58

0.27

1.18

0.197

City of Hamilton Ecological Risk Assessment – Chedoke Creek

2000 pyd 🖁

4800

450 onis 👸

40000 91.3 1100 0.486

111 149

33 4.98

TRV (PEC, PEL or SEL)
Monitoring\_Zone Loc

Fg/silver

mercury

peal %

copper

wanganese

187

0.083

0.057

566

kjeldahl nitrogen total

690 0.3 715 0.4 0.3 628 628

837 0.4 0.4 0.5 0.5 0.5 0.5

0.387

0.104

0.263

623

0.42

0.607

0.255

588

0.6 0.8 0.8 660 642 0.3

| 1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487   1487      | 14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.00   14.0   | TABLE 4: SEDIMENT EPCS AND | ID HQS – NO SAR | nodse Organic Carbon                                  | всеизругрујеле                                            | асепарһітьепе                             | anthracene       |          | ənəlүrəq(i,,1,3)oznəd |          | penzo(a)pyrene<br>chrysene |          |              |          |           |          | ənəlerithqen | phenanthrene | bλιene   | (lstot to mus) sHAq | Д-НАЧ пвэМ |        | muimbez |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|------------------|----------|-----------------------|----------|----------------------------|----------|--------------|----------|-----------|----------|--------------|--------------|----------|---------------------|------------|--------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                 | в/вн                                                  | g/gri                                                     | B/BH                                      | g/gH             | B/8H     | +                     | m g/gm   | +                          | +        | +            | D0       | .g<br>/gr | 8/8H     | g/gr         | mg/g         | 8/8n     | 8/8 <sup>™</sup>    |            | 1 B/8H | mg/g    |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                 |                                                       | Н                                                         | 0.0889                                    | 0.845            | Н        | Н                     | Н        | Н                          | Н        |              | -        | Н         | Н        | Н            | Н            | Н        | 22.8                |            | н      | 4.98    |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te_Time                    | •               |                                                       |                                                           |                                           |                  | ŀ        | ŀ                     | ŀ        | H                          | ŀ        | H            | ŀ        | ŀ         | ŀ        | ŀ            |              |          |                     |            | l l    | П       |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concen                     | trations        |                                                       | <0.1                                                      | 0.83                                      | 66:0             | $\dashv$ | $\dashv$              | 4        | $\dashv$                   | 4        | Ⅎ            | $\dashv$ | $\dashv$  | -        | $\dashv$     | 9.53         | 6.75     | 42.23               |            | _      | 0.37    |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. No.   No. No.   No. No.   No. No.   No. No.   No. No.   No. No. No.   No. No. No.   No. No. No.   No. No. No. No.   No. No. No. No. No. No.   No. No. No. No. No. No. No. No. No. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HQs                        |                 |                                                       |                                                           | 9.3                                       | 1.2              | H        | +                     | 4        | +                          | -        | +            | -        |           | -        | -            | +            | 4.4      | 1.9                 | 3.8        | _      | 17      |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concen                     | trations        | 26,000                                                | 0.011                                                     | 0.049                                     | 0.13             | $\dashv$ | $\dashv$              | 4        | $\dashv$                   | $\dashv$ | $\dashv$     | $\dashv$ | $\dashv$  | $\dashv$ | $\dashv$     | $\dashv$     | $\dashv$ | 6.7                 |            | _      | 1.32    |
| 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HÖs                        |                 | 1                                                     | 0.1                                                       | 9.0                                       | 0.2              | +        | +                     | +        | +                          | +        | +            | +        | +         | +        | 0.0          | 0.7          | +        | 0.3                 | 0.5        | 4      | 0.3     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Concent                    | rations         | 1                                                     | <0.1                                                      | 1.49                                      | 4.69             | +        | +                     | +        | +                          | +        | +            | 4        | +         | +        | <0.1         | 16.5         | +        | 98.69               |            | 4      | 0.41    |
| 1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.     1.       1.       1.       1.       1.                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUS                        |                 | Ť                                                     |                                                           | 16.8                                      | 9.6              | ٠        | +                     | H        | H                          | H        | ٠            | +        | ٠         | +        | +            | 14.1         | ٠        | 5.4                 | /:/        | 4      | 3 3     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concent                    | rations         | 1                                                     | T.0>                                                      | Z.U.2                                     | 77.0             | +        | +                     | +        | +                          | +        | †            | +        | 1         | +        | +            | 0.73         | +        | 2.11                |            | 4      | 7 5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUS                        | 0000            | T                                                     | 5                                                         | 200                                       | 1.0              | +        | +                     | +        | +                          | +        | +            | +        | +         | Ś        |              | 9.0          | 90 8     | 2.0                 | 7.0        | 4      | 1 2     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | College S                  | adiolis         | 1                                                     | 1.07                                                      | 0.20                                      | 2 2              | ٠        | +                     | ٠        | +                          | +        | t            | +        | +         | 107      | 0.22         | 3.03         | 1,00     | 101                 | 1          |        | 5 5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HUS                        |                 | 1                                                     |                                                           | 6.7                                       | 6.0              | ٠        | +                     | ٠        | +                          | H        | t            | ł        | +         | +        | 4.0          | 3.1          | H        | D.1.0               | 1          | _      | 3 3     |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,000   0.013   0.03   0.03   0.03   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04   0.04    | Concer                     | trations        | 1                                                     | V0.1                                                      | V0.1                                      | - CO.I           | +        | +                     | +        | +                          | +        | †            | +        | 1         | +        | - O.I.       | 0.25         | +        | 76.7                | 1          | _      | 0.56    |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HUS                        |                 | 200                                                   |                                                           | 50                                        | 90               | +        | +                     | +        | +                          | +        | +            | +        | $^{+}$    | +        | +            | +            | +        | 1.0                 | T.O        | _      | 100     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concer                     | trations        | 31,000                                                | 0.013                                                     | 0.03                                      | 90.08            | +        | +                     | +        | +                          | +        | +            | +        | $^{+}$    | +        | +            | +            | +        | 5.3                 |            | _      | 523     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.    | HUS                        |                 | Ť                                                     | 100                                                       | 0.3                                       | 1.0              | +        | +                     | +        | +                          | +        | +            | +        | †         | +        | 0.0          | 0.5          | +        | 7.0                 | 4:0        | _      | 3 3     |
| 10,000   0.012   0.038   0.12   0.248   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.24   0.   | 20,000   0,012   0,038   0,12   0,249   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,24   0,   | Concer                     | trations        | 1                                                     | T.02                                                      | T.02                                      | T.05             | +        | +                     | +        | +                          | +        | +            | +        | 1         | +        | T.O.         | 0.45         | +        | 4.4                 |            | _      | 2 2     |
| Colore   C   | 20,000   10,12   10,124   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10,14   10   | S S                        |                 | 000                                                   | .,,                                                       | 000                                       |                  | +        | +                     | +        | +                          | +        | †            | +        | +         | +        | +            | +            | +        | 0.2                 | 7.0        | -      | 3 3     |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 5                        |                 | 20,000                                                | 0.012                                                     | 0.038                                     | 0.12             | +        | +                     | +        | +                          | +        | $^{\dagger}$ | +        | +         | +        | +            | +            | +        | 7.0                 |            | _      | 2 2     |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3-000   0.016   0.21   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10   0.10    | S S                        |                 | Ť                                                     | 100                                                       | 4.0                                       | 1.0              | +        | +                     | +        | +                          | +        | $^{+}$       | +        | +         | +        | 0.0          | 0.0          | +        | 0.3                 | 4:0        |        | 3 5     |
| 95,000   0.016   0.027   0.43   0.14   0.14   0.15   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.14   0.1   | 39,000   0.016   0.015   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.02   0.0   | 2 5                        |                 |                                                       | 1.02                                                      | 7.02                                      | 9T-0             | +        | +                     | +        | +                          | +        | +            | +        | †         | +        | T.00×        | \$ o         | +        | 8.18                |            |        | 5       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EP C                       |                 | 39 000                                                | 0.016                                                     | 0 27                                      | 0.43             | +        | +                     | +        | ╁                          | ╀        | +            | +        | $^{+}$    | +        | +            | 2.5          | +        | 7                   | 5          | _      | 3 1 1   |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ğ                          |                 | 200,000                                               | 0.010                                                     | 3.0                                       | 2 2              | +        | +                     | +        | ۳                          | +        | ٠            | ٠        | $^{+}$    | +        | +            | 2.1          | +        | 90                  | 13         | _      | 3       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPC                        |                 |                                                       | 0.1                                                       | <0.1                                      | 0.12             | ╀        | ₩                     | +        | Н                          | Н        | Н            | H        | $^{+}$    | ╫        | ╀            | 1.13         | Н        | 10.96               | 2          | _      | 180     |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | НĢ                         |                 |                                                       | T                                                         | T                                         | 0.1              | ⊬        | ⊬                     | $\vdash$ | ⊬                          | ⊬        | Н            | L        | H         | ⊬        | ⊬            | 1.0          | Н        | 0.5                 | 9.0        | _      | 0.2     |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    | EPC                        |                 |                                                       | <0.1                                                      | 0.27                                      | 0.28             | H        | Н                     | ⊬        | H                          | H        | H            | H        | H         | H        | H            | 3.23         | Н        | 15.97               |            | _      | 0.39    |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.0         6.01         6.01         6.03         6.02         6.01         6.01         6.01         6.02         6.02         6.03         6.02         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03         6.03 <th< td=""><td>HQs</td><td></td><td></td><td></td><td>3.0</td><td>0.3</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>2.8</td><td>Н</td><td>0.7</td><td>1.3</td><td>-</td><td>0.1</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HQs                        |                 |                                                       |                                                           | 3.0                                       | 0.3              | Н        | Н                     | Н        | Н                          | Н        | Н            | Н        | Н         | Н        | Н            | 2.8          | Н        | 0.7                 | 1.3        | -      | 0.1     |
| 47,000   0.021   0.045   0.04   0.04   0.04   0.05   0.04   0.05   0.04   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.0   | 47,000 0221 0.045 0.1 0.045 0.1 0.74 0.04 0.0 0.3 0.3 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EPC                        |                 |                                                       | <0.1                                                      | <0.1                                      | <0.1             | Н        | Н                     | Н        | Н                          | Н        | Н            | Н        |           | Н        | Н            | 0.39         | Н        | 4.85                |            | -      | 0.76    |
| 47,000   0021   0045   0045   0041   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   074   | 47,000 0021 0045 01 0045 01 077 074 074 075 01 01 01 01 01 01 01 01 02 002 002 01 01 01 01 01 01 01 01 01 01 01 01 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HQs                        |                 |                                                       |                                                           |                                           |                  | $\dashv$ | $\dashv$              | $\dashv$ | $\dashv$                   | $\dashv$ | $\dashv$     | $\dashv$ | $\dashv$  | $\dashv$ | $\dashv$     | 0.3          |          | 0.2                 | 0.2        | _      | 0.2     |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPC                        |                 | 47,000                                                | 0.021                                                     | 0.045                                     | 0.1              | $\dashv$ | -                     | $\dashv$ | $\dashv$                   | 4        | $\dashv$     | $\dashv$ | $\dashv$  | $\dashv$ | $\dashv$     | 0.83         | $\dashv$ | 7.8                 |            | _      | 19.     |
| 1.   0.11   0.25   0.69   1.69   0.77   0.71   0.12   0.12   0.12   0.12   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.   | -         0.11         0.25         0.65         1.65         0.7         0.7         1.5         0.4         3.5         3.8         2.048         1.5         0.5         0.1         0.7         0.1         0.2         0.2         0.2         1.6         0.1         0.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HÕs                        |                 |                                                       | 0.2                                                       | 0.5                                       | 0.1              | +        | +                     | +        | +                          | 4        | ł            | +        | +         | +        | +            | 0.7          | 4        | 0.3                 | 9.0        | _      | 0.2     |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EPC                        |                 |                                                       | 0.11                                                      | 0.25                                      | 69:0             | +        | +                     | +        | ÷                          | 4        | +            | +        | +         | +        | +            | 3.32         | +        | 20.48               |            | _      | 6.1     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HQS                        |                 | T                                                     | 6.0                                                       | 8.2                                       | 8.0              | ٠        | +                     | +        | ٠                          | H        | Н            | ÷        | $^{+}$    | +        | +            | 2.7          | Н        | 6.0                 | 7.7        |        | 1 2     |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Š                          |                 | Ť                                                     | 1.07                                                      | 10,                                       | 200              | +        | +                     | +        | +                          | +        | t            | +        | $^{+}$    | +        | 107          | 1            | ٠        | 0.01                | 20         |        | 3 2     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPC                        |                 |                                                       | <0.1                                                      | <0.1                                      | <0.1             | ╁        | ⊬                     | ╀        | ╁                          | 99       | 1.4          | F        | t.        | <0.1     | <0.1         | 9.0          | Н        | 6.19                |            | _      | 0.74    |
| 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0    | HQs                        |                 |                                                       |                                                           | l                                         |                  | ⊬        | Н                     | ⊢        | H                          | 2        | o.           | 9        | 0:0       | L        |              | 0.5          | ⊬        | 0.3                 | 0.2        | _      | 0.1     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPC                        |                 |                                                       | <0.1                                                      | <0.1                                      | <0.1             | Н        | Н                     | Н        | Н                          | .0> 85   | 1.4          | .0>      | 1 0.27    | Н        | <0.1         | 0.72         | Н        | 6.46                |            | ш      | 3.1     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HQs                        |                 |                                                       |                                                           |                                           |                  | $\dashv$ | $\dashv$              | $\dashv$ | $\dashv$                   | 2        | o.           | 9        | 0.0       |          |              | 9.0          | $\dashv$ | 0.3                 | 0.3        |        | 9.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPC                        |                 |                                                       | <0.1                                                      | <0.1                                      | <0.1             | +        | +                     | +        | +                          | +        | +            | 4        | +         | +        | <0.1         | 0.58         | +        | 5.29                |            |        | 98.0    |
| 1.0   0.18   0.12   1.9   0.28   1.99   0.28   0.25   1.25   1.6   0.25   0.29   0.1   0.58   0.1   0.15   0.25   2.9   1.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2    | - 6 018 <-0.1   0.18 <-0.1   0.28   1.99   0.98   0.12   1.55   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1.5   1. | HQs                        |                 |                                                       | 1                                                         | 1                                         | 1                | $\dashv$ | $\dashv$              | $\dashv$ | $\dashv$                   | +        | $\dashv$     | -        | $\dashv$  | 4        |              | 0.5          | $\dashv$ | 0.2                 | 0.2        | _      | 0.2     |
| 39,000   0.02   0.084   0.12   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.14   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   | 39,000   0.02   0.034   0.12   0.14   0.15   0.14   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   | EPC                        |                 | 1                                                     | 0.18                                                      | <0.1                                      | 0.28             | +        | +                     | +        | +                          | 4        | +            | +        | +         | +        | 0.15         | 0.93         | +        | 15.95               |            | _      | 8.5     |
| 39,000   0.02   0.084   0.12   0.61   0.63   0.12   0.61   0.63   0.12   0.61   0.13   0.2   0.087   0.084   0.025   0.089   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0.15   0   | 39,000   0.02   0.084   0.12   0.61   0.63   0.63   0.75   0.087   0.087   0.042   0.089   1.5   7.3   0.4   4.29   0.087   0.0423   0.341   0.867   1.83   1.26   0.71   1.712   2.155   0.242   0.884   0.395   0.0877   0.191   4.395   4.397   2.641   0.55   0.24   0.887   0.191   4.395   4.397   2.641   0.5   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2   0.2     | HQs                        |                 |                                                       | 1.4                                                       | 1                                         | 0.3              | H        | +                     | 4        | +                          | +        |              | 4        | +         | +        | +            | +            | 7        | 0.7                 | 1.0        | _      | 1:7     |
| 0.22   0.99   0.1   0.18   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0.18   0   | 0.22   0.99   0.1   0.18   0.18   0.1   0.18   0.1   0.18   0.1   0.18   0.1   0.19   0.1   0.19   0.1   0.11   0.18   0.19   0.1   0.19   0.1   0.11   0.18   0.19   0.19   0.19   0.10   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.19   0.   | EPC                        |                 | 39,000                                                | +                                                         | 0.084                                     | 0.12             | +        | +                     | +        | +                          | +        | +            | +        | +         | +        | +            | +            | +        | 7.3                 |            | _      | 8       |
| 0.043   0.34   0.45   0.85   1.85   1.35   0.71   1.712   2.15   0.242   6.834   0.395   0.0877   0.191   4.336   4.973   2.41   5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.043   0.341   0.867   1.83   1.256   0.71   1.712   2.155   0.242   6.884   0.395   0.397   0.0877   0.191   4.335   4.973   3.441   5.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HQs                        |                 | 1                                                     | +                                                         | 6.0                                       | 17.              | +        | -                     | +        | +                          | 4        | +            | -        | 7         | -        | -            | +            | +        | 0.3                 | 9.0        | _      | 밁       |
| EPC - Expose point concentration HGS - Hazard quorients EPC by the TRV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3   3.8   1.0   1.7   0.2   0.5   1.2   1.7   1.8   3.1   0.7   0.2   0.4   0.3   3.7   3.3   1.2   2.1   0.2     EPC - Exposure point concentration   HGA - Hazard quotients   HGA - Hazard quotients     TW - Twickly, reference walke   HGA - H   | EPC                        |                 | 1                                                     | 4                                                         | 0.341                                     | 0.867            | $\dashv$ | -                     | 4        | Ⅎ                          | -        | 7            | -        | 7         | -        | -            | $\exists$    | -        | 26.41               |            | _      | 2.4     |
| EPC-Eposius point concentration HGZ - Hazard quotients TRV - Tracityr eference value HGZ are obtained by dividing the EPC by the TRV HGZ are obtained by dividing the EPC by the TRV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EPP - Ceptain doublets HD2 - Hazard quoplets TRV - Toxicity, reference value HD3 - sobrained by Warking the EPC by the TRV HD3 - sobrained by Warking the EPC by the TRV HD3 - sobrained by Warking the Character of individual PAH HD3 obtained with reliable TRV (PEC or PEL) and dividing this number by the number of individual PAHs included in the sum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HQs                        |                 | 7                                                     | 0.3                                                       | 3.8                                       | 1.0              | -        | $\dashv$              | ٧        | $\dashv$                   | -        | -            | _        | _         | -        | $\dashv$     | -            | -        | 1.2                 | 2.1        | _      | 0.5     |
| HOs > L0 indicate potential risk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HGs >1.0 indicate potential risk The mean HQ-Q for PAHs was calculated by summing the individual PAH HQs obtained with reliable TRV (PEC or PEL) and dividing this number by the number of individual PAHs included in the sum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                 | EPC - Expo<br>HQs - Haza<br>TRV - Toxic<br>HQs are ob | rd quotient<br>rd quotient<br>ity referenc<br>tained by d | concentrations<br>Servalue<br>ividing the | on<br>EPC by the | TRV      |                       |          |                            |          |              |          |           |          |              |              |          |                     |            |        |         |
| The state of the s | The mean HQ-Q, for PAHs was calculated by summing the individual PAH HQs obtained with reliable TRV (PEC or PEL) and dividing this number by the number or individual PAHs included in the sum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | - '             | HQs >1.0 ir                                           | dicate pote                                               | ential risk                               |                  |          |                       |          | -                          | 1        |              |          | -         | 1        |              |              |          |                     | -          |        |         |

Page 1 of 1

| .40666      | y 2020 |
|-------------|--------|
| t No.: 209. | Januar |
| SLR Project |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                      | Carbon |                |          |                   |          |    |          | PAHs                   |              |          |   |             |              |        |                     |          |     |        |          |       |               |        |   |                         | П                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|--------|----------------|----------|-------------------|----------|----|----------|------------------------|--------------|----------|---|-------------|--------------|--------|---------------------|----------|-----|--------|----------|-------|---------------|--------|---|-------------------------|------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maintain    | TABLE 5: SEDIMENT EPCS AND HQS – SAR | nodae Organic Carbon |        | acenaphthylene |          | penz(a)anthracene |          |    |          | anasentfine(h,s)znadib | fluoranthene |          |   | naphthalene | руеизиџуιсис | bλιene | (lstot to mus) sHA9 |          |     |        | novi     |       | метситу       | silver |   | kjeldahl nitrogen total | phosphorus total |
| Marie   Mari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marie   Mari   | 8/8n                                 | 8/8H                 |        | H              | +        | +                 | н в/вн   | -  | H        | 8/8H                   | H            | H        | H | H           | 8/81         | 8/8m   | P0                  | D0       | 8/8 | 8/81   | $\vdash$ |       | $\vdash$      | H      | H | H                       | 8/8              |
| 4.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                1.0.                 1.0.                1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                     1.0.                 1.0.                     1.0.                 1.0.                     1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                 1.0.                1.0.                 1.0.                 1.0.                  1.0.                 1.0.                 1.0.                <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                      |        | н              | Н        | 0.32              | н        | н  | Н        | 90.0                   | Н            | Н        | Н | н           | Н            | н      | П                   | _        | н   |        | П        |       | ш.            | Н      | Н | Н                       | 009              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sampled_Date_Time                    |                      |        |                |          |                   |          |    |          |                        |              |          |   |             |              |        |                     |          |     |        |          |       |               |        |   |                         |                  |
| 14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.   14.    | П                                    |                      |        | Н              | Н        | 2.96              | Н        | Н  | Н        | 0.37                   | Н            | Н        | Н | Н           | 9.53         | 6.75   | М                   | ш        | Н   | Н      |          | 16 -  | ·             | Н      | Н | Н                       | 069              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                    |                      |        | +              | +        |                   | -        | +  | +        | 6.2                    | +            | +        | - | -           | +            | 13.8   |                     | 4        | +   | $\neg$ |          | _     | $\rightarrow$ | 4      | + | 9.1                     | 1.2              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrations 26,000 (              | +                    | -      | +              | +        | ۳                 | +        | +  | +        | 0.12                   | +            | +        | + | +           | +            | 1.4    |                     |          |     | _      | 23,000   | _     | _             | +      | + | 8. O                    | 7.15             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entrations -                         | •                    | 10     | Н              | Н        | Н                 | Н        | Н  | Н        | 0.79                   | Н            | Н        | Н | H           | 16.5         | Н      | Н                   | ш        | Н   | ш      |          | ш     |               | Н      | Н | 8                       | 298              |
| 1.   1.   1.   1.   1.   1.   1.   1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                      | 1      | Н              | Н        | Н                 | H        | Н  | Н        | 13.2                   | Н            | Н        | Н | Н           | 29.5         | Н      | Н                   | Н        | Н   | H      |          | 9.0   |               | Н      | Н | Н                       | 1.0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | +                    | Y]     | +              | +        | 7                 | -        | -  | +        | <0.1                   | +            | +        | + | +           | 0.73         | 0.85   | 1                   | +        | +   |        |          | 13    | 1             | +      | + | 1                       | 628              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrations                       | 1                    | 1.     | +              | +        | т                 |          | +  | +        | 0.22                   | +            | +        | + | 0,22        | 3.63         | 4.06   |                     | +        | +   | т      | 1        | 34    | ŀ             | ٠      | 1 |                         | 837              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                      |        | H              | H        | ۰                 |          | H  | +        | 3.7                    | +            | H        | H | 1.3         | 6.5          | 8.3    | ٠                   | ╙        | ╀   | $^{+}$ | Ī        | 6'0   |               | ₽      |   |                         | 1.4              |
| 4.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0 <td></td> <td>Concentrations</td> <td></td> <td></td> <td>H</td> <td>H</td> <td>0.18</td> <td>H</td> <td>H</td> <td>H</td> <td>&lt;0.1</td> <td>H</td> <td>H</td> <td>H</td> <td>H</td> <td>0.25</td> <td>0.47</td> <td>Н</td> <td>_</td> <td>H</td> <td>H</td> <td></td> <td>20</td> <td></td> <td>H</td> <td>H</td> <td>00</td> <td>795</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrations                       |                      |        | H              | H        | 0.18              | H        | H  | H        | <0.1                   | H            | H        | H | H           | 0.25         | 0.47   | Н                   | _        | H   | H      |          | 20    |               | H      | H | 00                      | 795              |
| 0.03                0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44               0.44 <t< td=""><td>0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00&lt;</td><td></td><td>Н</td><td>  '</td><td>Н</td><td>Н</td><td>0.18</td><td>Н</td><td>Н</td><td>Н</td><td></td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>0.4</td><td>1.0</td><td></td><td>ш</td><td>Н</td><td></td><td>П</td><td>ш</td><td>-</td><td>Н</td><td>Н</td><td>Н</td><td>1.3</td></t<> | 0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Н                    | '      | Н              | Н        | 0.18              | Н        | Н  | Н        |                        | Н            | Н        | Н | Н           | 0.4          | 1.0    |                     | ш        | Н   |        | П        | ш     | -             | Н      | Н | Н                       | 1.3              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0                6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               6.0               7.0               6.0               7.0               6.0               7.0               7.0               8.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0               9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Concentrations 31,000 0              | Н                    | 0      | Н              | Н        | 0.45              | Н        | Н  | Н        | 0.11                   | Н            | Н        | Н | Н           | 9.0          | 1.1    | П                   | ш        | Н   | Н      | Н        | ш     | $\rightarrow$ | Н      | Н |                         | 993              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -1                   | 4      | +              | +        | +                 | +        | +  | +        | 1.8                    | 4            | 7        | 4 | 0.1         | 1.1          | 2.2    |                     | -        | +   | $\neg$ | 7        |       | -             | +      | + |                         | 1.7              |
| 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                  6.3                 6.3                 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                 6.3                  6.3                 6.3                 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concentrations                       |                      | 8      | +              | +        | $^{\dagger}$      | 1        | +  | ٠        | <0.1                   | 4            | +        | + | V0.1        | 0.45         | 0.76   | ٠                   | -        | +   | т      | 1        | - 22  | 1             | ٠      | + | +                       | 737              |
| 6.3         6.3         6.3         6.3         6.3         6.3         6.4         6.4         6.5         6.3         6.4         6.4         6.6         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3 <td>6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3<td>entrations 20.000</td><td>+</td><td> ĕ</td><td>+</td><td>+</td><td>0.54</td><td>٠</td><td>+</td><td>٠</td><td>0.1</td><td>٠</td><td>+</td><td>+</td><td>+</td><td>+</td><td>1.2</td><td>Ė</td><td>-</td><td>+</td><td>7</td><td><math>^{+}</math></td><td></td><td>+</td><td>٠</td><td>H</td><td>H</td><td>871</td></td>                                                                                                                                                                                                                                                                                                      | 6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3         6.3 <td>entrations 20.000</td> <td>+</td> <td> ĕ</td> <td>+</td> <td>+</td> <td>0.54</td> <td>٠</td> <td>+</td> <td>٠</td> <td>0.1</td> <td>٠</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>1.2</td> <td>Ė</td> <td>-</td> <td>+</td> <td>7</td> <td><math>^{+}</math></td> <td></td> <td>+</td> <td>٠</td> <td>H</td> <td>H</td> <td>871</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | entrations 20.000                    | +                    | ĕ      | +              | +        | 0.54              | ٠        | +  | ٠        | 0.1                    | ٠            | +        | + | +           | +            | 1.2    | Ė                   | -        | +   | 7      | $^{+}$   |       | +             | ٠      | H | H                       | 871              |
| 4.0                 0.0                 0.0                 0.0                 0.0                 0.0                0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                  0.0                 0.0                 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0                 0.0                 0.0                 0.0                 0.0                 0.0                0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                 0.0                  0.0                 0.0                 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | ۰                    | -      | H              | H        | 0.18              | ٠        | H  | H        | 1.7                    | ٠            | Н        | - | +           | -            | 2.4    |                     | +        | ╀   | -      | $^{+}$   |       | ┺             | H      | H | H                       | 1.5              |
| 4.2         1.3         2.3         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4         2.4 <td>40.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.<td></td><td></td><td>ľ</td><td>Н</td><td>Н</td><td>89:0</td><td>Н</td><td>Н</td><td>Н</td><td>&lt;0.1</td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td>0.94</td><td>1.48</td><td>г</td><td>ш</td><td>Н</td><td>П</td><td>П</td><td>ш</td><td>Ш</td><td>Н</td><td>Н</td><td>L</td><td>756</td></td>                                                                                                                                                                                                                                                                                                                                | 40.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60.         60. <td></td> <td></td> <td>ľ</td> <td>Н</td> <td>Н</td> <td>89:0</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>&lt;0.1</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td>0.94</td> <td>1.48</td> <td>г</td> <td>ш</td> <td>Н</td> <td>П</td> <td>П</td> <td>ш</td> <td>Ш</td> <td>Н</td> <td>Н</td> <td>L</td> <td>756</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                      | ľ      | Н              | Н        | 89:0              | Н        | Н  | Н        | <0.1                   | Н            | Н        | Н | Н           | 0.94         | 1.48   | г                   | ш        | Н   | П      | П        | ш     | Ш             | Н      | Н | L                       | 756              |
| 6.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0 <td>6.0.7             6.0.8             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9</td> <td></td> <td>Н</td> <td>   </td> <td>Н</td> <td>Н</td> <td>0.18</td> <td></td> <td>Н</td> <td>Н</td> <td></td> <td>Н</td> <td>Н</td> <td></td> <td>Н</td> <td>1.7</td> <td>3.0</td> <td></td> <td>ш</td> <td>Н</td> <td><math>\neg</math></td> <td>П</td> <td>ш</td> <td><math>\vdash</math></td> <td>Н</td> <td>Н</td> <td></td> <td></td>                                                                                          | 6.0.7             6.0.8             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9             6.0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | Н                    |        | Н              | Н        | 0.18              |          | Н  | Н        |                        | Н            | Н        |   | Н           | 1.7          | 3.0    |                     | ш        | Н   | $\neg$ | П        | ш     | $\vdash$      | Н      | Н |                         |                  |
| 4.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50   2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | antrations 39,000                    | -                    | 0      | -              | +        | 177               | +        | -  | +        | 0.16                   | +            | -        | + | +           | 2.5          | 2.3    |                     | -        | +   | -1     | 7        | _     | -             | +      | + | 4                       | 170              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contestions                          |                      | Ι,     | Н              | H        | 07.0              | Н        | Н  | Н        | 0.13                   | L            | Н        | Н | H           | 1 12         | 2 00   |                     | _        | +   | Т      | 0:0      |       |               | H      | ٠ | Ļ                       | 623              |
| 6.27         6.28         1.1         6.44         6.64         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24         6.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62.7         62.8         1.1         6.44         6.64         6.44         6.12         3.7         6.45         6.12         6.7         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.25         6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HQs                                  |                      |        | +              | +        | 2.5               | +        | H  | H        | 2.2                    | 3.4          | t        | ╄ | 100         | 2.0          | 4.3    | 1                   | _        | +   | т      |          | 2.4   |               | +      | H | -                       | 2.7              |
| 450         13         34         26         28         34         20         44         13         58         45         40         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 450         13         34         26         28         39         20         449         14         23         50         14         23         50         14         23         50         14         23         50         14         6         21         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentrations                       |                      |        | H              | H        | 11                | Н        | Н  | Н        | 0.12                   | Н            | Н        | H | 0.24        | 3.23         | 2.75   |                     | -        | ╀   | Т      |          | - 28  | ŀ             | ╀      | Н | Ľ                       | 099              |
| 0.045         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1         0.1 </td <td>04.1         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2</td> <td></td> <td>П</td> <td></td> <td>Н</td> <td>H</td> <td>3.4</td> <td></td> <td></td> <td></td> <td>2.0</td> <td></td> <td></td> <td></td> <td>Н</td> <td>2.8</td> <td>5.6</td> <td></td> <td><math>\vdash</math></td> <td>H</td> <td>П</td> <td></td> <td>8.0</td> <td></td> <td></td> <td>Н</td> <td>Н</td> <td>1.1</td>                                                                                                                                                                                                                        | 04.1         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2         0.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      | П                    |        | Н              | H        | 3.4               |          |    |          | 2.0                    |              |          |   | Н           | 2.8          | 5.6    |                     | $\vdash$ | H   | П      |          | 8.0   |               |        | Н | Н                       | 1.1              |
| 0.045         0.1         0.74         0.74         0.74         0.75         0.74         0.75         0.74         0.75         0.74         0.75         0.74         0.75         0.74         0.75         0.74         0.75         0.74         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75 <th< td=""><td>0.045         0.11         0.74         0.74         0.74         0.75         0.043         0.85         1.6         0.75         0.75         0.74         0.75         0.75         0.74         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         <t< td=""><td>HOs</td><td></td><td></td><td>+</td><td>+</td><td>1.2</td><td>+</td><td></td><td>H</td><td>100</td><td>+</td><td>+</td><td>+</td><td>+</td><td>0.39</td><td>00:0</td><td>٠</td><td></td><td>Ŧ</td><td>т</td><td>T</td><td>1.6</td><td></td><td>۲</td><td>+</td><td></td><td>1.1</td></t<></td></th<>                                                                                                                                                                                                                           | 0.045         0.11         0.74         0.74         0.74         0.75         0.043         0.85         1.6         0.75         0.75         0.74         0.75         0.75         0.74         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75 <t< td=""><td>HOs</td><td></td><td></td><td>+</td><td>+</td><td>1.2</td><td>+</td><td></td><td>H</td><td>100</td><td>+</td><td>+</td><td>+</td><td>+</td><td>0.39</td><td>00:0</td><td>٠</td><td></td><td>Ŧ</td><td>т</td><td>T</td><td>1.6</td><td></td><td>۲</td><td>+</td><td></td><td>1.1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOs                                  |                      |        | +              | +        | 1.2               | +        |    | H        | 100                    | +            | +        | + | +           | 0.39         | 00:0   | ٠                   |          | Ŧ   | т      | T        | 1.6   |               | ۲      | + |                         | 1.1              |
| 75         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 75         60         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61         61<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentrations 47,000                | 47,000               | 1      | Н              | L        | 0.71              | ⊬        | Н  | Н        | 0.17                   | Н            | $\vdash$ | ⊬ | ⊬           | 0.83         | 1.6    |                     | _        | ⊬   |        | т        | _     | -             | Н      | Н | L                       | 260              |
| 41.7         31.8         52.0         60.2         53.9         40.1         60.2         53.9         40.1         60.2         53.9         40.1         60.2         53.9         40.1         60.2         50.9         40.1         40.2         60.2         50.9         40.1         60.2         50.9         40.1         60.2         50.9         40.1         60.2         50.9         40.1         60.2         50.2         40.1         60.2         60.2         50.2         40.1         60.2         60.2         60.2         60.2         50.2         40.1         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2         60.2 <th< td=""><td>41.7         31.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         <th< td=""><td>ндѕ</td><td></td><td></td><td>H</td><td></td><td>2.2</td><td></td><td></td><td>H</td><td>2.8</td><td>Н</td><td></td><td></td><td>0.1</td><td>1.5</td><td>3.3</td><td></td><td>ш</td><td>Н</td><td><math>\neg</math></td><td>П</td><td></td><td></td><td>Н</td><td>ш</td><td></td><td>5.6</td></th<></td></th<>                                                                                                                                                                                                                 | 41.7         31.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8         51.8 <th< td=""><td>ндѕ</td><td></td><td></td><td>H</td><td></td><td>2.2</td><td></td><td></td><td>H</td><td>2.8</td><td>Н</td><td></td><td></td><td>0.1</td><td>1.5</td><td>3.3</td><td></td><td>ш</td><td>Н</td><td><math>\neg</math></td><td>П</td><td></td><td></td><td>Н</td><td>ш</td><td></td><td>5.6</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ндѕ                                  |                      |        | H              |          | 2.2               |          |    | H        | 2.8                    | Н            |          |   | 0.1         | 1.5          | 3.3    |                     | ш        | Н   | $\neg$ | П        |       |               | Н      | ш |                         | 5.6              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 411         512         513         513         513         513         513         513         513         514         515         514         615         615         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613         613 <td>Concentrations</td> <td></td> <td></td> <td>+</td> <td>+</td> <td>1.69</td> <td>+</td> <td>+</td> <td>+</td> <td>0.7</td> <td>+</td> <td>+</td> <td>+</td> <td>+</td> <td>3.32</td> <td>3.48</td> <td>+</td> <td>4</td> <td>+</td> <td>т</td> <td></td> <td>- 7/</td> <td>1</td> <td>Ť</td> <td>4</td> <td>4</td> <td>7.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Concentrations                       |                      |        | +              | +        | 1.69              | +        | +  | +        | 0.7                    | +            | +        | + | +           | 3.32         | 3.48   | +                   | 4        | +   | т      |          | - 7/  | 1             | Ť      | 4 | 4                       | 7.4              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.0.         6.1.         6.2.         6.4.         1.3.         6.0.         6.4.         1.3.         6.0.         6.4.         1.3.         6.0.         6.1.         1.3.         6.0.         6.1.         1.3.         6.1.         6.1.         1.3.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1.         6.1. <th< td=""><td></td><td>1</td><td></td><td>H</td><td>H</td><td>17.0</td><td>Н</td><td>Н</td><td>Н</td><td>50</td><td>H</td><td>Н</td><td>H</td><td>H</td><td>1.16</td><td>1 62</td><td>t</td><td>Ψ.</td><td>H</td><td>Т</td><td>ŀ</td><td>32</td><td>ŀ</td><td>۲</td><td>Н</td><td>Ĺ</td><td>1 8</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1                    |        | H              | H        | 17.0              | Н        | Н  | Н        | 50                     | H            | Н        | H | H           | 1.16         | 1 62   | t                   | Ψ.       | H   | Т      | ŀ        | 32    | ŀ             | ۲      | Н | Ĺ                       | 1 8              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.1 6.1 6.1 6.4 6.3 6.3 6.3 6.4 6.6 6.0 1 1.4 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6.0 1 6. | HQs                                  | İ                    |        |                | H        | 2.2               | H        | H  | H        |                        | H            | Н        |   |             | 2.1          | 3.3    | ٠                   | ⊬        | F   | т      |          | 6.0   |               | ۳      |   | -                       | 1.2              |
| 14   14   15   15   16   18   19   19   14   14   14   15   14   14   15   14   15   14   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14   14   15   16   18   19   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                      |        | H              | H        | 0.44              | H        | H  | Н        | <0.1                   | 1.41         | Н        | L | H           | 9.0          | 1.13   | Н                   | <u> </u> | H   |        |          | - 82  |               | Н      | ⊢ | L                       | 861              |
| Q11         Q14         Q18         Q18         Q19         Q14         Q11         Q17         Q14         Q15         Q14         Q11         Q14         Q11         Q14         Q13         Q14         Q14 <td>401         602         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603<td>HQs</td><td></td><td></td><td>H</td><td></td><td>Н</td><td>Н</td><td>Н</td><td>Н</td><td></td><td>1.9</td><td>1.4</td><td>4</td><td></td><td>1.1</td><td></td><td></td><td>ш</td><td>Н</td><td>П</td><td></td><td>8.0</td><td></td><td></td><td>Н</td><td>Ш</td><td>1.4</td></td>                                                                                                                                                                                                                                                                                                                                             | 401         602         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603 <td>HQs</td> <td></td> <td></td> <td>H</td> <td></td> <td>Н</td> <td>Н</td> <td>Н</td> <td>Н</td> <td></td> <td>1.9</td> <td>1.4</td> <td>4</td> <td></td> <td>1.1</td> <td></td> <td></td> <td>ш</td> <td>Н</td> <td>П</td> <td></td> <td>8.0</td> <td></td> <td></td> <td>Н</td> <td>Ш</td> <td>1.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HQs                                  |                      |        | H              |          | Н                 | Н        | Н  | Н        |                        | 1.9          | 1.4      | 4 |             | 1.1          |        |                     | ш        | Н   | П      |          | 8.0   |               |        | Н | Ш                       | 1.4              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Concentrations -                     |                      |        | +              | +        | 0.46              | $\dashv$ | +  | $\dashv$ | <0.1                   | 1.44         | ┪        | 4 | +           | 0.72         | 1.16   | 7                   | 4        | 4   | T      |          | - 26  |               | 7      | - |                         | 170              |
| 401         612         613         614         610         615         617         617         618         617         611         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618         618 <td>401         602         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603<td>HQs</td><td>T</td><td></td><td>Н</td><td><math>\dashv</math></td><td>1.4</td><td>4</td><td>Н</td><td>H</td><td></td><td>1.9</td><td>Н</td><td></td><td><math>\dashv</math></td><td>1.3</td><td>2.4</td><td></td><td></td><td>H</td><td><math>\neg</math></td><td>Ī</td><td>1.6</td><td></td><td>Н</td><td></td><td>7.7</td><td>1.9</td></td>                                                                                                                                                                                                                                                                                  | 401         602         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603         603 <td>HQs</td> <td>T</td> <td></td> <td>Н</td> <td><math>\dashv</math></td> <td>1.4</td> <td>4</td> <td>Н</td> <td>H</td> <td></td> <td>1.9</td> <td>Н</td> <td></td> <td><math>\dashv</math></td> <td>1.3</td> <td>2.4</td> <td></td> <td></td> <td>H</td> <td><math>\neg</math></td> <td>Ī</td> <td>1.6</td> <td></td> <td>Н</td> <td></td> <td>7.7</td> <td>1.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HQs                                  | T                    |        | Н              | $\dashv$ | 1.4               | 4        | Н  | H        |                        | 1.9          | Н        |   | $\dashv$    | 1.3          | 2.4    |                     |          | H   | $\neg$ | Ī        | 1.6   |               | Н      |   | 7.7                     | 1.9              |
| 4.1         1.8         1.8         1.8         1.4         1.4         1.4         1.5         1.5         1.5         1.4         1.4         1.4         1.5         1.4         1.5         1.4         1.5         1.4         1.5         1.4         1.5         1.4         1.5         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5         1.5 <td>40.1         0.28         1.3         1.4         0.2         1.3         1.4         0.4         0.2         0.3         0.3         0.3         0.4         0.3         0.3         0.3         0.4         0.4         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3<!--</td--><td>Concentrations</td><td>1</td><td>+</td><td>+</td><td>+</td><td>0.42</td><td>4</td><td>d</td><td>+</td><td>&lt;0.1</td><td>1.15</td><td>t</td><td>4</td><td>+</td><td>0.58</td><td>0.92</td><td>-</td><td>-</td><td>+</td><td>T</td><td>1</td><td>49</td><td>1</td><td>Ť</td><td>4</td><td>4</td><td>781</td></td>                                                                                                                                                                                                                                                                                                | 40.1         0.28         1.3         1.4         0.2         1.3         1.4         0.4         0.2         0.3         0.3         0.3         0.4         0.3         0.3         0.3         0.4         0.4         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3 </td <td>Concentrations</td> <td>1</td> <td>+</td> <td>+</td> <td>+</td> <td>0.42</td> <td>4</td> <td>d</td> <td>+</td> <td>&lt;0.1</td> <td>1.15</td> <td>t</td> <td>4</td> <td>+</td> <td>0.58</td> <td>0.92</td> <td>-</td> <td>-</td> <td>+</td> <td>T</td> <td>1</td> <td>49</td> <td>1</td> <td>Ť</td> <td>4</td> <td>4</td> <td>781</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concentrations                       | 1                    | +      | +              | +        | 0.42              | 4        | d  | +        | <0.1                   | 1.15         | t        | 4 | +           | 0.58         | 0.92   | -                   | -        | +   | T      | 1        | 49    | 1             | Ť      | 4 | 4                       | 781              |
| 41         0.28         1.75         0.28         1.76         0.26         2.99         0.1         0.28         1.75         0.28         2.75         1.85         2.75         1.45         -         -         3.4         4.14         9.00           0.084         0.12         0.65         0.65         0.64         0.65         0.64         1.65         0.69         1.65         0.64         1.65         0.69         4.1         1.65         0.64         1.65         0.69         4.25         0.64         1.65         0.64         1.65         0.69         4.25         0.64         1.65         0.69         1.65         0.64         1.65         0.69         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         1.65         0.64         0.65         0.64         1.65         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75         0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.1         1.29         0.28         1.75         0.28         4.01         0.13         2.94         1.55         1.59         1.75         0.26         2.94         0.1         0.15         0.25         4.24         0.05         4.04         1.25         0.25         3.4         3.4         0.25         4.4         0.15         0.1         0.1         0.25         0.1         0.25         4.4         0.1         0.25         0.1         0.25         4.4         0.1         0.1         0.25         0.2         4.4         0.1         0.25         0.4         1.2         0.6         0.9         4.3         0.0         0.1         0.2         0.4         0.1         0.2         0.4         0.2         0.4         0.1         0.2         0.4         0.1         0.2         0.4         0.1         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HQs                                  |                      | +      | +              | +        | 1.3               | -        | 4  | +        |                        | 1.5          | 7        | 4 | 1           | 1.0          | 1.9    |                     | 4        | +   | $\neg$ | 7        | 1.4   |               | 1      | 4 | 4                       | 1.3              |
| 13 62 58 30 46 52 43 40 05 44 7 17 10 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13 662 58 80 44 41 80 80 45 52 44 40 05 69 44 41 80 40 41 88 60 99 43 41 80 80 80 41 80 80 80 41 80 80 80 80 41 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | entrations                           |                      | d      | 4              | +        | 1.99              | -        | 4  | $\dashv$ | 0.26                   | 4            | +        | 4 | 0.15        | 0.93         | 2.94   | _                   | 4        | 4   | T      | 1        | 145 - | -             | 3      | 4 | 4                       | 978              |
| 0.084 0.12 0.61 0.65 0.34 0.75 1.1 0.13 2 0.087 0.54 0.027 0.029 0.89 1.5 7.3 4.29 0.69 2.26 6.41 18.800 46.1 30 0.104 0.34 3.39 1.89 189 1.30 0.104 0.34 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.084 0.12 0.61 0.63 0.34 0.75 1.1 0.13 2 0.087 0.54 0.072 0.029 0.89 1.5 7.3 4.29 0.69 2.26 6.41 18.80 46.1 39 0.104 0.34 3.3 3.9 189 189 144 0.05 0.18 3.7 1.71 2.155 0.24 6.83 0.39 0.097 0.097 0.097 0.14 6.2 3.1 1.8 0.4 0.6 0.5 2.0 0.6 1.3 0.8 0.6 1.3 0.8 0.6 1.3 0.8 0.6 1.3 0.8 0.6 1.3 0.8 0.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                    |                      | 1      | 4              | -        | 6.2               | +        | -  | +        | 4.3                    | -            | -        | - | +           | 4            | 0.9    |                     |          | 4   | $\neg$ | - 1      | _     | $\rightarrow$ | 7      |   | 4                       | 1.6              |
| 1341 0857 188 13-56 07.1 112 21.55 0.342 6884 0.395 0.997 0.0877 0.191 4386 4973 56.4 5.25 2.4 7.5 91 2.9567 157.9 589 0.187 1126 31.8 31.93 81.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1440 U.S. 0.18 3-7 14 2.0 3-2 2.2 1.2 1.0 1.0 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.2 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Concentrations 39,0                  | 39,0                 | 39,000 | +              | +        | 0.61              | +        | -4 | +        | 0.13                   | +            | +        | + | +           | +            | 1.5    |                     | _        | +   | -17    |          |       | -             | 7      | 4 |                         | 904              |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.8 3.9 5.7 7.3 3.0 4.6 6.3 4.0 9.1 2.1 5.0 4.4 1.1 7.7 10.1 6.6 0.6 2.5 0.6 2.9 0.8 1.6 1.3 1.0 2.9 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Concentrations                       |                      | 4-     |                | ٠        | 1.83              | -        |    | Н        | Н                      | -            | 1        | - |             | Н            | -      |                     | 4        | +   | 7      |          | _     | -             | 7      | - |                         | 020              |

| Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Content | Vertical Co

Page 1 of 1

HAZARD QUOTIENTS

# TABLE 6: SURFACE WATER HQs

City of Hamilton Ecological Risk Assessment – Chedoke Creek

|                              |        |             |                                             |                                                                                          | ľ                                                      | ١٦                                                                                 | ١                                                                        | ١                                                          | ١                                                          | ١                                                                       | ١         | ш                                                      |                                                  |                                              |
|------------------------------|--------|-------------|---------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|-----------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------|
| StneI9 SiteupA               |        |             | g                                           |                                                                                          | 3.7                                                    | 3.7                                                                                | 1.8                                                                      | 2.2                                                        | 1.5                                                        | 1.2                                                                     | 3.3       | 4.7                                                    | NC                                               | NC                                           |
| (Valinummo) Sinthie          |        |             |                                             |                                                                                          | 3.7                                                    | 3.7                                                                                | 1.8                                                                      | 2.2                                                        | 1.5                                                        | 1.2                                                                     | 3.3       | 4.7                                                    | NC                                               | NC                                           |
| (SAR) Senthic (SAR)          | _      |             |                                             |                                                                                          | 3.7                                                    | 3.7                                                                                | 1.8                                                                      | 2.2                                                        | 1.5                                                        | 1.2                                                                     | 3.3       | 4.7                                                    | NC                                               | NC                                           |
| (N 26) 93 (N)                | l J/gr | H           | 09                                          | _                                                                                        | 220                                                    | 220                                                                                | 110                                                                      | 130                                                        | 06                                                         | 70                                                                      | 200       | 280                                                    | <50                                              | <50                                          |
| snsididqmA                   | 1      | H           | _                                           | -                                                                                        | 0.12                                                   | 0.24 2                                                                             | 0.51                                                                     | 0.51                                                       | 0.57                                                       | . 89.0                                                                  | 0.13 2    | 0.36                                                   | > 80.0                                           | > 0.07                                       |
| Fish                         | H      |             |                                             |                                                                                          | -                                                      | _                                                                                  |                                                                          | 2.97 0.                                                    | 3.3 0.                                                     | 3.93                                                                    | 0.76 0.   | _                                                      | -                                                | 0.4 0.                                       |
| Aquatic Plants               | H      |             | ğ                                           |                                                                                          | 0.1 0.67                                               | 0.2 1.42                                                                           | 0.5 2.94                                                                 | 0.5                                                        | 9.0                                                        | 0.7                                                                     | 0.1 0.    | 0.4 2.09                                               | 0.1 0.47                                         | 0.1 0                                        |
| Benthic (Community)          | H      |             | Ξ                                           |                                                                                          | 0.12 0                                                 | 0.24 0                                                                             | 0.51 0                                                                   | 0.51 0                                                     | 0.57 0                                                     | 0.68 0                                                                  | 0.13 0    | 0.36 0                                                 | 0.08 0                                           | 0.07 0                                       |
| Benthic (SAR)                | H      |             |                                             |                                                                                          | 0.67 0.                                                | 1.42 0.                                                                            | 2.94 0.                                                                  | 2.97 0.                                                    | 3.3 0.                                                     | 3.93                                                                    | 0.76 0.   | 2.09 0.                                                | 0.47 0.                                          | 0.4 0.                                       |
| iron                         | 1/gr   | 300         | 300                                         | П                                                                                        | 202 0.                                                 | 426 1                                                                              | 883 2.                                                                   | 890 2.                                                     | 990                                                        | 1180 3.                                                                 | 227 0.    | 628 2.                                                 | 140 0.                                           | 119 0                                        |
| snsididqmA<br>gosi           | m      | 3           | æ                                           | Ц                                                                                        | 0.0                                                    | 0.0                                                                                | ⊢                                                                        | ⊢                                                          | 0.01                                                       | NC 11                                                                   | 0.04      | Н                                                      | NC 12                                            | NC 13                                        |
| Fish                         | H      |             |                                             |                                                                                          | $\vdash$                                               | 0.07                                                                               | 0.01                                                                     | 0.02 0.01                                                  | -                                                          | NC                                                                      | 0.07 0.0  | 0.01                                                   | NC                                               | NC                                           |
|                              | H      |             | ğ                                           |                                                                                          | 3 0.07                                                 |                                                                                    | 0.02                                                                     | -                                                          | 10.0                                                       | NC                                                                      | -         | 0.02                                                   | Н                                                | NC                                           |
| Aquatic Plants               | H      |             | Í                                           |                                                                                          | 0.03                                                   | 0.03                                                                               | 10.01                                                                    | 10.01                                                      | 0.00                                                       | ⊢                                                                       | 0.03      | 1 0.01                                                 | C NC                                             | Н                                            |
| (Valinumuo)                  | H      |             |                                             |                                                                                          | 1 0.04                                                 | 1 0.04                                                                             | 3 0.01                                                                   | 10.01                                                      | 2 0.01                                                     | NC C                                                                    | 3 0.04    | 4 0.01                                                 | ON C                                             | ON C                                         |
| (SAR) sinthic                | H      | - 2         |                                             | Н                                                                                        | 0.1                                                    | 0.1                                                                                | 0.03                                                                     | 0.04                                                       | 0.02                                                       | ž                                                                       | 0.13      | 0.04                                                   | NC                                               | NC                                           |
| (Filtered)                   | l/g/L  | 15"2   75"  | 5 1100                                      |                                                                                          | 13                                                     | 14                                                                                 | m                                                                        | 4                                                          | 2                                                          | <2                                                                      | 13        | 4                                                      | <2                                               | <2                                           |
| sneididqmA                   | Ц      |             |                                             |                                                                                          | 3 0.45                                                 | 0.93                                                                               | 1.5                                                                      | 1.5                                                        | 5 1.5                                                      | 9 1.9                                                                   | 0.5       | 1.0                                                    | 0.08                                             | 5 0.04                                       |
| Fish                         |        |             |                                             |                                                                                          | 0.73                                                   | 1.5                                                                                | 2.34                                                                     | 2.34                                                       | 2.45                                                       | 2.99                                                                    | 0.8       | 1.54                                                   | 2 0.12                                           | 90.0                                         |
| Aquatic Plants               |        |             | ğ                                           |                                                                                          | 0.3                                                    | 0.7                                                                                | 1.0                                                                      | 1.0                                                        | 1.1                                                        | 1.3                                                                     | 0.3       | 0.7                                                    | 0.052                                            | 0.03                                         |
| (ValinummoD) SinthneB        |        |             |                                             |                                                                                          | 0.45                                                   | 0.93                                                                               | 1.46                                                                     | 1.46                                                       | 1.53                                                       | 1.87                                                                    | 0.5       | 96.0                                                   | 0.24                                             | 0.12                                         |
| (SAR) sidtne8                |        |             |                                             |                                                                                          | 1.45                                                   | 2.99                                                                               | 4.67                                                                     | 4.68                                                       | 4.89                                                       | 5.98                                                                    | 1.6       | 3.07                                                   | 0.24                                             | 0.12                                         |
| munimule                     | η/gπ   | 15"2   75"2 | 5 100                                       |                                                                                          | 145                                                    | 299                                                                                | 467                                                                      | 468                                                        | 489                                                        | 298                                                                     | 160       | 307                                                    | 24                                               | 12                                           |
| TABLE 0: JUNFAUE WAI EN FIUS |        |             |                                             | Well_Screen_Interval Sampled_Date_Time Sample_Type Field_ID SampleCode Lab_Report_Number | 9/30/2019  Normal  C-1 West  C-1 West30 Sep 19  330748 | 9/30/2019   Field_D   C-1 West Duplicate   C-1 West Duplicate - 30 Sep 19   330748 | 9/30/2019   Normal   C-3 Centre - G5   C-3 Centre - G530 Sep 19   330748 | 9/30/2019   Normal   C-3 West   C-3 West30 Sep 19   330748 | 9/30/2019   Normal   C-4 West   C-4 West30 Sep 19   330748 | 9/30/2019   Normal   C-5 East - G6   C-5 East - G6 - 30 Sep 19   330748 | 9/30/2019 | 9/30/2019  Normal  G-4 Comp  G-4 Comp30 Sep 19  330748 | 9/30/2019   Normal   R-1   R-130 Sep 19   330748 | 9/30/2019  Normal  R-2  R-230 Sep 19  330748 |
|                              |        |             | CME WQG Freshwater Aquatic Life (long term) | Monitoring_Zone Alternative_Name_Location_Code We                                        | C-1 West                                               | C-1 West                                                                           | A002 C-3 Centre -                                                        | A003 C-3 West -                                            | B003 C-4 West -                                            | C001 C-5 East -                                                         | G-1 Comp  | G-4 Comp                                               | R-1                                              | R-2                                          |
|                              |        | ONPWGO      | CCME WQG                                    | Monitoring                                                                               | C-1                                                    | C-1                                                                                | C-3                                                                      | C-3                                                        | C-4                                                        | C-5                                                                     | 6-1       | 6-4                                                    | Reference                                        | Reference                                    |

0.04 3.7 0.04 3.7 0.02 1.8 0.03 2.2 0.01 1.5 0.04 3.3 0.06 4.7 NC NC

snsididqmA

Not not alculated, Concentration below laboratory detection limits.

No. not alculated, Concentration below laboratory detection limits.

Env 84s. Description

On PVIOLOGIAND Water Quality Objectives, July 1994

ON PVIOLOGIAND Pownibal Water Chailty Objectives, July 1994

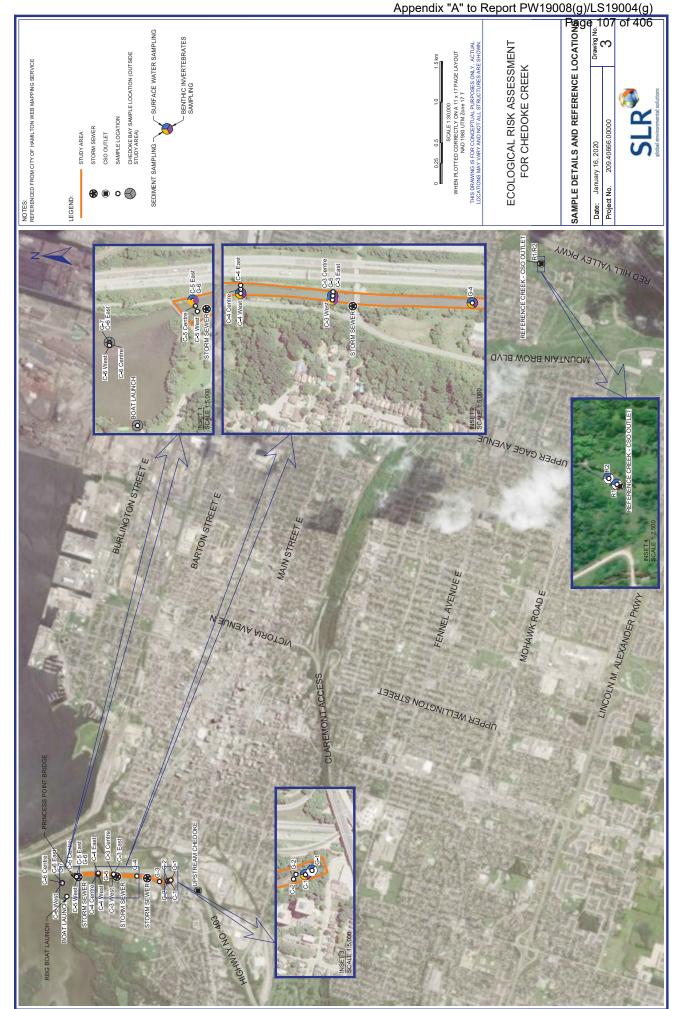
CCME WOGS Festiwater Aquatic Life (programm):CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

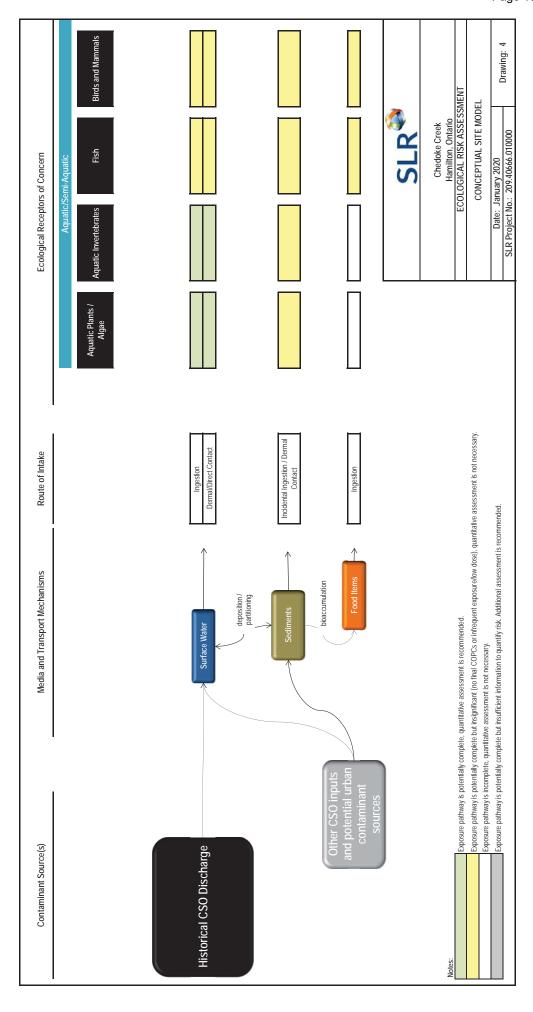
CCME WOGS Festiwater Aquatic Life (short term):CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

#4:Criteria varies with hardness. #5:Criteria is for dissolved mercury.

#6.The percentage of run-ionized ammonia in aqueous ammonia solution varies with temperature and pht. 
#7.Interium PWOQ. Criticatica badage with Isite, mast conservative value given 
#8.100 is. coil per 100 mil. Listed on a geometric mean of at least 5 samples) 
#9.Maximum increase of 25 mg/L from background levels. Further Narrative applies. 
#11.Coildeline is generited or waterbody hardness. 
#11.Soludeline is generited or waterbody hardness. Most conservative value listed. 
#12.Soludeline papiles to dissolved concentration

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 104 of 406

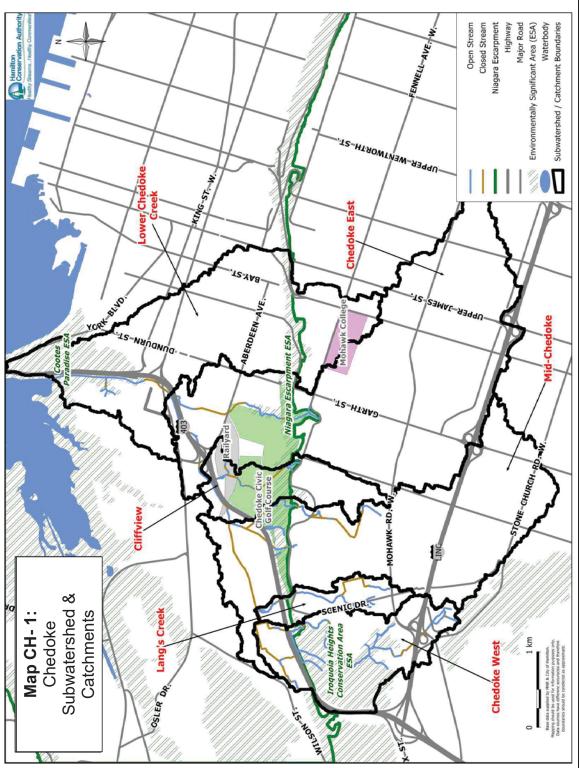

# **DRAWINGS**


Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

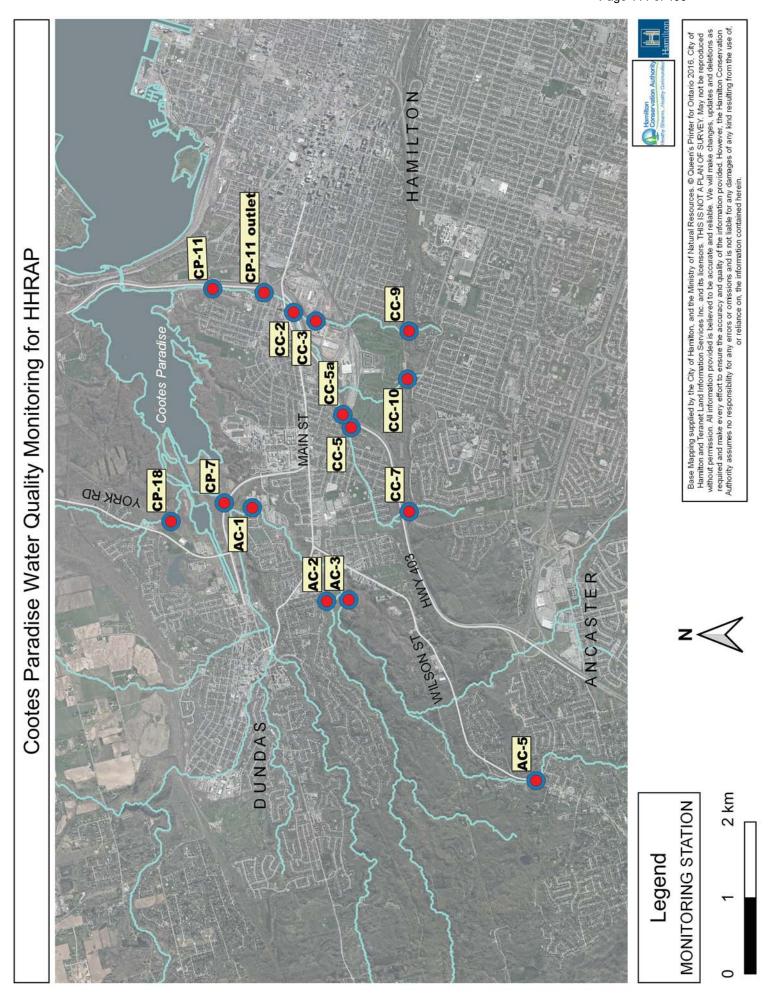
Appendix "A" to Report PW19008(g)/LS19004(g)

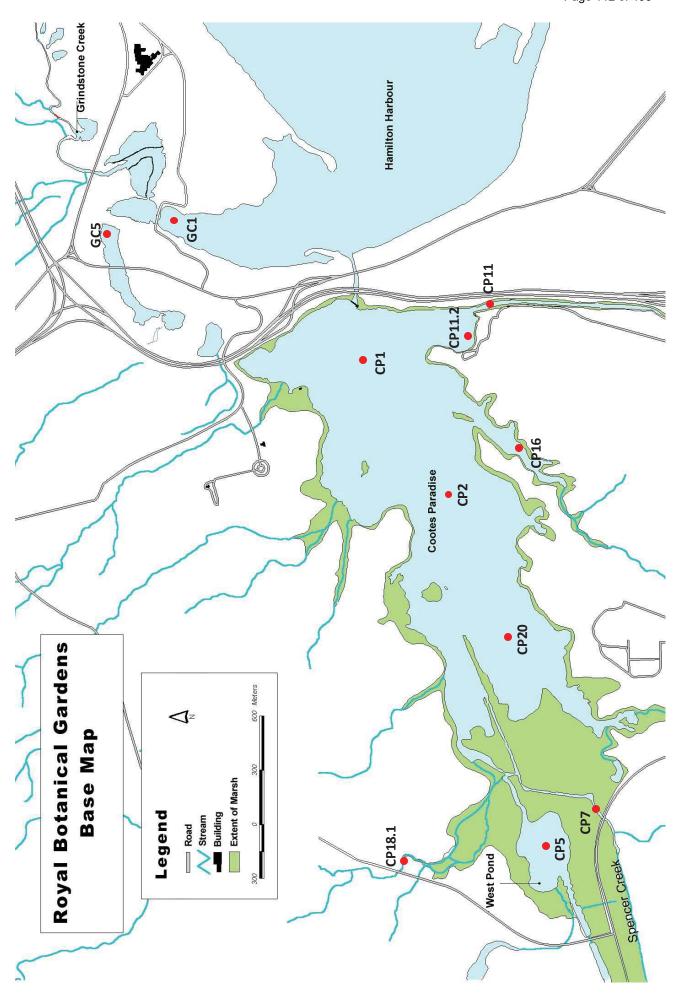
| Page 105 of 406 ECOLOGICAL RISK ASSESSMENT FOR CHEDOKE CREEK THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUA LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOW SCALE 1:30,000
WHEN PLOTTED CORRECTLY ON A 11 x 17 PAGE LAYOUT
NAD 1983 UTM Zone 17 T NOTES: REFERENCED FROM CITY OF HAMILTON WEB MAPPING SERVICE SITE LOCATION PLAN 
 Date:
 January 16, 2020

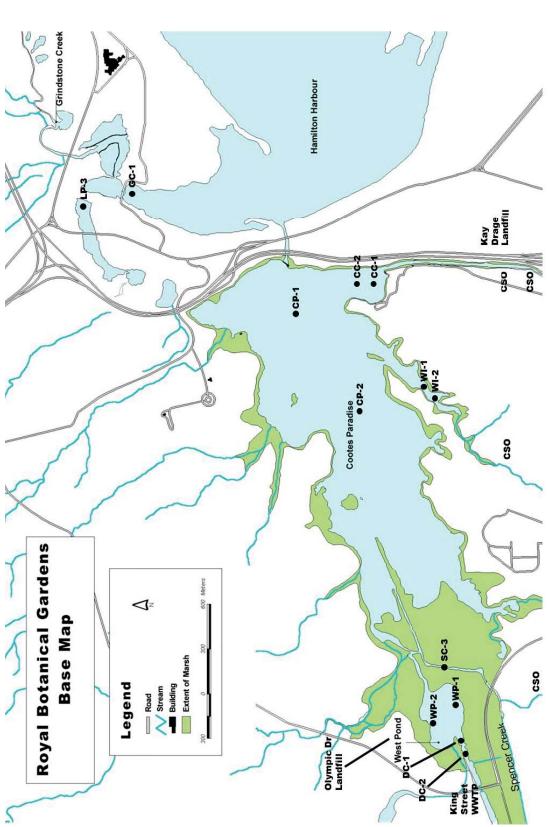
 Project No.
 209.40666.00000
 January 16, 2020 LEGEND: MOUNTAIN BROW BLVD UPPER GAGE AVENUE VICTORIA AVENUE N UPPER WELLINGTON STREET







Appendix "A" to Report PW19008(g)/LS19004(g)
Page 109 of 406


### APPENDIX A Previous Environmental Investigations Sampling Locations


Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000



CHEDOKE CREEK SUBWATERSHED







**Figure 1.** Map of RBG properties showing sediment sampling stations in 2013 in Cootes Paradise and Grindstone Creek marsh areas. Also highlighted are the locations of the CSOs, King Street WWTP, and landfill sites.

-19-

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 114 of 406

## APPENDIX B Laboratory Analytical Report

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000



Your P.O. #: PENDING

Your Project #: 209.40666.00000

Your C.O.C. #: g141143

**Attention: Celine Totman** 

SLR CONSULTING (CANADA) LTD #200 - 1620 WEST 8TH AVENUE VANCOUVER, BC Canada V6J 1V4

Report Date: 2019/11/15

Report #: R2811669 Version: 2 - Final

#### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: B985653 Received: 2019/10/03, 16:09 Sample Matrix: Sediment # Samples Received: 9

|                                              |          | Date       | Date       |                                  |                          |
|----------------------------------------------|----------|------------|------------|----------------------------------|--------------------------|
| Analyses                                     | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b>         | <b>Analytical Method</b> |
| Total Coliforms (MTF) in Soil (4)            | 9        | N/A        | 2019/10/17 | COR1 SOP-00019                   | Health Can MFHPB-19      |
| Ecotox Report Attachment                     | 7        | 2019/11/15 | 2019/11/15 |                                  |                          |
| Escherichia Coli (MTF) in Soil (4)           | 9        | N/A        | 2019/10/17 | COR1 SOP-00019                   | Health Can MFHPB-19      |
| Fecal Coliforms (MTF) in Solid (4)           | 9        | N/A        | 2019/10/17 | COR1 SOP-00019                   | Health Can MFHPB-19      |
| Elements by ICPMS (total)                    | 6        | 2019/10/09 | 2019/10/09 | BBY7SOP-00004 /<br>BBY7SOP-00001 | EPA 6020b R2 m           |
| Elements by ICPMS (total)                    | 2        | 2019/10/09 | 2019/10/10 | BBY7SOP-00004 /<br>BBY7SOP-00001 | EPA 6020b R2 m           |
| Elements by ICPMS (total)                    | 1        | 2019/10/10 | 2019/10/10 | BBY7SOP-00004 /<br>BBY7SOP-00001 | EPA 6020b R2 m           |
| Moisture                                     | 9        | 2019/10/08 | 2019/10/09 | BBY8SOP-00017                    | BCMOE BCLM Dec2000 m     |
| Ammonia-N (Available) (1)                    | 9        | 2019/10/11 | 2019/10/11 | AB SOP-00027 / AB<br>SOP-00007   | SM 23 4500 NH3 A G m     |
| PAH in Soil by GC/MS Lowlevel                | 9        | 2019/10/08 | 2019/10/10 | BBY8SOP-00022                    | BCMOE BCLM Jul2017m      |
| Total PAH and B(a)P Calculation (5)          | 9        | N/A        | 2019/10/11 | BBY WI-00033                     | Auto Calc                |
| Phosphorus (Available by ICP) (1)            | 9        | 2019/10/12 | 2019/10/12 | CAL SOP-00152 / AB SOP-<br>00042 | EPA 6010d R5 m           |
| pH (2:1 DI Water Extract)                    | 9        | 2019/10/09 | 2019/10/09 | BBY6SOP-00028                    | BCMOE BCLM Mar2005 m     |
| Total Carbon, Nitrogen & Sulphur in Soil (1) | 9        | N/A        | 2019/10/17 | CAL SOP-00243                    | LECO 203-821-498 m       |
| Texture by Hydrometer, incl Gravel (Wet)     | 9        | N/A        | 2019/10/10 | BBY6SOP-00051                    | Carter 2nd ed 55.3       |
| Total Kjeldahl Nitrogen (Available) (2)      | 9        | 2019/10/11 | 2019/10/17 | AB SOP-00027 / AB SOP-00008      | EPA 351.1 R 1978 m       |
| Total Organic Carbon Soil Subcontract (3)    | 9        | 2019/10/15 | 2019/10/15 |                                  |                          |

Sample Matrix: Water # Samples Received: 9

|                           |          | Date       | Date       |                          |                      |
|---------------------------|----------|------------|------------|--------------------------|----------------------|
| Analyses                  | Quantity | Extracted  | Analyzed   | <b>Laboratory Method</b> | Analytical Method    |
| Biochemical Oxygen Demand | 9        | 2019/10/10 | 2019/10/15 | BBY6SOP-00045            | SM 23 5210 B m       |
| Sulphide (as H2S)         | 9        | N/A        | 2019/10/16 | BBY WI-00033             | Auto Calc            |
| Total Sulphide (1)        | 9        | N/A        | 2019/10/15 | AB SOP-00080             | SM 23 4500 S2-A D Fm |

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used



Your P.O. #: PENDING

Your Project #: 209.40666.00000

Your C.O.C. #: g141143

**Attention: Celine Totman** 

SLR CONSULTING (CANADA) LTD #200 - 1620 WEST 8TH AVENUE VANCOUVER, BC Canada V6J 1V4

Report Date: 2019/11/15

Report #: R2811669 Version: 2 - Final

#### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: B985653 Received: 2019/10/03, 16:09

by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- \* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by BV Labs Calgary Environmental
- (2) This test was performed by BV Labs Edmonton Environmental
- (3) This test was performed by BV Labs Ontario (from Winnipeg)
- (4) The matrix is non-food and is outside of the scope of the method. Sample(s) analyzed have not been subjected to Bureau Veritas Laboratories' standard validation process for the submitted matrix and is not an accredited method.
- (5) Total PAHs in Soil include: Quinoline, Naphthalene, 1-Methylnaphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthene, Fluorene, Phenanthrene, Anthracene, Acridine, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(b&j)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene, and Benzo(g,h,i)perylene.

Total PAHs in Sediment include (B.C. Reg. 116/2018, Schedule 3.4): Naphthalene, 2-Methylnaphthalene, Acenaphthylene, Acenaphthhene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)anthracene, Chrysene, Benzo(a)pyrene, and Dibenz(a,h)anthracene.

**Encryption Key** 



Bureau Veritas Laboratories

15 Nov 2019 17:49:29

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Safiann Maiter, Key Account Specialist Email: Safiann.Maiter@bvlabs.com

Phone# (604)639-2616

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **RESULTS OF CHEMICAL ANALYSES OF SEDIMENT**

|                                         | 1     |             | 1   | 1        |                 | 1 1 |                 | 1   |          |
|-----------------------------------------|-------|-------------|-----|----------|-----------------|-----|-----------------|-----|----------|
| BV Labs ID                              |       | WQ6244      |     |          | WQ6245          |     | WQ6246          |     |          |
| Sampling Data                           |       | 2019/10/01  |     |          | 2019/10/01      |     | 2019/10/01      |     |          |
| Sampling Date                           |       | 09:20       |     |          | 10:55           |     | 13:35           |     |          |
| COC Number                              |       | g141143     |     |          | g141143         |     | g141143         |     |          |
|                                         | UNITS | BOAT LAUNCH | RDL | QC Batch | C6 EAST /<br>G7 | RDL | C5 EAST /<br>G6 | RDL | QC Batch |
| Misc. Inorganics                        |       |             |     |          |                 |     |                 |     |          |
| Available (KCl) Total Kjeldahl Nitrogen | mg/kg | 55 (1)      | 12  | 9630371  | 120             | 5.0 | 180 (1)         | 10  | 9630371  |
| Ecotox                                  |       |             |     |          |                 |     |                 |     |          |
| No Parameter                            | N/A   |             |     |          | ATTACHED        | N/A | ATTACHED        | N/A | 9673836  |
| Nutrients                               |       |             | •   |          |                 |     |                 | •   |          |
| Available (KCl) Ammonia (N)             | mg/kg | 23          | 2.0 | 9623846  | 100             | 2.0 | 130             | 2.0 | 9623846  |
| Available (NH4F) Phosphorus (P)         | mg/kg | 1.6         | 1.0 | 9625759  | 1.8             | 1.0 | 1.7             | 1.0 | 9625759  |
| Physical Properties                     | -     |             | -   |          |                 |     |                 |     |          |
| % sand by hydrometer                    | %     | 22          | 2.0 | 9620237  | 36              | 2.0 | 28              | 2.0 | 9620237  |
| % silt by hydrometer                    | %     | 66          | 2.0 | 9620237  | 57              | 2.0 | 56              | 2.0 | 9620237  |
| Clay Content                            | %     | 12          | 2.0 | 9620237  | 7.3             | 2.0 | 16              | 2.0 | 9620237  |
| Gravel                                  | %     | <2.0        | 2.0 | 9620237  | <2.0            | 2.0 | <2.0            | 2.0 | 9620237  |
| Internal Sublet Analysis                |       |             |     |          |                 |     |                 |     |          |
| Subcontract Parameter                   | N/A   | ATTACHED    | N/A | 9627061  | ATTACHED        | N/A | ATTACHED        | N/A | 9627061  |
|                                         |       |             |     |          |                 | •   |                 | •   |          |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, samples contain => 50% moisture.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **RESULTS OF CHEMICAL ANALYSES OF SEDIMENT**

| BV Labs ID                              |       | WQ6247     |     |          | WQ6248          |     |          | WQ6249     |     |          |
|-----------------------------------------|-------|------------|-----|----------|-----------------|-----|----------|------------|-----|----------|
| Sampling Date                           |       | 2019/10/01 |     |          | 2019/10/01      |     |          | 2019/10/02 |     |          |
| Sampling Date                           |       | 11:45      |     |          | 09:30           |     |          | 11:45      |     |          |
| COC Number                              |       | g141143    |     |          | g141143         |     |          | g141143    |     |          |
|                                         | UNITS | C4 WEST    | RDL | QC Batch | BLIND DUPLICATE | RDL | QC Batch | C3 WEST    | RDL | QC Batch |
| Misc. Inorganics                        |       |            |     |          |                 |     |          |            |     |          |
| Available (KCI) Total Kjeldahl Nitrogen | mg/kg | 330 (1)    | 11  | 9630371  | 55 (1)          | 12  | 9630371  | 95         | 5.0 | 9630371  |
| Ecotox                                  |       |            |     |          |                 |     |          |            |     |          |
| No Parameter                            | N/A   | ATTACHED   | N/A | 9673836  |                 |     |          | ATTACHED   | N/A | 9673836  |
| Nutrients                               |       |            |     |          |                 |     |          |            |     |          |
| Available (KCI) Ammonia (N)             | mg/kg | 190        | 2.0 | 9623846  | 32              | 2.0 | 9623846  | 26         | 2.0 | 9623846  |
| Available (NH4F) Phosphorus (P)         | mg/kg | 4.6        | 1.0 | 9625759  | 1.8             | 1.0 | 9625759  | 3.1        | 1.0 | 9625759  |
| Physical Properties                     | •     |            |     | •        |                 |     |          |            |     |          |
| % sand by hydrometer                    | %     | 32         | 2.0 | 9620237  | 32              | 2.0 | 9620237  | 39         | 2.0 | 9620237  |
| % silt by hydrometer                    | %     | 61         | 2.0 | 9620237  | 59              | 2.0 | 9620237  | 53         | 2.0 | 9620237  |
| Clay Content                            | %     | 7.3        | 2.0 | 9620237  | 9.4             | 2.0 | 9620237  | 8.0        | 2.0 | 9620237  |
| Gravel                                  | %     | <2.0       | 2.0 | 9620237  | <2.0            | 2.0 | 9620237  | <2.0       | 2.0 | 9620237  |
| Internal Sublet Analysis                |       |            |     |          |                 |     |          |            |     |          |
| Subcontract Parameter                   | N/A   | ATTACHED   | N/A | 9627061  | ATTACHED        | N/A | 9627061  | ATTACHED   | N/A | 9627061  |
|                                         |       |            |     |          |                 |     |          |            |     |          |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to high moisture content, samples contain => 50% moisture.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **RESULTS OF CHEMICAL ANALYSES OF SEDIMENT**

| BV Labs ID                              |       | WQ6250            | WQ6251     | WQ6252     |     |          |
|-----------------------------------------|-------|-------------------|------------|------------|-----|----------|
| Sampling Date                           |       | 2019/10/02        | 2019/10/02 | 2019/10/02 |     |          |
| Sampling Date                           |       | 10:18             | 12:50      | 16:20      |     |          |
| COC Number                              |       | g141143           | g141143    | g141143    |     |          |
|                                         | UNITS | C3 CENTRE /<br>G5 | G4         | C1 WEST    | RDL | QC Batch |
| Misc. Inorganics                        |       |                   |            |            |     |          |
| Available (KCl) Total Kjeldahl Nitrogen | mg/kg | 35                | 47         | 5.8        | 5.0 | 9630371  |
| Ecotox                                  |       |                   |            |            | •   |          |
| No Parameter                            | N/A   | ATTACHED          | ATTACHED   | ATTACHED   | N/A | 9673836  |
| Nutrients                               |       |                   |            |            | •   |          |
| Available (KCI) Ammonia (N)             | mg/kg | 13                | 27         | 3.6        | 2.0 | 9623846  |
| Available (NH4F) Phosphorus (P)         | mg/kg | 1.1               | 2.4        | <1.0       | 1.0 | 9625759  |
| Physical Properties                     |       |                   |            |            | •   |          |
| % sand by hydrometer                    | %     | 83                | 49         | 69         | 2.0 | 9620237  |
| % silt by hydrometer                    | %     | 11                | 45         | 27         | 2.0 | 9620237  |
| Clay Content                            | %     | 4.3               | 5.9        | 4.0        | 2.0 | 9620237  |
| Gravel                                  | %     | <2.0              | <2.0       | <2.0       | 2.0 | 9620237  |
| Internal Sublet Analysis                |       |                   |            |            |     |          |
| Subcontract Parameter                   | N/A   | ATTACHED          | ATTACHED   | ATTACHED   | N/A | 9627061  |
| RDL = Reportable Detection Limit        |       |                   |            |            |     |          |
| N/A = Not Applicable                    |       |                   |            |            |     |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **PHYSICAL TESTING (SEDIMENT)**

| BV Labs ID          |       | WQ6244              | WQ6245              | WQ6246              | WQ6247              | WQ6248              | WQ6249              |      |          |
|---------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------|----------|
| Sampling Date       |       | 2019/10/01<br>09:20 | 2019/10/01<br>10:55 | 2019/10/01<br>13:35 | 2019/10/01<br>11:45 | 2019/10/01<br>09:30 | 2019/10/02<br>11:45 |      |          |
| COC Number          |       | g141143             | g141143             | g141143             | g141143             | g141143             | g141143             |      |          |
|                     | UNITS | BOAT LAUNCH         | C6 EAST /<br>G7     | C5 EAST /<br>G6     | C4 WEST             | BLIND DUPLICATE     | C3 WEST             | RDL  | QC Batch |
| ni . in             |       |                     |                     |                     |                     |                     |                     |      |          |
| Physical Properties |       |                     |                     |                     |                     |                     |                     |      |          |
| Moisture            | %     | 58                  | 50                  | 52                  | 53                  | 58                  | 47                  | 0.30 | 9619855  |

| BV Labs ID                   |        | WQ6250      | WQ6251     | WQ6252     |      |           |
|------------------------------|--------|-------------|------------|------------|------|-----------|
| Sampling Date                |        | 2019/10/02  | 2019/10/02 | 2019/10/02 |      |           |
| Sampling Date                |        | 10:18       | 12:50      | 16:20      |      |           |
| COC Number                   |        | g141143     | g141143    | g141143    |      |           |
|                              | UNITS  | C3 CENTRE / | G4         | C1 WEST    | RDL  | QC Batch  |
|                              | OIVITS | G5          | 04         | CI WEST    | KDL  | QC Battii |
|                              |        | 45          |            |            |      |           |
| Physical Properties          |        | - 65        |            |            |      |           |
| Physical Properties Moisture | %      | 23          | 42         | 26         | 0.30 | 9619855   |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **MICROBIOLOGY (SEDIMENT)**

| BV Labs ID                |          | WQ6244              | WQ6245              | WQ6246              | WQ6247              | WQ6248              | WQ6249              |     |          |
|---------------------------|----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----|----------|
| Sampling Date             |          | 2019/10/01<br>09:20 | 2019/10/01<br>10:55 | 2019/10/01<br>13:35 | 2019/10/01<br>11:45 | 2019/10/01<br>09:30 | 2019/10/02<br>11:45 |     |          |
| COC Number                |          | g141143             | g141143             | g141143             | g141143             | g141143             | g141143             |     |          |
|                           | UNITS    | BOAT LAUNCH         | C6 EAST /<br>G7     | C5 EAST /<br>G6     | C4 WEST             | BLIND DUPLICATE     | C3 WEST             | RDL | QC Batch |
| Microbiological Param.    |          |                     |                     |                     |                     |                     |                     |     |          |
| E. coli                   | MPN/100g | 790                 | 170                 | 5400                | 2800                | 130                 | 5400                | 20  | 9632009  |
| Fecal Coliforms           | MPN/100g | 790                 | 170                 | 5400                | 2800                | 130                 | 5400                | 20  | 9632015  |
| Total Coliforms           | MPN/100g | 9500                | 7900                | 13000               | 92000               | 230                 | 92000               | 20  | 9632007  |
| RDL = Reportable Detectio | n Limit  |                     |                     | •                   |                     |                     | •                   | •   | •        |

| BV Labs ID                   |          | WQ6250            | WQ6251     | WQ6252     |     |          |
|------------------------------|----------|-------------------|------------|------------|-----|----------|
| DV Labs ID                   |          |                   |            |            |     |          |
| Sampling Date                |          | 2019/10/02        | 2019/10/02 | 2019/10/02 |     |          |
| Sampling Date                |          | 10:18             | 12:50      | 16:20      |     |          |
| COC Number                   |          | g141143           | g141143    | g141143    |     |          |
|                              | UNITS    | C3 CENTRE /<br>G5 | G4         | C1 WEST    | RDL | QC Batch |
| Microbiological Param.       |          |                   |            |            |     |          |
| E. coli                      | MPN/100g | 5400              | 2400       | 3500       | 20  | 9632009  |
| Fecal Coliforms              | MPN/100g | 5400              | 2400       | 3500       | 20  | 9632015  |
| Total Coliforms              | MPN/100g | 92000             | 160000     | 160000     | 20  | 9632007  |
| RDL = Reportable Detection L | imit     |                   |            |            |     |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **MISCELLANEOUS (SEDIMENT)**

| BV Labs ID       |       | WQ6244              | WQ6245              | WQ6246              | WQ6247              | WQ6248              | WQ6249              |     |          |
|------------------|-------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-----|----------|
| Sampling Date    |       | 2019/10/01<br>09:20 | 2019/10/01<br>10:55 | 2019/10/01<br>13:35 | 2019/10/01<br>11:45 | 2019/10/01<br>09:30 | 2019/10/02<br>11:45 |     |          |
| COC Number       |       | g141143             | g141143             | g141143             | g141143             | g141143             | g141143             |     |          |
|                  | UNITS | BOAT LAUNCH         | C6 EAST /<br>G7     | C5 EAST /<br>G6     | C4 WEST             | BLIND DUPLICATE     | C3 WEST             | RDL | QC Batch |
| Misc. Inorganics |       |                     |                     |                     |                     |                     |                     |     |          |
| Takal Nikusasa   | 0/    | 0.3                 | 0.3                 | 0.3                 | 0.4                 | 0.4                 | 0.3                 | 0.2 | 9631184  |
| Total Nitrogen   | %     | 0.5                 | 0.5                 | 0.5                 | 0.4                 | 0.4                 | 0.5                 | 0.2 | 3031104  |

| BV Labs ID                      |        | WQ6250            | WQ6251     | WQ6252     |      |           |
|---------------------------------|--------|-------------------|------------|------------|------|-----------|
| Campling Date                   |        | 2019/10/02        | 2019/10/02 | 2019/10/02 |      |           |
| Sampling Date                   |        | 10:18             | 12:50      | 16:20      |      |           |
| COC Number                      |        | g141143           | g141143    | g141143    |      |           |
|                                 | UNITS  | C3 CENTRE /       | G4         | C1 WEST    | RDL  | QC Batch  |
|                                 |        |                   |            |            |      |           |
|                                 | Oitiis | G5                | J-         | CI WLS1    | NDL  | QC Dateil |
| Misc. Inorganics                | Oitiis | G5                | 04         | CI WLS1    | INDE | QC Batch  |
| Misc. Inorganics Total Nitrogen | %      | <b>G5</b><br><0.2 | <0.2       | <0.2       | 0.2  | 9631184   |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

|                                |       |                     |                     |                     |                     | _      | _        |
|--------------------------------|-------|---------------------|---------------------|---------------------|---------------------|--------|----------|
| BV Labs ID                     |       | WR1662              | WR1663              | WR1664              | WR1665              |        |          |
| Sampling Date                  |       | 2019/10/01<br>09:20 | 2019/10/01<br>09:20 | 2019/10/01<br>09:20 | 2019/10/01<br>09:20 |        |          |
| COC Number                     |       | g141143             | g141143             | g141143             | g141143             |        |          |
|                                | UNITS | BOAT LAUNCH-PW      | C6 EAST /<br>G7-PW  | C5 EAST /<br>G6-PW  | C4 WEST-PW          | RDL    | QC Batch |
| Calculated Parameters          |       |                     |                     |                     |                     |        |          |
| Sulphide (as H2S)              | mg/L  | 0.043               | 0.11                | 0.10                | 0.22                | 0.0019 | 9621785  |
| Demand Parameters              | •     |                     |                     |                     | •                   | •      |          |
| Biochemical Oxygen Demand      | mg/L  | <2.0                | 6.4                 | 17                  | 31                  | 2.0    | 9622914  |
| Anions                         | •     |                     |                     |                     |                     |        |          |
| Total Sulphide                 | mg/L  | 0.040               | 0.10                | 0.094               | 0.21                | 0.0018 | 9626992  |
| RDL = Reportable Detection Lir | nit   |                     |                     |                     | •                   |        |          |

| BV Labs ID                     |       | WR1666              | WR1667              | WR1668               | WR1669              | WR1670              |        |          |
|--------------------------------|-------|---------------------|---------------------|----------------------|---------------------|---------------------|--------|----------|
| Sampling Date                  |       | 2019/10/01<br>09:20 | 2019/10/01<br>09:20 | 2019/10/01<br>09:20  | 2019/10/01<br>09:20 | 2019/10/01<br>09:20 |        |          |
| COC Number                     |       | g141143             | g141143             | g141143              | g141143             | g141143             |        |          |
|                                | UNITS | BLIND DUPLICATE-PW  | C3 WEST-PW          | C3 CENTRE /<br>G5-PW | G4-PW               | C1 WEST-PW          | RDL    | QC Batch |
| Calculated Parameters          | •     |                     | •                   | •                    | •                   | •                   | •      | •        |
| Sulphide (as H2S)              | mg/L  | 0.029               | 0.069               | 0.027                | 0.089               | 0.028               | 0.0019 | 9621785  |
| Demand Parameters              |       |                     |                     |                      | •                   |                     |        | •        |
| Biochemical Oxygen Demand      | mg/L  | <2.0                | 9.5                 | 6.4                  | 14                  | 8.5                 | 2.0    | 9622914  |
| Anions                         |       |                     |                     |                      |                     |                     |        |          |
| Total Sulphide                 | mg/L  | 0.027               | 0.065               | 0.025                | 0.084               | 0.027               | 0.0018 | 9626992  |
| RDL = Reportable Detection Lir | nit   |                     |                     |                      |                     |                     | •      |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **CSR/CCME METALS IN SOIL WITH HG (SEDIMENT)**

| BV Labs ID                 |       | WQ6244      | WQ6245          |          | WQ6246          | WQ6247     |       |          |
|----------------------------|-------|-------------|-----------------|----------|-----------------|------------|-------|----------|
| Sampling Date              |       | 2019/10/01  | 2019/10/01      |          | 2019/10/01      | 2019/10/01 |       |          |
|                            |       | 09:20       | 10:55           |          | 13:35           | 11:45      |       |          |
| COC Number                 |       | g141143     | g141143         |          | g141143         | g141143    |       |          |
|                            | UNITS | BOAT LAUNCH | C6 EAST /<br>G7 | QC Batch | C5 EAST /<br>G6 | C4 WEST    | RDL   | QC Batch |
| Physical Properties        |       |             |                 |          |                 |            |       |          |
| Soluble (2:1) pH           | рН    | 7.84        | 7.93            | 9620788  | 8.10            | 8.14       | N/A   | 9620516  |
| Total Metals by ICPMS      | •     |             |                 | •        |                 | •          | •     |          |
| Total Aluminum (Al)        | mg/kg | 14400       | 12300           | 9622706  | 9030            | 13200      | 100   | 9620498  |
| Total Antimony (Sb)        | mg/kg | 0.95        | 1.13            | 9622706  | 0.92            | 1.54       | 0.10  | 9620498  |
| Total Arsenic (As)         | mg/kg | 5.25        | 4.72            | 9622706  | 4.29            | 5.76       | 0.20  | 9620498  |
| Total Barium (Ba)          | mg/kg | 125         | 121             | 9622706  | 77.8            | 123        | 0.10  | 9620498  |
| Total Beryllium (Be)       | mg/kg | 0.65        | 0.60            | 9622706  | 0.44            | 0.67       | 0.20  | 9620498  |
| Total Bismuth (Bi)         | mg/kg | 1.10        | 1.29            | 9622706  | 0.75            | 2.16       | 0.10  | 9620498  |
| Total Boron (B)            | mg/kg | 19.9        | 24.7            | 9622706  | 14.9            | 23.4       | 1.0   | 9620498  |
| Total Cadmium (Cd)         | mg/kg | 3.69        | 0.959           | 9622706  | 0.609           | 0.914      | 0.050 | 9620498  |
| Total Calcium (Ca)         | mg/kg | 84800       | 64500           | 9622706  | 41500           | 61800      | 100   | 9620498  |
| Total Chromium (Cr)        | mg/kg | 42.2        | 34.0            | 9622706  | 22.6            | 35.9       | 0.50  | 9620498  |
| Total Cobalt (Co)          | mg/kg | 11.7        | 9.60            | 9622706  | 6.91            | 10.1       | 0.10  | 9620498  |
| Total Copper (Cu)          | mg/kg | 116         | 99.8            | 9622706  | 64.1            | 125        | 0.50  | 9620498  |
| Total Iron (Fe)            | mg/kg | 27500       | 24600           | 9622706  | 18800           | 25600      | 100   | 9620498  |
| Total Lead (Pb)            | mg/kg | 73.9        | 50.9            | 9622706  | 46.1            | 51.3       | 0.10  | 9620498  |
| Total Lithium (Li)         | mg/kg | 27.7        | 23.5            | 9622706  | 19.4            | 28.1       | 0.50  | 9620498  |
| Total Magnesium (Mg)       | mg/kg | 16500       | 20500           | 9622706  | 13500           | 24000      | 100   | 9620498  |
| Total Manganese (Mn)       | mg/kg | 589         | 537             | 9622706  | 390             | 594        | 0.20  | 9620498  |
| Total Mercury (Hg)         | mg/kg | 0.278       | 0.174           | 9622706  | 0.104           | 0.197      | 0.050 | 9620498  |
| Total Molybdenum (Mo)      | mg/kg | 1.87        | 1.67            | 9622706  | 1.05            | 2.34       | 0.10  | 9620498  |
| Total Nickel (Ni)          | mg/kg | 29.4        | 24.7            | 9622706  | 18.0            | 26.6       | 0.50  | 9620498  |
| Total Phosphorus (P)       | mg/kg | 1030        | 1140            | 9622706  | 904             | 1560       | 10    | 9620498  |
| Total Potassium (K)        | mg/kg | 2490        | 2610            | 9622706  | 1620            | 2430       | 100   | 9620498  |
| Total Selenium (Se)        | mg/kg | 0.57        | <0.50           | 9622706  | <0.50           | 0.74       | 0.50  | 9620498  |
| Total Silver (Ag)          | mg/kg | 1.21        | 0.715           | 9622706  | 0.342           | 1.18       | 0.050 | 9620498  |
| Total Sodium (Na)          | mg/kg | 334         | 319             | 9622706  | 321             | 447        | 100   | 9620498  |
| Total Strontium (Sr)       | mg/kg | 311         | 175             | 9622706  | 108             | 151        | 0.10  | 9620498  |
| Total Thallium (TI)        | mg/kg | 0.297       | 0.242           | 9622706  | 0.180           | 0.263      | 0.050 | 9620498  |
| Total Tin (Sn)             | mg/kg | 7.11        | 4.25            | 9622706  | 2.96            | 5.05       | 0.10  | 9620498  |
| RDL = Reportable Detection | Limit |             |                 |          |                 |            |       |          |

RDL = Reportable Detection Limit

N/A = Not Applicable



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

| BV Labs ID                 |          | WQ6244      | WQ6245          |          | WQ6246          | WQ6247     |       |          |
|----------------------------|----------|-------------|-----------------|----------|-----------------|------------|-------|----------|
| Sampling Date              |          | 2019/10/01  | 2019/10/01      |          | 2019/10/01      | 2019/10/01 |       |          |
| Sampling Date              |          | 09:20       | 10:55           |          | 13:35           | 11:45      |       |          |
| COC Number                 |          | g141143     | g141143         |          | g141143         | g141143    |       |          |
|                            | UNITS    | BOAT LAUNCH | C6 EAST /<br>G7 | QC Batch | C5 EAST /<br>G6 | C4 WEST    | RDL   | QC Batch |
|                            |          |             | 97              |          | Go              |            |       |          |
| Total Titanium (Ti)        | mg/kg    | 148         | 143             | 9622706  | 101             | 150        | 1.0   | 9620498  |
| Total Tungsten (W)         | mg/kg    | <0.50       | <0.50           | 9622706  | <0.50           | <0.50      | 0.50  | 9620498  |
| Total Uranium (U)          | mg/kg    | 0.923       | 0.862           | 9622706  | 0.483           | 0.886      | 0.050 | 9620498  |
| Total Vanadium (V)         | mg/kg    | 27.8        | 26.8            | 9622706  | 20.1            | 28.7       | 1.0   | 9620498  |
| Total Zinc (Zn)            | mg/kg    | 571         | 451             | 9622706  | 339             | 532        | 1.0   | 9620498  |
| Total Zirconium (Zr)       | mg/kg    | 5.19        | 1.08            | 9622706  | 0.60            | 0.59       | 0.50  | 9620498  |
| RDL = Reportable Detection | on Limit |             |                 |          |                 |            |       |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **CSR/CCME METALS IN SOIL WITH HG (SEDIMENT)**

| BV Labs ID                 |       | WQ6248          |          | WQ6249     |          | WQ6250            | WQ6251     |       |          |
|----------------------------|-------|-----------------|----------|------------|----------|-------------------|------------|-------|----------|
| Sampling Date              |       | 2019/10/01      |          | 2019/10/02 |          | 2019/10/02        | 2019/10/02 |       |          |
| . 0                        |       | 09:30           |          | 11:45      |          | 10:18             | 12:50      |       |          |
| COC Number                 |       | g141143         |          | g141143    |          | g141143           | g141143    |       |          |
|                            | UNITS | BLIND DUPLICATE | QC Batch | C3 WEST    | QC Batch | C3 CENTRE /<br>G5 | G4         | RDL   | QC Batch |
| Physical Properties        |       |                 |          |            |          |                   |            |       |          |
| Soluble (2:1) pH           | рН    | 8.17            | 9620788  | 8.22       | 9620516  | 8.18              | 8.31       | N/A   | 9620528  |
| Total Metals by ICPMS      | •     | •               | •        | •          | •        |                   | •          |       | •        |
| Total Aluminum (Al)        | mg/kg | 13800           | 9622706  | 12200      | 9620498  | 9420              | 10700      | 100   | 9620518  |
| Total Antimony (Sb)        | mg/kg | 0.98            | 9622706  | 1.11       | 9620498  | 0.66              | 0.92       | 0.10  | 9620518  |
| Total Arsenic (As)         | mg/kg | 4.98            | 9622706  | 4.97       | 9620498  | 3.71              | 4.13       | 0.20  | 9620518  |
| Total Barium (Ba)          | mg/kg | 120             | 9622706  | 106        | 9620498  | 75.5              | 102        | 0.10  | 9620518  |
| Total Beryllium (Be)       | mg/kg | 0.67            | 9622706  | 0.60       | 9620498  | 0.53              | 0.55       | 0.20  | 9620518  |
| Total Bismuth (Bi)         | mg/kg | 1.03            | 9622706  | 1.03       | 9620498  | 0.40              | 0.55       | 0.10  | 9620518  |
| Total Boron (B)            | mg/kg | 21.1            | 9622706  | 21.7       | 9620498  | 20.1              | 22.6       | 1.0   | 9620518  |
| Total Cadmium (Cd)         | mg/kg | 3.57            | 9622706  | 0.753      | 9620498  | 0.601             | 0.623      | 0.050 | 9620518  |
| Total Calcium (Ca)         | mg/kg | 73900           | 9622706  | 69600      | 9620498  | 78400             | 67400      | 100   | 9620518  |
| Total Chromium (Cr)        | mg/kg | 40.1            | 9622706  | 31.5       | 9620498  | 19.8              | 25.7       | 0.50  | 9620518  |
| Total Cobalt (Co)          | mg/kg | 11.2            | 9622706  | 10.3       | 9620498  | 9.07              | 8.77       | 0.10  | 9620518  |
| Total Copper (Cu)          | mg/kg | 109             | 9622706  | 85.7       | 9620498  | 38.1              | 64.9       | 0.50  | 9620518  |
| Total Iron (Fe)            | mg/kg | 25900           | 9622706  | 24800      | 9620498  | 21100             | 22600      | 100   | 9620518  |
| Total Lead (Pb)            | mg/kg | 67.6            | 9622706  | 44.9       | 9620498  | 29.6              | 39.6       | 0.10  | 9620518  |
| Total Lithium (Li)         | mg/kg | 25.3            | 9622706  | 26.9       | 9620498  | 21.7              | 24.6       | 0.50  | 9620518  |
| Total Magnesium (Mg)       | mg/kg | 15100           | 9622706  | 23600      | 9620498  | 23700             | 24400      | 100   | 9620518  |
| Total Manganese (Mn)       | mg/kg | 563             | 9622706  | 588        | 9620498  | 623               | 550        | 0.20  | 9620518  |
| Total Mercury (Hg)         | mg/kg | 0.257           | 9622706  | 0.255      | 9620498  | 0.100             | 0.104      | 0.050 | 9620518  |
| Total Molybdenum (Mo)      | mg/kg | 1.67            | 9622706  | 1.49       | 9620498  | 0.87              | 1.15       | 0.10  | 9620518  |
| Total Nickel (Ni)          | mg/kg | 28.1            | 9622706  | 25.6       | 9620498  | 20.6              | 22.3       | 0.50  | 9620518  |
| Total Phosphorus (P)       | mg/kg | 908             | 9622706  | 1170       | 9620498  | 871               | 993        | 10    | 9620518  |
| Total Potassium (K)        | mg/kg | 2570            | 9622706  | 2330       | 9620498  | 2030              | 2280       | 100   | 9620518  |
| Total Selenium (Se)        | mg/kg | <0.50           | 9622706  | <0.50      | 9620498  | <0.50             | <0.50      | 0.50  | 9620518  |
| Total Silver (Ag)          | mg/kg | 1.10            | 9622706  | 0.607      | 9620498  | 0.263             | 0.387      | 0.050 | 9620518  |
| Total Sodium (Na)          | mg/kg | 320             | 9622706  | 215        | 9620498  | 209               | 245        | 100   | 9620518  |
| Total Strontium (Sr)       | mg/kg | 293             | 9622706  | 142        | 9620498  | 137               | 129        | 0.10  | 9620518  |
| Total Thallium (TI)        | mg/kg | 0.287           | 9622706  | 0.255      | 9620498  | 0.214             | 0.204      | 0.050 | 9620518  |
| Total Tin (Sn)             | mg/kg | 6.84            | 9622706  | 4.32       | 9620498  | 1.63              | 6.31       | 0.10  | 9620518  |
| RDL = Reportable Detection | Limit |                 |          |            |          |                   |            |       |          |

RDL = Reportable Detection Limit

N/A = Not Applicable



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

| BV Labs ID                   |       | WQ6248          |          | WQ6249     |          | WQ6250            | WQ6251     |       |          |
|------------------------------|-------|-----------------|----------|------------|----------|-------------------|------------|-------|----------|
| Sampling Date                |       | 2019/10/01      |          | 2019/10/02 |          | 2019/10/02        | 2019/10/02 |       |          |
| Sampling Date                |       | 09:30           |          | 11:45      |          | 10:18             | 12:50      |       |          |
| COC Number                   |       | g141143         |          | g141143    |          | g141143           | g141143    |       |          |
|                              | UNITS | BLIND DUPLICATE | QC Batch | C3 WEST    | QC Batch | C3 CENTRE /<br>G5 | G4         | RDL   | QC Batch |
| Total Titanium (Ti)          | mg/kg | 158             | 9622706  | 139        | 9620498  | 124               | 126        | 1.0   | 9620518  |
| Total Tungsten (W)           | mg/kg | <0.50           | 9622706  | <0.50      | 9620498  | <0.50             | <0.50      | 0.50  | 9620518  |
| Total Uranium (U)            | mg/kg | 0.840           | 9622706  | 0.766      | 9620498  | 0.798             | 0.680      | 0.050 | 9620518  |
| Total Vanadium (V)           | mg/kg | 26.7            | 9622706  | 24.9       | 9620498  | 20.4              | 22.8       | 1.0   | 9620518  |
| Total Zinc (Zn)              | mg/kg | 545             | 9622706  | 427        | 9620498  | 272               | 332        | 1.0   | 9620518  |
| Total Zirconium (Zr)         | mg/kg | 5.18            | 9622706  | 0.78       | 9620498  | 1.70              | 0.81       | 0.50  | 9620518  |
| RDL = Reportable Detection L | imit  |                 |          |            |          |                   | •          |       | -        |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

| BV Labs ID                 |       | WQ6252              |       |          |
|----------------------------|-------|---------------------|-------|----------|
| Sampling Date              |       | 2019/10/02<br>16:20 |       |          |
| COC Number                 |       | g141143             |       |          |
|                            | UNITS | C1 WEST             | RDL   | QC Batch |
| Physical Properties        |       |                     |       |          |
| Soluble (2:1) pH           | рН    | 8.45                | N/A   | 9620516  |
| Total Metals by ICPMS      |       |                     | ı     |          |
| Total Aluminum (Al)        | mg/kg | 10500               | 100   | 9620498  |
| Total Antimony (Sb)        | mg/kg | 0.53                | 0.10  | 9620498  |
| Total Arsenic (As)         | mg/kg | 3.56                | 0.20  | 9620498  |
| Total Barium (Ba)          | mg/kg | 100                 | 0.10  | 9620498  |
| Total Beryllium (Be)       | mg/kg | 0.55                | 0.20  | 9620498  |
| Total Bismuth (Bi)         | mg/kg | 0.22                | 0.10  | 9620498  |
| Total Boron (B)            | mg/kg | 23.5                | 1.0   | 9620498  |
| Total Cadmium (Cd)         | mg/kg | 1.32                | 0.050 | 9620498  |
| Total Calcium (Ca)         | mg/kg | 75600               | 100   | 9620498  |
| Total Chromium (Cr)        | mg/kg | 21.8                | 0.50  | 9620498  |
| Total Cobalt (Co)          | mg/kg | 8.41                | 0.10  | 9620498  |
| Total Copper (Cu)          | mg/kg | 44.6                | 0.50  | 9620498  |
| Total Iron (Fe)            | mg/kg | 23000               | 100   | 9620498  |
| Total Lead (Pb)            | mg/kg | 24.5                | 0.10  | 9620498  |
| Total Lithium (Li)         | mg/kg | 25.3                | 0.50  | 9620498  |
| Total Magnesium (Mg)       | mg/kg | 30100               | 100   | 9620498  |
| Total Manganese (Mn)       | mg/kg | 566                 | 0.20  | 9620498  |
| Total Mercury (Hg)         | mg/kg | 0.057               | 0.050 | 9620498  |
| Total Molybdenum (Mo)      | mg/kg | 1.05                | 0.10  | 9620498  |
| Total Nickel (Ni)          | mg/kg | 22.0                | 0.50  | 9620498  |
| Total Phosphorus (P)       | mg/kg | 715                 | 10    | 9620498  |
| Total Potassium (K)        | mg/kg | 2390                | 100   | 9620498  |
| Total Selenium (Se)        | mg/kg | <0.50               | 0.50  | 9620498  |
| Total Silver (Ag)          | mg/kg | 0.083               | 0.050 | 9620498  |
| Total Sodium (Na)          | mg/kg | 363                 | 100   | 9620498  |
| Total Strontium (Sr)       | mg/kg | 109                 | 0.10  | 9620498  |
| Total Thallium (TI)        | mg/kg | 0.120               | 0.050 | 9620498  |
| Total Tin (Sn)             | mg/kg | 1.36                | 0.10  | 9620498  |
| RDL = Reportable Detection | Limit | •                   |       |          |
| N/A = Not Applicable       |       |                     |       |          |
|                            |       |                     |       |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

| 1                          |         | i e        |       |          |
|----------------------------|---------|------------|-------|----------|
| BV Labs ID                 |         | WQ6252     |       |          |
| c !: 5 .                   |         | 2019/10/02 |       |          |
| Sampling Date              |         | 16:20      |       |          |
| COC Number                 |         | g141143    |       |          |
|                            | UNITS   | C1 WEST    | RDL   | QC Batch |
| Total Titanium (Ti)        | mg/kg   | 121        | 1.0   | 9620498  |
| Total Tungsten (W)         | mg/kg   | <0.50      | 0.50  | 9620498  |
| Total Uranium (U)          | mg/kg   | 0.659      | 0.050 | 9620498  |
| Total Vanadium (V)         | mg/kg   | 22.1       | 1.0   | 9620498  |
| Total Zinc (Zn)            | mg/kg   | 214        | 1.0   | 9620498  |
| Total Zirconium (Zr)       | mg/kg   | 2.82       | 0.50  | 9620498  |
| RDL = Reportable Detection | n Limit |            |       |          |



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **CSR PAH IN SEDIMENTS BY GC-MS (SEDIMENT)**

| BV Labs ID                  |       | WQ6244      |        | WQ6245          |         | WQ6246          |        | WQ6247     |         |          |
|-----------------------------|-------|-------------|--------|-----------------|---------|-----------------|--------|------------|---------|----------|
| Campling Data               |       | 2019/10/01  |        | 2019/10/01      |         | 2019/10/01      |        | 2019/10/01 |         |          |
| Sampling Date               |       | 09:20       |        | 10:55           |         | 13:35           |        | 11:45      |         |          |
| COC Number                  |       | g141143     |        | g141143         |         | g141143         |        | g141143    |         |          |
|                             | UNITS | BOAT LAUNCH | RDL    | C6 EAST /<br>G7 | RDL     | C5 EAST /<br>G6 | RDL    | C4 WEST    | RDL     | QC Batch |
| Calculated Parameters       |       |             |        |                 |         |                 |        |            |         |          |
| Low Molecular Weight PAH's  | mg/kg | 0.54        | 0.0022 | 1.1             | 0.0010  | 1.3             | 0.0020 | 1.1        | 0.0018  | 9618184  |
| High Molecular Weight PAH`s | mg/kg | 4.2         | 0.0022 | 6.9             | 0.0010  | 6.1             | 0.0020 | 6.6        | 0.0018  | 9618184  |
| Total PAH                   | mg/kg | 4.7         | 0.0022 | 8.0             | 0.0010  | 7.3             | 0.0020 | 7.8        | 0.0018  | 9618184  |
| Polycyclic Aromatics        | •     |             |        |                 |         |                 |        |            |         |          |
| Naphthalene                 | mg/kg | 0.017 (1)   | 0.0022 | 0.028           | 0.0010  | 0.029 (1)       | 0.0020 | 0.023 (1)  | 0.0018  | 9621452  |
| 2-Methylnaphthalene         | mg/kg | 0.022 (1)   | 0.0022 | 0.025           | 0.0010  | 0.027 (1)       | 0.0020 | 0.034 (1)  | 0.0018  | 9621452  |
| Acenaphthylene              | mg/kg | 0.023 (1)   | 0.0011 | 0.022           | 0.00050 | 0.020 (1)       | 0.0010 | 0.021 (1)  | 0.00090 | 9621452  |
| Acenaphthene                | mg/kg | 0.030 (1)   | 0.0011 | 0.048           | 0.00050 | 0.084 (1)       | 0.0010 | 0.045 (1)  | 0.00090 | 9621452  |
| Fluorene                    | mg/kg | 0.040 (1)   | 0.0022 | 0.069           | 0.0010  | 0.087 (1)       | 0.0020 | 0.074 (1)  | 0.0018  | 9621452  |
| Phenanthrene                | mg/kg | 0.33 (1)    | 0.0022 | 0.79            | 0.0010  | 0.89 (1)        | 0.0020 | 0.83 (1)   | 0.0018  | 9621452  |
| Anthracene                  | mg/kg | 0.078 (1)   | 0.0022 | 0.12            | 0.0010  | 0.12 (1)        | 0.0020 | 0.10 (1)   | 0.0018  | 9621452  |
| Fluoranthene                | mg/kg | 1.3 (1)     | 0.0022 | 2.3             | 0.0010  | 2.0 (1)         | 0.0020 | 2.2 (1)    | 0.0018  | 9621452  |
| Pyrene                      | mg/kg | 0.99 (1)    | 0.0022 | 1.7             | 0.0010  | 1.5 (1)         | 0.0020 | 1.6 (1)    | 0.0018  | 9621452  |
| Benzo(a)anthracene          | mg/kg | 0.47 (1)    | 0.0022 | 0.74            | 0.0010  | 0.61 (1)        | 0.0020 | 0.71 (1)   | 0.0018  | 9621452  |
| Chrysene                    | mg/kg | 0.70 (1)    | 0.0022 | 1.3             | 0.0010  | 1.1 (1)         | 0.0020 | 1.3 (1)    | 0.0018  | 9621452  |
| Benzo(b&j)fluoranthene      | mg/kg | 1.1 (1)     | 0.0022 | 1.5             | 0.0010  | 1.3 (1)         | 0.0020 | 1.3 (1)    | 0.0018  | 9621452  |
| Benzo(b)fluoranthene        | mg/kg | 0.74 (1)    | 0.0022 | 1.1             | 0.0010  | 0.93 (1)        | 0.0020 | 1.0 (1)    | 0.0018  | 9621452  |
| Benzo(k)fluoranthene        | mg/kg | 0.34 (1)    | 0.0022 | 0.39            | 0.0010  | 0.34 (1)        | 0.0020 | 0.47 (1)   | 0.0018  | 9621452  |
| Benzo(a)pyrene              | mg/kg | 0.60 (1)    | 0.0022 | 0.88            | 0.0010  | 0.75 (1)        | 0.0020 | 0.69 (1)   | 0.0018  | 9621452  |
| Indeno(1,2,3-cd)pyrene      | mg/kg | 0.41 (1)    | 0.0044 | 0.55            | 0.0020  | 0.54 (1)        | 0.0040 | 0.63 (1)   | 0.0036  | 9621452  |
| Dibenz(a,h)anthracene       | mg/kg | 0.12 (1)    | 0.0011 | 0.17            | 0.00050 | 0.13 (1)        | 0.0010 | 0.17 (1)   | 0.00090 | 9621452  |
| Benzo(g,h,i)perylene        | mg/kg | 0.52 (1)    | 0.0044 | 0.72            | 0.0020  | 0.63 (1)        | 0.0040 | 0.74 (1)   | 0.0036  | 9621452  |
| Surrogate Recovery (%)      |       |             |        |                 |         |                 |        |            |         |          |
| D10-ANTHRACENE (sur.)       | %     | 83          |        | 81              |         | 83              |        | 83         |         | 9621452  |
| D8-ACENAPHTHYLENE (sur.)    | %     | 80          |        | 78              |         | 80              |        | 80         |         | 9621452  |
| D8-NAPHTHALENE (sur.)       | %     | 80          |        | 70              |         | 70              |        | 69         |         | 9621452  |
| TERPHENYL-D14 (sur.)        | %     | 76          |        | 73              |         | 78              |        | 76         |         | 9621452  |

RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to high moisture content, sample contains => 50% moisture.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **CSR PAH IN SEDIMENTS BY GC-MS (SEDIMENT)**

|                               | 1     | <b>†</b>        |        | 1          |                   |            | 1          |         | <del></del> |
|-------------------------------|-------|-----------------|--------|------------|-------------------|------------|------------|---------|-------------|
| BV Labs ID                    |       | WQ6248          |        | WQ6249     | WQ6250            | WQ6251     | WQ6252     |         |             |
| Sampling Date                 |       | 2019/10/01      |        | 2019/10/02 | 2019/10/02        | 2019/10/02 | 2019/10/02 |         |             |
|                               |       | 09:30           |        | 11:45      | 10:18             | 12:50      | 16:20      |         |             |
| COC Number                    |       | g141143         |        | g141143    | g141143           | g141143    | g141143    |         |             |
|                               | UNITS | BLIND DUPLICATE | RDL    | C3 WEST    | C3 CENTRE /<br>G5 | G4         | C1 WEST    | RDL     | QC Batch    |
| Calculated Parameters         |       |                 |        |            |                   |            |            |         |             |
| Low Molecular Weight PAH's    | mg/kg | 0.46            | 0.0021 | 3.7        | 0.91              | 0.79       | 1.1        | 0.0010  | 9618184     |
| High Molecular Weight PAH`s   | mg/kg | 3.8             | 0.0021 | 9.1        | 4.8               | 4.5        | 5.5        | 0.0010  | 9618184     |
| Total PAH                     | mg/kg | 4.3             | 0.0021 | 13         | 5.7               | 5.3        | 6.7        | 0.0010  | 9618184     |
| Polycyclic Aromatics          |       |                 |        |            |                   |            | •          |         |             |
| Naphthalene                   | mg/kg | 0.015 (1)       | 0.0021 | 0.13       | 0.0089            | 0.014      | 0.014      | 0.0010  | 9621452     |
| 2-Methylnaphthalene           | mg/kg | 0.022 (1)       | 0.0021 | 0.067      | 0.0096            | 0.014      | 0.012      | 0.0010  | 9621452     |
| Acenaphthylene                | mg/kg | 0.022 (1)       | 0.0011 | 0.016      | 0.012             | 0.013      | 0.011      | 0.00050 | 9621452     |
| Acenaphthene                  | mg/kg | 0.024 (1)       | 0.0011 | 0.27       | 0.038             | 0.030      | 0.049      | 0.00050 | 9621452     |
| Fluorene                      | mg/kg | 0.037 (1)       | 0.0021 | 0.31       | 0.048             | 0.047      | 0.063      | 0.0010  | 9621452     |
| Phenanthrene                  | mg/kg | 0.27 (1)        | 0.0021 | 2.5        | 0.68              | 0.60       | 0.86       | 0.0010  | 9621452     |
| Anthracene                    | mg/kg | 0.067 (1)       | 0.0021 | 0.43       | 0.12              | 0.080      | 0.13       | 0.0010  | 9621452     |
| Fluoranthene                  | mg/kg | 1.1 (1)         | 0.0021 | 3.2        | 1.6               | 1.5        | 1.9        | 0.0010  | 9621452     |
| Pyrene                        | mg/kg | 0.88 (1)        | 0.0021 | 2.3        | 1.2               | 1.1        | 1.4        | 0.0010  | 9621452     |
| Benzo(a)anthracene            | mg/kg | 0.43 (1)        | 0.0021 | 1.1        | 0.54              | 0.45       | 0.60       | 0.0010  | 9621452     |
| Chrysene                      | mg/kg | 0.65 (1)        | 0.0021 | 1.5        | 0.75              | 0.79       | 0.86       | 0.0010  | 9621452     |
| Benzo(b&j)fluoranthene        | mg/kg | 0.99 (1)        | 0.0021 | 1.4        | 0.90              | 0.98       | 1.1        | 0.0010  | 9621452     |
| Benzo(b)fluoranthene          | mg/kg | 0.70 (1)        | 0.0021 | 1.0        | 0.63              | 0.69       | 0.74       | 0.0010  | 9621452     |
| Benzo(k)fluoranthene          | mg/kg | 0.27 (1)        | 0.0021 | 0.41       | 0.23              | 0.25       | 0.31       | 0.0010  | 9621452     |
| Benzo(a)pyrene                | mg/kg | 0.57 (1)        | 0.0021 | 0.94       | 0.58              | 0.57       | 0.69       | 0.0010  | 9621452     |
| Indeno(1,2,3-cd)pyrene        | mg/kg | 0.38 (1)        | 0.0042 | 0.54       | 0.36              | 0.39       | 0.45       | 0.0020  | 9621452     |
| Dibenz(a,h)anthracene         | mg/kg | 0.11 (1)        | 0.0011 | 0.16       | 0.10              | 0.11       | 0.12       | 0.00050 | 9621452     |
| Benzo(g,h,i)perylene          | mg/kg | 0.48 (1)        | 0.0042 | 0.57       | 0.38              | 0.43       | 0.46       | 0.0020  | 9621452     |
| Surrogate Recovery (%)        |       |                 |        |            |                   |            |            |         |             |
| D10-ANTHRACENE (sur.)         | %     | 84              |        | 82         | 83                | 81         | 84         |         | 9621452     |
| D8-ACENAPHTHYLENE (sur.)      | %     | 80              |        | 79         | 80                | 78         | 81         |         | 9621452     |
| D8-NAPHTHALENE (sur.)         | %     | 69              |        | 66         | 68                | 67         | 71         |         | 9621452     |
| TERPHENYL-D14 (sur.)          | %     | 74              |        | 76         | 81                | 77         | 81         |         | 9621452     |
| DDI Danastalala Datastian Lin |       |                 |        |            |                   |            |            |         |             |

RDL = Reportable Detection Limit

(1) Detection limits raised due to high moisture content, sample contains => 50% moisture.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

#### **GENERAL COMMENTS**

Each temperature is the average of up to three cooler temperatures taken at receipt

| 8.0°C |
|-------|
| 6.0°C |
| 6.0°C |
| 7.3°C |
| 6.0°C |
| 5.7°C |
| 6.0°C |
| 4.3°C |
| 5.3°C |
|       |

Version #2: Report reissued to include results for Fecal Coliforms, Total Coliforms, and E. Coli on samples the following samples:

**BOAT LAUNCH** 

C6 EAST / G7

C5 EAST / G6

C4 WEST

**BLIND DUPLICATE** 

C3 WEST

C3 CENTRE / G5

G4

C1 WEST

As per client request received 2019/10/17.

Sample WR1662 [BOAT LAUNCH-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1663 [C6 EAST / G7-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1664 [C5 EAST / G6-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1665 [C4 WEST-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1666 [BLIND DUPLICATE-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1667 [C3 WEST-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1668 [C3 CENTRE / G5-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

Sample WR1669 [G4-PW] : Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample WR1670 [C1 WEST-PW]: Sample was analyzed past method specified hold time for Biochemical Oxygen Demand. Sample was analyzed past method specified hold time for Total Sulphide. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Results relate only to the items tested.



Appendix "A" to Report PW19008(g)/LS19004(g)
Page 134 of 406

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

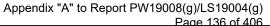
# **QUALITY ASSURANCE REPORT**

BV Labs Job #: B985653 RV Labs Job #: B985653 Report Date: 2019/11/15

|          |                          |            | Matrix Spike | Spike     | Spiked Blank | Blank     | Method Blank | Blank | RPD       | 0         | QC Sta               | QC Standard |
|----------|--------------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|----------------------|-------------|
| QC Batch | Parameter                | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits | QC Limits % Recovery | QC Limits   |
| 9621452  | D10-ANTHRACENE (sur.)    | 2019/10/10 | 83           | 50 - 140  | 83           | 50 - 140  | 88           | %     |           |           |                      |             |
| 9621452  | D8-ACENAPHTHYLENE (sur.) | 2019/10/10 | 79           | 50 - 140  | 82           | 50 - 140  | 87           | %     |           |           |                      |             |
| 9621452  | D8-NAPHTHALENE (sur.)    | 2019/10/10 | 29           | 50 - 140  | 80           | 50 - 140  | 85           | %     |           |           |                      |             |
| 9621452  | TERPHENYL-D14 (sur.)     | 2019/10/10 | 80           | 50 - 140  | 84           | 50 - 140  | 91           | %     |           |           |                      |             |
| 9619855  | Moisture                 | 2019/10/09 |              |           |              |           | <0.30        | %     | 3.5       | 20        |                      |             |
| 9620237  | % sand by hydrometer     | 2019/10/10 |              |           |              |           |              |       | 0.46      | 35        | 92                   | 90 - 110    |
| 9620237  | % silt by hydrometer     | 2019/10/10 |              |           |              |           |              |       | 0.15      | 32        |                      |             |
| 9620237  | Clay Content             | 2019/10/10 |              |           |              |           |              |       | 0.82      | 32        |                      |             |
| 9620237  | Gravel                   | 2019/10/10 |              |           |              |           |              |       | NC        | 35        |                      |             |
| 9620498  | Total Aluminum (AI)      | 2019/10/09 | NC           | 75 - 125  | 104          | 75 - 125  | <100         | mg/kg | 2.5       | 40        | 101                  | 70 - 130    |
| 9620498  | Total Antimony (Sb)      | 2019/10/09 | 95           | 75 - 125  | 102          | 75 - 125  | <0.10        | mg/kg | 5.4       | 30        | 66                   | 70 - 130    |
| 9620498  | Total Arsenic (As)       | 2019/10/09 | 92           | 75 - 125  | 104          | 75 - 125  | <0.20        | mg/kg | 4.2       | 30        | 06                   | 70 - 130    |
| 9620498  | Total Barium (Ba)        | 2019/10/09 | 200 (1)      | 75 - 125  | 101          | 75 - 125  | <0.10        | mg/kg | 7.4       | 40        | 66                   | 70 - 130    |
| 9620498  | Total Beryllium (Be)     | 2019/10/09 | 95           | 75 - 125  | 86           | 75 - 125  | <0.20        | mg/kg | 9.4       | 30        | 111                  | 70 - 130    |
| 9620498  | Total Bismuth (Bi)       | 2019/10/09 | 95           | 75 - 125  | 101          | 75 - 125  | <0.10        | mg/kg | 8.2       | 30        |                      |             |
| 9620498  | Total Boron (B)          | 2019/10/09 | 91           | 75 - 125  | 95           | 75 - 125  | <1.0         | mg/kg | 15        | 30        |                      |             |
| 9620498  | Total Cadmium (Cd)       | 2019/10/09 | 92           | 75 - 125  | 100          | 75 - 125  | <0.050       | mg/kg | 4.2       | 30        | 86                   | 70 - 130    |
| 9620498  | Total Calcium (Ca)       | 2019/10/09 | NC           | 75 - 125  | 100          | 75 - 125  | <100         | mg/kg | 0.54      | 30        | 86                   | 70 - 130    |
| 9620498  | Total Chromium (Cr)      | 2019/10/09 | 100          | 75 - 125  | 104          | 75 - 125  | <0.50        | mg/kg | 3.9       | 30        | 102                  | 70 - 130    |
| 9620498  | Total Cobalt (Co)        | 2019/10/09 | 87           | 75 - 125  | 97           | 75 - 125  | <0.10        | mg/kg | 6.5       | 30        | 96                   | 70 - 130    |
| 9620498  | Total Copper (Cu)        | 2019/10/09 | 85           | 75 - 125  | 100          | 75 - 125  | <0.50        | mg/kg | 3.0       | 30        | 101                  | 70 - 130    |
| 9620498  | Total Iron (Fe)          | 2019/10/09 | NC           | 75 - 125  | 101          | 75 - 125  | <100         | mg/kg | 4.6       | 30        | 6                    | 70 - 130    |
| 9620498  | Total Lead (Pb)          | 2019/10/09 | 94           | 75 - 125  | 103          | 75 - 125  | <0.10        | mg/kg | 8.3       | 40        | 109                  | 70 - 130    |
| 9620498  | Total Lithium (Li)       | 2019/10/09 | 91           | 75 - 125  | 66           | 75 - 125  | <0.50        | mg/kg | 10        | 30        | 100                  | 70 - 130    |
| 9620498  | Total Magnesium (Mg)     | 2019/10/09 | NC           | 75 - 125  | 101          | 75 - 125  | <100         | mg/kg | 1.4       | 30        | 100                  | 70 - 130    |
| 9620498  | Total Manganese (Mn)     | 2019/10/09 | NC           | 75 - 125  | 102          | 75 - 125  | <0.20        | mg/kg | 13        | 30        | 102                  | 70 - 130    |
| 9620498  | Total Mercury (Hg)       | 2019/10/09 | 92           | 75 - 125  | 103          | 75 - 125  | <0.050       | mg/kg |           |           | 96                   | 70 - 130    |
| 9620498  | Total Molybdenum (Mo)    | 2019/10/09 | 93           | 75 - 125  | 97           | 75 - 125  | <0.10        | mg/kg | 4.8       | 40        | 101                  | 70 - 130    |
| 9620498  | Total Nickel (Ni)        | 2019/10/09 | 87           | 75 - 125  | 100          | 75 - 125  | <0.50        | mg/kg | 5.3       | 30        | 105                  | 70 - 130    |
| 9620498  | Total Phosphorus (P)     | 2019/10/09 | NC           | 75 - 125  | 101          | 75 - 125  | <10          | mg/kg | 0.51      | 30        | 96                   | 70 - 130    |
| 9620498  | Total Potassium (K)      | 2019/10/09 | 190 (1)      | 75 - 125  | 103          | 75 - 125  | <100         | mg/kg | 4.4       | 40        | 06                   | 70 - 130    |

## Page 20 of 29

BUREAU VERITAS BV Labs Job #: B985653 Report Date: 2019/11/15


# QUALITY ASSURANCE REPORT(CONT'D)

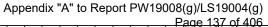
SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000

Your P.O. #: PENDING Sampler Initials: KAT

|          |                      |            | Matrix Spike | Spike     | Spiked Blank | Blank     | Method Blank | Slank | RPD       |           | QC Standard          | ndard      |
|----------|----------------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|----------------------|------------|
| QC Batch | Parameter            | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits | % Recovery QC Limits | QC Limits  |
| 9620498  | Total Selenium (Se)  | 2019/10/09 | 93           | 75 - 125  | 100          | 75 - 125  | <0.50        | mg/kg | 1.0       | 30        |                      |            |
| 9620498  | Total Silver (Ag)    | 2019/10/09 | 90           | 75 - 125  | 100          | 75 - 125  | <0.050       | mg/kg | 2.7       | 40        | 68                   | 70 - 130   |
| 9620498  | Total Sodium (Na)    | 2019/10/09 | 66           | 75 - 125  | 105          | 75 - 125  | <100         | mg/kg | NC        | 40        | 94                   | 70 - 130   |
| 9620498  | Total Strontium (Sr) | 2019/10/09 | 103          | 75 - 125  | 104          | 75 - 125  | <0.10        | mg/kg | 1.1       | 40        | 106                  | 70 - 130   |
| 9620498  | Total Thallium (TI)  | 2019/10/09 | 96           | 75 - 125  | 105          | 75 - 125  | <0.050       | mg/kg | 3.7       | 30        | 86                   | 70 - 130   |
| 9620498  | Total Tin (Sn)       | 2019/10/09 | 94           | 75 - 125  | 101          | 75 - 125  | <0.10        | mg/kg | 8.1       | 40        | 96                   | 70 - 130   |
| 9620498  | Total Titanium (Ti)  | 2019/10/09 | 117          | 75 - 125  | 100          | 75 - 125  | <1.0         | mg/kg | 0.67      | 40        |                      |            |
| 9620498  | Total Tungsten (W)   | 2019/10/09 | 06           | 75 - 125  | 102          | 75 - 125  | <0.50        | mg/kg | NC        | 40        |                      |            |
| 9620498  | Total Uranium (U)    | 5019/10/09 | 92           | 75 - 125  | 101          | 75 - 125  | <0.050       | mg/kg | 0.98      | 30        | 102                  | 70 - 130   |
| 9620498  | Total Vanadium (V)   | 2019/10/09 | 110          | 75 - 125  | 105          | 75 - 125  | <1.0         | mg/kg | 4.2       | 30        | 102                  | 70 - 130   |
| 9620498  | Total Zinc (Zn)      | 2019/10/09 | NC           | 75 - 125  | 104          | 75 - 125  | <1.0         | mg/kg | 3.5       | 30        | 102                  | 70 - 130   |
| 9620498  | Total Zirconium (Zr) | 2019/10/09 | 121          | 75 - 125  | 103          | 75 - 125  | <0.50        | mg/kg | 3.4       | 40        |                      |            |
| 9620516  | Soluble (2:1) pH     | 2019/10/09 |              |           | 100          | 97 - 103  |              |       | 0         | 20        |                      |            |
| 9620518  | Total Aluminum (Al)  | 2019/10/09 | NC           | 75 - 125  | 102          | 75 - 125  | <100         | mg/kg |           |           | 103                  | 70 - 130   |
| 9620518  | Total Antimony (Sb)  | 2019/10/09 | 95           | 75 - 125  | 103          | 75 - 125  | <0.10        | mg/kg |           |           | 103                  | 70 - 130   |
| 9620518  | Total Arsenic (As)   | 2019/10/09 | 98           | 75 - 125  | 101          | 75 - 125  | <0.20        | mg/kg |           |           | 88                   | 70 - 130   |
| 9620518  | Total Barium (Ba)    | 2019/10/09 | 97           | 75 - 125  | 96           | 75 - 125  | <0.10        | mg/kg |           |           | 101                  | 70 - 130   |
| 9620518  | Total Beryllium (Be) | 2019/10/09 | 94           | 75 - 125  | 96           | 75 - 125  | <0.20        | mg/kg |           |           | 102                  | 70 - 130   |
| 9620518  | Total Bismuth (Bi)   | 2019/10/09 | 96           | 75 - 125  | 98           | 75 - 125  | <0.10        | mg/kg |           |           |                      |            |
| 9620518  | Total Boron (B)      | 2019/10/09 | 91           | 75 - 125  | 100          | 75 - 125  | <1.0         | mg/kg |           |           |                      |            |
| 9620518  | Total Cadmium (Cd)   | 2019/10/09 | 96           | 75 - 125  | 101          | 75 - 125  | <0.050       | mg/kg |           |           | 89                   | 70 - 130   |
| 9620518  | Total Calcium (Ca)   | 2019/10/09 | NC           | 75 - 125  | 100          | 75 - 125  | <100         | mg/kg |           |           | 94                   | 70 - 130   |
| 9620518  | Total Chromium (Cr)  | 2019/10/09 | 98           | 75 - 125  | 101          | 75 - 125  | <0.50        | mg/kg |           |           | 100                  | 70 - 130   |
| 9620518  | Total Cobalt (Co)    | 2019/10/09 | 93           | 75 - 125  | 95           | 75 - 125  | <0.10        | mg/kg |           |           | 94                   | 70 - 130   |
| 9620518  | Total Copper (Cu)    | 2019/10/09 | 92           | 75 - 125  | 96           | 75 - 125  | <0.50        | mg/kg |           |           | 103                  | 70 - 130 T |
| 9620518  | Total Iron (Fe)      | 2019/10/09 | NC           | 75 - 125  | 66           | 75 - 125  | <100         | mg/kg |           |           | 86                   | 70 - 130 g |
| 9620518  | Total Lead (Pb)      | 2019/10/09 | 96           | 75 - 125  | 96           | 75 - 125  | <0.10        | mg/kg | 2.5       | 40        | 106                  | 70 - 130   |
| 9620518  | Total Lithium (Li)   | 2019/10/09 | 95           | 75 - 125  | 101          | 75 - 125  | <0.50        | mg/kg |           |           | 103                  | 70 - 130   |
| 9620518  | Total Magnesium (Mg) | 2019/10/09 | NC           | 75 - 125  | 99           | 75 - 125  | <100         | mg/kg |           |           | 101                  | 70 - 130   |
| 9620518  | Total Manganese (Mn) | 2019/10/09 | 136 (1)      | 75 - 125  | 100          | 75 - 125  | <0.20        | mg/kg |           |           | 102                  | 70 - 130   |
| 9620518  | Total Mercury (Hg)   | 2019/10/09 | 98           | 75 - 125  | 99           | 75 - 125  | <0.050       | mg/kg |           |           | 92                   | 70 - 130   |

## Page 21 of 29




SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

# QUALITY ASSURANCE REPORT(CONT'D) Clie

BV Labs Job #: B985653 RV Labs Job #: B985653 Report Date: 2019/11/15

| Date   % Recovery   QC Limits   Q  |                   |                |            | Matrix Spike | Spike     | Spiked Blank | Blank     | Method Blank | Blank | RPD       | ۵         | QC St      | QC Standard |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|------------|--------------|-----------|--------------|-----------|--------------|-------|-----------|-----------|------------|-------------|
| (Mo)         2019/10/09         94         75-125         95         75-125         60.10         mg/kg           1)         2019/10/09         95         75-125         99         75-125         40.50         mg/kg           1)         2019/10/09         107         75-125         99         75-125         40.0         mg/kg           2019/10/09         107         75-125         100         75-125         40.0         mg/kg           2019/10/09         96         75-125         100         75-125         40.0         mg/kg           2019/10/09         108         75-125         100         75-125         40.0         mg/kg           2019/10/09         108         75-125         100         75-125         40.0         mg/kg           2019/10/09         108         75-125         100         75-125         40.10         mg/kg           2019/10/09         96         75-125         100         75-125         40.10         mg/kg           1         2019/10/09         96         75-125         100         75-125         40.0         mg/kg           1         2019/10/09         97         75-125         100         75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter         |                | Date       | % Recovery   | QC Limits | % Recovery   | QC Limits | Value        | UNITS | Value (%) | QC Limits | % Recovery | QC Limits   |
| 9)         75 - 125         99         75 - 125         60 - 50         mg/kg           7)         2019/10/09         93         75 - 125         97         75 - 125         < 0.50         mg/kg           2019/10/09         96         75 - 125         100         75 - 125         < 0.50         mg/kg           2019/10/09         96         75 - 125         100         75 - 125         < 0.50         mg/kg           2019/10/09         96         75 - 125         100         75 - 125         < 0.50         mg/kg           1         2019/10/09         105         75 - 125         100         75 - 125         < 0.50         mg/kg           1         2019/10/09         105         75 - 125         100         75 - 125         < 0.00         mg/kg           2         2019/10/09         105         75 - 125         100         75 - 125         < 0.10         mg/kg           1         2019/10/09         10         75 - 125         100         75 - 125         < 0.10         mg/kg           1         2019/10/09         94         75 - 125         100         75 - 125         < 0.10         mg/kg           1         2019/10/09         91         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Molyb       | denum (Mo)     | 2019/10/09 | 94           | 75 - 125  | 92           | 75 - 125  | <0.10        | mg/kg |           |           | 96         | 70 - 130    |
| (b)         (c)         (c) <td>Total Nickel (Ni)</td> <td>I (Ni)</td> <td>2019/10/09</td> <td>92</td> <td>75 - 125</td> <td>66</td> <td>75 - 125</td> <td>&lt;0.50</td> <td>mg/kg</td> <td></td> <td></td> <td>101</td> <td>70 - 130</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Nickel (Ni) | I (Ni)         | 2019/10/09 | 92           | 75 - 125  | 66           | 75 - 125  | <0.50        | mg/kg |           |           | 101        | 70 - 130    |
| 2019/10/09         107         75-125         100         75-125         <100         mg/kg           2019/10/09         96         75-125         96         75-125         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Phos        | phorus (P)     | 2019/10/09 | 93           | 75 - 125  | 6            | 75 - 125  | <10          | mg/kg |           |           | 97         | 70 - 130    |
| 2019/10/09         96         75-125         96         75-125         60.50         mg/kg           2019/10/09         155-125         100         75-125         100         75-125         0.050         mg/kg           10-10/10/09         105         75-125         100         75-125         0.050         mg/kg           10-10/10/09         105         75-125         100         75-125         0.050         mg/kg           2019/10/09         105         75-125         102         75-125         0.050         mg/kg           2019/10/09         96         75-125         102         75-125         0.050         mg/kg           2019/10/09         96         75-125         96         75-125         0.050         mg/kg           2019/10/09         97         75-125         96         75-125         0.050         mg/kg           10         2019/10/09         94         75-125         95         75-125         0.050         mg/kg           10         2019/10/09         95         75-125         100         75-125         0.050         mg/kg           10         2019/10/09         95         75-125         100         75-125 <td< td=""><td>Total Pota</td><td>ssium (K)</td><td>2019/10/09</td><td>107</td><td>75 - 125</td><td>100</td><td>75 - 125</td><td>&lt;100</td><td>mg/kg</td><td></td><td></td><td>91</td><td>70 - 130</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Pota        | ssium (K)      | 2019/10/09 | 107          | 75 - 125  | 100          | 75 - 125  | <100         | mg/kg |           |           | 91         | 70 - 130    |
| 1019/10/09         95         75-125         100         75-125 <t< td=""><td>Total Seler</td><td>ium (Se)</td><td>2019/10/09</td><td>96</td><td>75 - 125</td><td>96</td><td>75 - 125</td><td>&lt;0.50</td><td>mg/kg</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Seler       | ium (Se)       | 2019/10/09 | 96           | 75 - 125  | 96           | 75 - 125  | <0.50        | mg/kg |           |           |            |             |
| 1019/10/09         128 (1)         75-125         101         75-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Silver (Ag) | r (Ag)         | 2019/10/09 | 92           | 75 - 125  | 100          | 75 - 125  | <0.050       | mg/kg |           |           | 102        | 70 - 130    |
| In the control of the contro                       | Total Sodi        | um (Na)        | 2019/10/09 | 128 (1)      | 75 - 125  | 101          | 75 - 125  | <100         | mg/kg |           |           | 93         | 70 - 130    |
| 2019/10/09         100         75-125         99         75-125         <0.050         mg/kg           2019/10/09         96         75-125         102         75-125         <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Stroi       | ntium (Sr)     | 2019/10/09 | 105          | 75 - 125  | 100          | 75 - 125  | <0.10        | mg/kg |           |           | 104        | 70 - 130    |
| 2019/10/09         96         75-125         102         75-125         <0.10         mg/kg           2019/10/09         NC         75-125         96         75-125         <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Thal        | lium (TI)      | 2019/10/09 | 100          | 75 - 125  | 66           | 75 - 125  | <0.050       | mg/kg |           |           | 93         | 70 - 130    |
| 2019/10/09         NC         75-125         96         75-125         <1.0         mg/kg           2019/10/09         91         75-125         100         75-125         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Tin (Sn)    | (us)           | 2019/10/09 | 96           | 75 - 125  | 102          | 75 - 125  | <0.10        | mg/kg |           |           | 66         | 70 - 130    |
| 2019/10/09         91         75-125         100         75-125         <0.50         mg/kg           2019/10/09         94         75-125         95         75-125         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Tita        | nium (Ti)      | 2019/10/09 | NC           | 75 - 125  | 96           | - 1       | <1.0         | mg/kg |           |           |            |             |
| 2019/10/09         94         75-125         95         75-125         <0.050         mg/kg           1019/10/09         103         75-125         100         75-125         <0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Tun         | gsten (W)      | 2019/10/09 | 91           | 75 - 125  | 100          | 75 - 125  | <0.50        | mg/kg |           |           |            |             |
| 2019/10/09         103         75-125         100         75-125         <1.0         mg/kg           1         2019/10/09         95         75-125         100         75-125         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Urai        | nium (U)       | 2019/10/09 | 94           | 75 - 125  | 92           | 75 - 125  | <0.050       | mg/kg |           |           | 92         | 70 - 130    |
| 100         95         75-125         100         75-125         <1.0         mg/kg           10         2019/10/09         102         75-125         102         75-125         <0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Total Van         | adium (V)      | 2019/10/09 | 103          | 75 - 125  | 100          | 75 - 125  | <1.0         | mg/kg |           |           | 103        | 70 - 130    |
| Interview of the control of                        | Total Zinc (Zn)   | (Zn)           | 2019/10/09 | 92           | 75 - 125  | 100          | 75 - 125  | <1.0         | mg/kg |           |           | 101        | 70 - 130    |
| alene 2019/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Zirco       | onium (Zr)     | 2019/10/09 | 102          | 75 - 125  | 102          | 75 - 125  | <0.50        | mg/kg |           |           |            |             |
| alene 2019/10/09 74 50-140 81 50-140 mg/kg mg/kg 2019/10/10 85 50-140 87 50-140 c0.0010 mg/kg mg/kg 2019/10/10 85 50-140 87 50-140 c0.00050 mg/kg mg/kg 2019/10/10 85 50-140 87 50-140 c0.0010 mg/kg mg/kg snthene 2019/10/10 96 50-140 87 50-140 c0.0010 mg/kg snthene 2019/10/10 96 50-140 87 50-140 c0.0010 mg/kg lene 2019/10/10 86 50-140 87 50-140 c0.0010 mg/kg lene 2019/10/10 86 50-140 87 50-140 c0.0010 mg/kg lene 2019/10/10 87 50-140 c0.0010 mg/kg snthene 2019/10/10 80 50-140 c0.0010 mg/kg snthene 2019/10/10 RC 50-140 RC 50-140 RC 50-140 | Soluble (2:1) pH  | :1) pH         | 2019/10/09 |              |           | 101          | 97 - 103  |              |       | 0.34      | 20        |            |             |
| alene         2019/10/10         74         50-140         81         50-140         c0.0010         mg/kg           2019/10/10         84         50-140         88         50-140         c0.00050         mg/kg           ene         2019/10/10         85         50-140         80         50-140         c0.00050         mg/kg           ene         2019/10/10         83         50-140         87         50-140         c0.0010         mg/kg           ene         2019/10/10         96         50-140         89         50-140         c0.0010         mg/kg           sinthene         2019/10/10         86         50-140         87         50-140         c0.0010         mg/kg           thene         2019/10/10         86         50-140         87         50-140         c0.0010         mg/kg           thene         2019/10/10         87         50-140         c0.0010         mg/kg         mg/kg           thene         2019/10/10         83         50-140         86         50-140         c0.0010         mg/kg           scene         2019/10/10         80         50-140         c0.0010         mg/kg         mg/kg           scene         2019/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soluble (2:1) pH  | :1) pH         | 2019/10/09 |              |           | 100          | 97 - 103  |              |       | 97'0      | 20        |            |             |
| consist of the construction         2019/10/10         84         50 - 140         88         50 - 140         mg/kg         mg/kg           consist of the construction         2019/10/10         85         50 - 140         90         50 - 140         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-Methylı         | naphthalene    | 2019/10/10 | 74           | 50 - 140  | 81           | 50 - 140  | <0.0010      | mg/kg | 33        | 20        |            |             |
| ene         2019/10/10         85         50 - 140         90         50 - 140         «0.00050         mg/kg           ene         2019/10/10         83         50 - 140         87         50 - 140         «0.0010         mg/kg           ene         2019/10/10         96         50 - 140         89         50 - 140         «0.0010         mg/kg           anthene         2019/10/10         86         50 - 140         87         50 - 140         «0.0010         mg/kg           thene         2019/10/10         90         50 - 140         87         50 - 140         «0.0010         mg/kg           thene         2019/10/10         67         50 - 140         89         50 - 140         «0.0010         mg/kg           thene         2019/10/10         83         50 - 140         86         50 - 140         «0.0010         mg/kg           acene         2019/10/10         82         50 - 140         «0.0010         mg/kg         96         50 - 140         «0.0010         mg/kg           acene         2019/10/10         NC         50 - 140         96         50 - 140         «0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Acenaphthene      | hene           | 2019/10/10 | 84           | 50 - 140  | 88           | 50 - 140  | <0.00050     | mg/kg | 33        | 20        |            |             |
| hracene         2019/10/10         83         50-140         87         50-140         ~0.0010         mg/kg           ene         2019/10/10         96         50-140         89         50-140         ~0.0010         mg/kg           ene         2019/10/10         91         50-140         91         50-140         ~0.0010         mg/kg           luoranthene         2019/10/10         86         50-140         87         50-140         ~0.0010         mg/kg           perylene         2019/10/10         67         50-140         89         50-140         ~0.0010         mg/kg           pranthene         2019/10/10         83         50-140         86         50-140         ~0.0010         mg/kg           snrthracene         2019/10/10         83         50-140         86         50-140         ~0.0010         mg/kg           snrthracene         2019/10/10         80         50-140         ~0.0010         mg/kg         mg/kg           len         2019/10/10         NC         50-140         90         50-140         ~0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acenaphthylene    | hylene         | 2019/10/10 | 85           | 50 - 140  | 06           | 50 - 140  | <0.00050     | mg/kg | 98        | 20        |            |             |
| 2019/10/10         96         50 - 140         89         50 - 140         mg/kg           2019/10/10         91         50 - 140         91         50 - 140         40.0010         mg/kg           2019/10/10         86         50 - 140         87         50 - 140         40.0010         mg/kg           2019/10/10         67         50 - 140         89         50 - 140         40.0010         mg/kg           2019/10/10         83         50 - 140         86         50 - 140         40.0010         mg/kg           2019/10/10         92         50 - 140         87         50 - 140         40.0010         mg/kg           2019/10/10         92         50 - 140         87         50 - 140         40.0010         mg/kg           2019/10/10         NC         50 - 140         96         50 - 140         40.0005         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anthracene        | Je             | 2019/10/10 | 83           | 50 - 140  | 87           | 50 - 140  | <0.0010      | mg/kg | 10        | 20        |            |             |
| 2019/10/10         91         50-140         91         50-140         mg/kg           2019/10/10         86         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         90         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         67         50-140         89         50-140         c0.0020         mg/kg           2019/10/10         83         50-140         86         50-140         c0.0010         mg/kg           2019/10/10         92         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         NC         50-140         96         50-140         c0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(a)a         | inthracene     | 2019/10/10 | 96           | 50 - 140  | 68           | 50 - 140  | <0.0010      | mg/kg | 2.8       | 20        |            |             |
| 2019/10/10         86         50-140         87         50-140         mg/kg           2019/10/10         90         50-140         87         50-140         mg/kg           2019/10/10         67         50-140         89         50-140         mg/kg           2019/10/10         83         50-140         86         50-140         mg/kg           2019/10/10         92         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         NC         50-140         96         50-140         c0.00050         mg/kg           2019/10/10         NC         50-140         90         50-140         c0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Benzo(a)pyrene    | yrene          | 2019/10/10 | 91           | 50 - 140  | 91           | 50 - 140  | <0.0010      | mg/kg | 2.4       | 20        |            |             |
| 2019/10/10       90       50-140       87       50-140       c0.0010       mg/kg         2019/10/10       67       50-140       89       50-140       <0.0020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Benzo(b&          | j)fluoranthene | 2019/10/10 | 98           | 50 - 140  | 87           | 50 - 140  | <0.0010      | mg/kg | 0.25      | 20        |            | ·           |
| 2019/10/10         67         50-140         89         50-140         c0.0020         mg/kg           2019/10/10         83         50-140         86         50-140         c0.0010         mg/kg           2019/10/10         92         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         80         50-140         96         50-140         c0.00050         mg/kg           2019/10/10         NC         50-140         90         50-140         c0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzo(b)f         | luoranthene    | 2019/10/10 | 06           | 50 - 140  | 87           | 50 - 140  | <0.0010      | mg/kg | 95.0      | 20        |            | 5           |
| 2019/10/10         83         50-140         86         50-140         c0.0010         mg/kg           2019/10/10         92         50-140         87         50-140         c0.0010         mg/kg           2019/10/10         80         50-140         96         50-140         c0.00050         mg/kg           2019/10/10         NC         50-140         90         50-140         c0.0010         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Benzo(g,h         | i,i)perylene   | 2019/10/10 | 29           | 50 - 140  | 89           | 50 - 140  | <0.0020      | mg/kg | 8.3       | 20        |            |             |
| 2019/10/10         92         50-140         87         50-140         <0.0010         mg/kg           2019/10/10         80         50-140         96         50-140         <0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzo(k)fl        | uoranthene     | 2019/10/10 | 83           | 50 - 140  | 86           | 50 - 140  | <0.0010      | mg/kg | 0.43      | 20        |            |             |
| 2019/10/10 80 50 140 96 50 140 <0.00050 mg/kg mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Chrysene          |                | 2019/10/10 | 95           | 50 - 140  | 87           | 50 - 140  | <0.0010      | mg/kg | 0.31      | 20        |            | f 40        |
| 2019/10/10 NC 50-140 90 50-140 <0.0010 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dibenz(a,         | h)anthracene   | 2019/10/10 | 80           | 50 - 140  | 96           | 50 - 140  | <0.00050     | mg/kg | 7.0       | 20        |            |             |
| 9, /9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fluoranthene      | ene            | 2019/10/10 | NC           | 50 - 140  | 90           | 50 - 140  | <0.0010      | mg/kg | 5.2       | 20        |            |             |

# Page 22 of 29



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

QUALITY ASSURANCE REPORT(CONT'D)

Report Date: 2019/11/15 BV Labs Job #: B985653

|              | L/A        | l .        |                        |             |              |            |                     |                     |                    |                   |                      |                    |                 |                    |                    |                     |                   |                   |                 |                 |                    |                      |                      |                    |                       |                   |                      |                     | 7 o                 | f 40              | 6                 |                      |
|--------------|------------|------------|------------------------|-------------|--------------|------------|---------------------|---------------------|--------------------|-------------------|----------------------|--------------------|-----------------|--------------------|--------------------|---------------------|-------------------|-------------------|-----------------|-----------------|--------------------|----------------------|----------------------|--------------------|-----------------------|-------------------|----------------------|---------------------|---------------------|-------------------|-------------------|----------------------|
| ndard        | QC Limits  |            |                        |             |              |            | 70 - 130            | 70 - 130            | 70 - 130           | 70 - 130          | 70 - 130             |                    |                 | 70 - 130           | 70 - 130           | 70 - 130            | 70 - 130          | 70 - 130          | 70 - 130        | 70 - 130        | 70 - 130           | 70 - 130             | 70 - 130             | 70 - 130           | 70 - 130              | 70 - 130          | 70 - 130             | 70 - 130            |                     | 70 - 130          | 70 - 130          | 70 - 130             |
| QC Standard  | % Recovery |            |                        |             |              |            | 109                 | 88                  | 84                 | 102               | 102                  |                    |                 | 92                 | 100                | 103                 | 104               | 109               | 107             | 115             | 93                 | 109                  | 108                  | 117                | 100                   | 111               | 100                  | 86                  |                     | 127               | 105               | 107                  |
|              | QC Limits  | 20         | 20                     | 50          | 20           | 20         | 40                  | 30                  | 30                 | 40                | 30                   | 30                 |                 | 30                 | 30                 | 30                  | 30                | 30                | 30              | 40              | 30                 | 30                   | 30                   | 40                 | 40                    | 30                | 30                   | 40                  | 30                  | 40                | 40                | 40                   |
| RPD          | Value (%)  | 17         | 4.3                    | 37          | 10           | 4.4        | 1.0                 | NC                  | 3.5                | 0.53              | NC                   | NC                 |                 | NC                 | 5.5                | 3.9                 | 6.5               | 186 (1)           | 5.8             | 156 (1)         | 4.1                | 9.3                  | 3.4                  | NC                 | NC                    | 12                | 3.7                  | 12                  | NC                  | 4.2               | 5.3               | 11                   |
| lank         | UNITS      | mg/kg      | mg/kg                  | mg/kg       | mg/kg        | mg/kg      | mg/kg               | mg/kg               | mg/kg              | mg/kg             | mg/kg                | mg/kg              | mg/kg           | mg/kg              | mg/kg              | mg/kg               | mg/kg             | mg/kg             | mg/kg           | mg/kg           | mg/kg              | mg/kg                | mg/kg                | mg/kg              | mg/kg                 | mg/kg             | mg/kg                | mg/kg               | mg/kg               | mg/kg             | mg/kg             | mg/kg                |
| Method Blank | Value      | <0.0010    | <0.0020                | <0.0010     | <0.0010      | <0.0010    | <100                | <0.10               | <0.20              | <0.10             | <0.20                | <0.10              | <1.0            | <0.050             | <100               | <0.50               | <0.10             | <0.50             | <100            | <0.10           | <0.50              | <100                 | <0.20                | <0.050             | <0.10                 | <0.50             | <10                  | <100                | <0.50               | <0.050            | <100              | <0.10                |
| Blank        | QC Limits  | 50 - 140   | 50 - 140               | 50 - 140    | 50 - 140     | 50 - 140   | 75 - 125            | 75 - 125            | 75 - 125           | 75 - 125          | 75 - 125             | 75 - 125           | 75 - 125        | 75 - 125           | 75 - 125           | 75 - 125            | 75 - 125          | 75 - 125          | 75 - 125        | 75 - 125        | 75 - 125           | 75 - 125             | 75 - 125             | 75 - 125           | 75 - 125              | 75 - 125          | 75 - 125             | 75 - 125            | 75 - 125            | 75 - 125          | 75 - 125          | 75 - 125             |
| Spiked Blank | % Recovery | 98         | 94                     | 84          | 81           | 06         | 106                 | 86                  | 96                 | 96                | 66                   | 26                 | 86              | 100                | 100                | 105                 | 100               | 103               | 104             | 100             | 100                | 101                  | 101                  | 104                | 92                    | 101               | 26                   | 100                 | 96                  | 86                | 103               | 98                   |
| Matrix Spike | QC Limits  | 50 - 140   | 50 - 140               | 50 - 140    | 50 - 140     | 50 - 140   | 75 - 125            | 75 - 125            | 75 - 125           | 75 - 125          | 75 - 125             | 75 - 125           | 75 - 125        | 75 - 125           | 75 - 125           | 75 - 125            | 75 - 125          | 75 - 125          | 75 - 125        | 75 - 125        | 75 - 125           | 75 - 125             | 75 - 125             | 75 - 125           | 75 - 125              | 75 - 125          | 75 - 125             | 75 - 125            | 75 - 125            | 75 - 125          | 75 - 125          | 75 - 125             |
| Matrix       | % Recovery | 98         | 7.5                    | 0/          | 22           | ON         | ON                  | 16                  | 86                 | 26                | 16                   | 56                 | 16              | 26                 | ON                 | 86                  | 96                | ON                | ON              | 86              | 76                 | 122                  | 116                  | 102                | 86                    | 26                | 86                   | 104                 | 93                  | 93                | 132 (1)           | 101                  |
|              | Date       | 2019/10/10 | 2019/10/10             | 2019/10/10  | 2019/10/10   | 2019/10/10 | 2019/10/10          | 2019/10/10          | 2019/10/10         | 2019/10/10        | 2019/10/10           | 2019/10/10         | 2019/10/10      | 2019/10/10         | 2019/10/10         | 2019/10/10          | 2019/10/10        | 2019/10/10        | 2019/10/10      | 2019/10/10      | 2019/10/10         | 2019/10/10           | 2019/10/10           | 2019/10/10         | 2019/10/10            | 2019/10/10        | 2019/10/10           | 2019/10/10          | 2019/10/10          | 2019/10/10        | 2019/10/10        | 2019/10/10           |
|              | Parameter  | Fluorene   | Indeno(1,2,3-cd)pyrene | Naphthalene | Phenanthrene | Pyrene     | Total Aluminum (AI) | Total Antimony (Sb) | Total Arsenic (As) | Total Barium (Ba) | Total Beryllium (Be) | Total Bismuth (Bi) | Total Boron (B) | Total Cadmium (Cd) | Total Calcium (Ca) | Total Chromium (Cr) | Total Cobalt (Co) | Total Copper (Cu) | Total Iron (Fe) | Total Lead (Pb) | Total Lithium (Li) | Total Magnesium (Mg) | Total Manganese (Mn) | Total Mercury (Hg) | Total Molybdenum (Mo) | Total Nickel (Ni) | Total Phosphorus (P) | Total Potassium (K) | Total Selenium (Se) | Total Silver (Ag) | Total Sodium (Na) | Total Strontium (Sr) |
|              | QC Batch   | 9621452    | 9621452                | 9621452     | 9621452      | 9621452    | 9622706             | 9622706             | 9622706            | 9622706           | 9622706              | 9622706            | 9622706         | 9622706            | 9622706            | 9622706             | 9622706           | 9622706           | 9622706         | 9622706         | 9622706            | 9622706              | 9622706              | 9622706            | 9622706               | 9622706           | 9622706              | 9622706             | 9622706             | 9622706           | 9622706           | 9622706              |

# QUALITY ASSURANCE REPORT(CONT'D)

SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING Sampler Initials: KAT

|            |                                                                                                                       |                  | Matrix Spike | Spike         | Spiked Blank  | Blank     | <b>Method Blank</b> | Blank | RPD       | ٥         | QC Sta    | QC Standard |
|------------|-----------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------|---------------|-----------|---------------------|-------|-----------|-----------|-----------|-------------|
| QC Batch   | Parameter                                                                                                             | Date             | % Recovery   | QC Limits     | % Recovery    | QC Limits | Value               | UNITS | Value (%) | QC Limits | QC Limits | QC Limits   |
| 9622706    | Total Thallium (TI)                                                                                                   | 2019/10/10       | 93           | 75 - 125      | 93            | 75 - 125  | <0.050              | mg/kg | NC        | 30        | 94        | 70 - 130    |
| 9622706    | Total Tin (Sn)                                                                                                        | 2019/10/10       | 35 (1)       | 75 - 125      | 100           | 75 - 125  | <0.10               | mg/kg | 196(1)    | 40        | 103       | 70 - 130    |
| 9622706    | Total Titanium (Ti)                                                                                                   | 2019/10/10       | NC           | 75 - 125      | 100           | 75 - 125  | <1.0                | mg/kg | 1.4       | 40        |           |             |
| 9622706    | Total Tungsten (W)                                                                                                    | 2019/10/10       | 91           | 75 - 125      | 26            | 75 - 125  | <0.50               | mg/kg |           |           |           |             |
| 9622706    | Total Uranium (U)                                                                                                     | 2019/10/10       | 103          | 75 - 125      | 102           | 75 - 125  | <0.050              | mg/kg | 1.3       | 30        | 112       | 70 - 130    |
| 9622706    | Total Vanadium (V)                                                                                                    | 2019/10/10       | 101          | 75 - 125      | 104           | 75 - 125  | <1.0                | mg/kg | 9.8       | 30        | 108       | 70 - 130    |
| 9622706    | Total Zinc (Zn)                                                                                                       | 2019/10/10       | 76           | 75 - 125      | 103           | 75 - 125  | <1.0                | mg/kg | 45 (1)    | 30        | 109       | 70 - 130    |
| 9622706    | Total Zirconium (Zr)                                                                                                  | 2019/10/10       | 86           | 75 - 125      | 66            | 75 - 125  | <0.50               | mg/kg | 6.9       | 40        |           |             |
| 9622914    | Biochemical Oxygen Demand                                                                                             | 2019/10/15       |              |               | 94            | 85 - 115  | <2.0                | ng/L  | 4.5       | 20        |           |             |
| 9623846    | Available (KCl) Ammonia (N)                                                                                           | 2019/10/11       | ON           | 75 - 125      | 93            | 80 - 120  | <2.0                | mg/kg | 17        | 35        |           |             |
| 9625759    | Available (NH4F) Phosphorus (P)                                                                                       | 2019/10/12       | 86           | 75 - 125      | 94            | 80 - 120  | <1.0                | mg/kg | 6.1       | 35        |           |             |
| 9626992    | Total Sulphide                                                                                                        | 2019/10/15       | 105          | 80 - 120      | 94            | 80 - 120  | <0.0018             | ng/L  | NC        | 20        |           |             |
| 9630371    | Available (KCI) Total Kjeldahl Nitrogen                                                                               | 2019/10/17       | NC           | 75 - 125      | 84            | 75 - 125  | <5.0                | mg/kg | 16        | 30        | 100       | 75 - 125    |
| 9631184    | Total Nitrogen                                                                                                        | 2019/10/17       |              |               | 104           | 80 - 120  | <0.2                | %     | 6.1       | 30        | 105       | 75 - 125    |
| Duplicato: | Dindicate: Dairad analycic of a canarate nortion of the came cample. Head to evaluate the variance in the measurement | o+ bool   olames | od+ o+culcyo | + ai obaciaco | ho mostilicom | +400      |                     |       |           |           |           |             |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.



SLR CONSULTING (CANADA) LTD Client Project #: 209.40666.00000 Your P.O. #: PENDING

Sampler Initials: KAT

#### **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

| Buelfter                                       |
|------------------------------------------------|
| Andy Lu, Ph.D., P.Chem., Scientific Specialist |
|                                                |
| Sort S                                         |
| Donald Lai, Lab Coordinator                    |
| KAOLDIE                                        |
| Kenneth Goldie, Sample Reception               |
| Peny Wany                                      |
| Harry (Peng) Liang, Senior Analyst             |
| Sando                                          |

Suwan Fock, B.Sc., QP, Inorganics Senior Analyst

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

COR FCD-00265 / 4



Your Project #: 209.40666.00000 [B985653] Your C.O.C. #: B985653-ONTV-01-01

Attention: Safiann Maiter
Bureau Veritas Laboratories
4606 Canada Way
Burnaby, BC
CANADA V5G 1K5

Report Date: 2019/10/10

Report #: R5916219 Version: 1 - Final

#### **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: B9S3356 Received: 2019/10/09, 09:20

Sample Matrix: Soil # Samples Received: 9

|                              |         | Date        | Date      |                          |                    |
|------------------------------|---------|-------------|-----------|--------------------------|--------------------|
| Analyses                     | Quantit | y Extracted | Analyzed  | <b>Laboratory Method</b> | Reference          |
| Total Organic Carbon in Soil | 9       | N/A         | 2019/10/1 | O CAM SOP-00468          | BCMOE TOC Aug 2014 |

#### Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

\* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.



Your Project #: 209.40666.00000 [B985653] Your C.O.C. #: B985653-ONTV-01-01

**Attention: Safiann Maiter** 

Bureau Veritas Laboratories 4606 Canada Way Burnaby, BC CANADA V5G 1K5

Report Date: 2019/10/10

Report #: R5916219 Version: 1 - Final

## **CERTIFICATE OF ANALYSIS**

BV LABS JOB #: B9S3356 Received: 2019/10/09, 09:20

**Encryption Key** 



Bureau Veritas Laboratories

10 Oct 2019 15:15:07

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ronklin Gracian, Project Manager Email: Ronklin.Gracian@bvlabs.com Phone# (905)817-5752

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



Bureau Veritas Laboratories

Client Project #: 209.40666.00000 [B985653]

Sampler Initials: KAT

## **RESULTS OF ANALYSES OF SOIL**

| BV Labs ID                      |       | KZM471             | KZM472             | KZM473             | KZM474             |     |          |
|---------------------------------|-------|--------------------|--------------------|--------------------|--------------------|-----|----------|
| Sampling Date                   |       | 2019/10/01         | 2019/10/01         | 2019/10/01         | 2019/10/01         |     |          |
| Sampling Date                   |       | 09:20              | 10:55              | 13:35              | 11:45              |     |          |
| COC Number                      |       | B985653-ONTV-01-01 | B985653-ONTV-01-01 | B985653-ONTV-01-01 | B985653-ONTV-01-01 |     |          |
|                                 | UNITS | WQ6244-BOAT LAUNCH | WQ6245-C6 EAST/G7  | WQ6246-C5 EAST/G6  | WQ6247-C4 WEST     | RDL | QC Batch |
| Inorganics                      |       |                    |                    |                    |                    |     |          |
| Inorganics                      |       |                    |                    |                    |                    |     |          |
| Inorganics Total Organic Carbon | mg/kg | 35000              | 41000              | 39000              | 47000              | 500 | 6379999  |
|                                 |       | 35000              | 41000              | 39000              | 47000              | 500 | 6379999  |

| BV Labs ID           |             | KZM474             | KZM475             | KZM476             | KZM477              |     |           |
|----------------------|-------------|--------------------|--------------------|--------------------|---------------------|-----|-----------|
| Sampling Date        |             | 2019/10/01         | 2019/10/01         | 2019/10/02         | 2019/10/02          |     |           |
| Sampling Date        | 11:45 09:30 |                    | 11:45              | 10:18              |                     |     |           |
| COC Number           |             | B985653-ONTV-01-01 | B985653-ONTV-01-01 | B985653-ONTV-01-01 | B985653-ONTV-01-01  |     |           |
|                      | UNITS       | WQ6247-C4 WEST     | WQ6248-BLIND       | WQ6249-C3 WEST     | WQ6250-C3 CENTRE/G5 | BDI | OC Batch  |
|                      | UNITS       | Lab-Dup            | DUPLICATE          | VVQ0245-C5 VVEST   | WQUZ3U-C3 CENTRE/G3 | NDL | QC Battii |
| Inorganics           |             |                    |                    |                    |                     |     |           |
| Total Organic Carbon | mg/kg       | 49000              | 37000              | 39000              | 20000               | 500 | 6379999   |

RDL = Reportable Detection Limit
QC Batch = Quality Control Batch
Lab-Dup = Laboratory Initiated Duplicate

| BV Labs ID           |       | KZM478              | KZM479              |     |          |
|----------------------|-------|---------------------|---------------------|-----|----------|
| Sampling Date        |       | 2019/10/02<br>12:50 | 2019/10/02<br>16:20 |     |          |
| COC Number           |       | B985653-ONTV-01-01  | B985653-ONTV-01-01  |     |          |
|                      | UNITS | WQ6251-G4           | WQ6252-C1 WEST      | RDL | QC Batch |
| Inorganics           |       |                     |                     |     |          |
| Total Organic Carbon | mg/kg | 31000               | 26000               | 500 | 6379999  |
|                      |       |                     |                     |     |          |



**Bureau Veritas Laboratories** 

Client Project #: 209.40666.00000 [B985653]

Sampler Initials: KAT

### **TEST SUMMARY**

BV Labs ID: KZM471

Sample ID: WQ6244-BOAT LAUNCH

Matrix: Soil Collected: 2019/10/01

Shipped: Received: 2019/10/09

**Test Description** Instrumentation Batch **Extracted Date Analyzed** Analyst Total Organic Carbon in Soil 6379999 2019/10/10 Dhruvik Modh COMB N/A

BV Labs ID: KZM472

Sample ID: WQ6245-C6 EAST/G7

Matrix: Soil Collected: Shipped: Received:

Shipped:

2019/10/01 2019/10/09

**Test Description Extracted Date Analyzed** Analyst

Batch

Total Organic Carbon in Soil COMB 6379999 N/A 2019/10/10 Dhruvik Modh

Instrumentation

KZM473 BV Labs ID:

Sample ID: WQ6246-C5 EAST/G6

Matrix: Soil Collected: 2019/10/01

Received: 2019/10/09

**Test Description** Instrumentation Batch **Extracted Date Analyzed** Analyst 6379999 2019/10/10 Total Organic Carbon in Soil COMB N/A Dhruvik Modh

BV Labs ID: K7M474

Sample ID: WQ6247-C4 WEST

Matrix: Soil Collected: 2019/10/01 Shipped:

Received: 2019/10/09

**Test Description** Instrumentation Batch Extracted **Date Analyzed** Analyst Total Organic Carbon in Soil 6379999 N/A 2019/10/10 Dhruvik Modh **COMB** 

BV Labs ID: KZM474 Dup

WQ6247-C4 WEST Sample ID:

Matrix: Soil Collected: 2019/10/01

Shipped:

Received: 2019/10/09

**Test Description** Instrumentation Batch **Extracted Date Analyzed** Analyst Total Organic Carbon in Soil СОМВ 6379999 N/A 2019/10/10 Dhruvik Modh

BV Labs ID: KZM475

Sample ID: WQ6248-BLIND DUPLICATE

Matrix: Soil Collected: Shipped:

2019/10/01

Received: 2019/10/09

**Test Description** Instrumentation **Batch Extracted Date Analyzed** Analyst Total Organic Carbon in Soil 6379999 2019/10/10 Dhruvik Modh COMB N/A

BV Labs ID: KZM476

Sample ID: WQ6249-C3 WEST

Matrix: Soil Collected: Shipped: Received:

2019/10/02 2019/10/09

Batch

**Test Description** Extracted Date Analyzed Instrumentation Analyst Total Organic Carbon in Soil COMB 6379999 2019/10/10 Dhruvik Modh N/A



**Bureau Veritas Laboratories** 

Client Project #: 209.40666.00000 [B985653]

Sampler Initials: KAT

## **TEST SUMMARY**

BV Labs ID: KZM477

Sample ID: WQ6250-C3 CENTRE/G5

Matrix: Soil

Collected: Shipped:

2019/10/02

Received: 2019/10/09

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB6379999N/A2019/10/10Dhruvik Modh

**BV Labs ID:** KZM478

Sample ID: WQ6251-G4

Matrix: Soil

**Collected:** 2019/10/02

Shipped:

**Received:** 2019/10/09

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB6379999N/A2019/10/10Dhruvik Modh

**BV Labs ID:** KZM479

Sample ID: WQ6252-C1 WEST

Matrix: Soil

**Collected:** 2019/10/02

Shipped:

**Received:** 2019/10/09

Test DescriptionInstrumentationBatchExtractedDate AnalyzedAnalystTotal Organic Carbon in SoilCOMB6379999N/A2019/10/10Dhruvik Modh



Bureau Veritas Laboratories

Client Project #: 209.40666.00000 [B985653]

Sampler Initials: KAT

## **GENERAL COMMENTS**

| Each te | emperature is the    | average of up to | three cooler temperatures taken at receipt |
|---------|----------------------|------------------|--------------------------------------------|
|         | Package 1            | 7.3°C            |                                            |
|         | •                    |                  |                                            |
| Result  | s relate only to the | e items tested.  |                                            |



# QUALITY ASSURANCE REPORT

Bureau Veritas Laboratories Client Project #: 209.40666.00000 [B985653] Sampler Initials: KAT

|          |                                         |                              | Method Blank | ank   | RPD       |           | QC Standard | dard      |
|----------|-----------------------------------------|------------------------------|--------------|-------|-----------|-----------|-------------|-----------|
| QC Batch | Parameter                               | Date                         | Value        | SLINO | Value (%) | QC Limits | % Recovery  | QC Limits |
| 6379999  | Total Organic Carbon                    | 2019/10/10                   | <500         | mg/kg | 5.3       | 35        | 103         | 75 - 125  |
|          | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - | 44 - 1 - 2 - 1 - 1 - 4 - 4 - | -            |       |           |           |             |           |

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.



**Bureau Veritas Laboratories** 

Client Project #: 209.40666.00000 [B985653]

Sampler Initials: KAT

## **VALIDATION SIGNATURE PAGE**

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).



BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.



## Certificate of Analysis

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 152 of 406

City of Hamilton Environmental Laboratory 700 Woodward Avenue, Hamilton, ON L8H 6P4 P. (905) 546-2424 F. (905)545-0234

**CLIENT INFORMATION** 

Client Name: HAMILTON WATER Attention: MANI SERADJ

Address: 77 JAMES STREET NORTH

HAMILTON L8R 2K3 LABORATORY INFORMATION

Sample Date:

2019-09-30

Date Submitted:

2019-10-01

Laboratory Work Order Number:

330748

Samples in this work order were analyzed using the following methods:

cBOD/BOD/DO DO-Meter

TSS/VSS Gravimetric

Alk/pH/Cond/Temp PC Titrate

Bacteria Membrane Filtration

mFC-BCIG agar

Mercury Cold Vapour AA

Anions IC

Ammonia Skalar

TKN Skalar

TOC/DOC Colourimetric

LIMS Calculation

Subcontract

Field Parameters - Client

Metals ICP/MS

o-Phosphate Colourimetric

## NOTES:

'<' = less than the Method Detection Limit (MDL), 'IS' = Insufficient Sample, '>' = greater than the reported result.

Methods used by the City of Hamilton's Environmental Laboratory (CHEL) are based upon or modified from those found in published reference methods. Specific information on the methods used and equations used for calculated analytes are available upon request.

All analytical work performed at the CHEL is done according to accepted quality assurance and quality control procedures. Quality and other related data as well as uncertainty values are available upon request.

The results on this Certificate of Analysis relate only to the sample as received and analyzed. Field data provided by the customer is identified as such and can affect the validity of CHEL's results. The Certificate of Analysis shall not be reproduced except in full without approval of CHEL.

**Final Report Approval by:** 

Digitally signed by Shannon Overholster Date: 2019.10.22

16:43:42 -04'00'

Shannon Overholster Supervisor, Quality Assurance

| Analyte                                                     | Result   | Units         | MDL    |  |
|-------------------------------------------------------------|----------|---------------|--------|--|
| Water and Waste Water Systems Planning                      |          |               |        |  |
| Chedoke Creek Surface Water Analysis                        |          |               |        |  |
| C-1 West 2019-09-30 16:50:00 Record 604014                  |          |               |        |  |
| Ammonia + Ammonium as N                                     | 0.05     | ma/l          | 0.01   |  |
| Conductivity - Field                                        | 0.05     | mg/L<br>mS/cm | 0.01   |  |
| Dissolved Organic Carbon                                    | 2.5      | mg/L          | 0.4    |  |
| Dissolved Organic Carbon  Dissolved Oxygen-Field            | 10.23    | mg/L          | 0.4    |  |
| Escherichia coli                                            | 4100     | CFU/100mL     | 0      |  |
| Hardness (Calculation)                                      | 253      | mg/L          | 0.7    |  |
| Nitrate as N                                                | 1.95     | mg/L          | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                          | 2.17     | mg/L          | 0.01   |  |
| Nitrite as N                                                | 0.22     | mg/L          | 0.02   |  |
| o-Phosphate as P                                            | 0.22     | mg/L          | 0.05   |  |
|                                                             | 8.32     | pH            | 0.03   |  |
| pH<br>pH - Field                                            | 8.25     | pН            | 0.01   |  |
| Phosphorus Dissolved Total                                  | 0.401    | mg/L          | 0.010  |  |
| Phosphorus Total                                            | 0.415    | -             | 0.010  |  |
| Temperature - Field                                         | 15.7     | mg/L<br>C     | 0.010  |  |
| Total Biochem. Oxygen Demand                                | <2       | mg/L          | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 0.6      | mg/L          | 0.2    |  |
| Total Organic Carbon                                        | 2.6      | mg/L          | 0.4    |  |
| Total Suspended Solids                                      | 4.5      | mg/L          | 0.4    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 3.0      | ug/L          | 0.0    |  |
| Aluminum                                                    | 0.145    | mg/L          | 0.002  |  |
| Antimony                                                    | 0.0002   | mg/L          | 0.002  |  |
| Arsenic                                                     | 0.0002   | mg/L          | 0.0001 |  |
| Barium                                                      | 0.0013   | mg/L          | 0.0001 |  |
| Beryllium                                                   | < 0.0001 | mg/L          | 0.0001 |  |
| Bismuth                                                     | <0.0001  | mg/L          | 0.0001 |  |
| Boron                                                       | 0.149    | mg/L          | 0.010  |  |
| Cadmium                                                     | < 0.0001 | mg/L          | 0.0001 |  |
| Cadmium                                                     | 72.3     | mg/L          | 0.05   |  |
| Chromium                                                    | 0.0002   | mg/L          | 0.0001 |  |
| Cobalt                                                      | 0.0002   | mg/L          | 0.0001 |  |
| Copper                                                      | 0.0029   | mg/L          | 0.0001 |  |
| Dissolved Aluminum                                          | 0.013    | mg/L          | 0.002  |  |
| Dissolved Antimony                                          | 0.0002   | mg/L          | 0.0001 |  |
| Dissolved Arsenic                                           | 0.0012   | mg/L          | 0.0001 |  |
| Dissolved Barium                                            | 0.0429   | mg/L          | 0.0001 |  |
| Dissolved Beryllium                                         | < 0.0001 | mg/L          | 0.0001 |  |
| Dissolved Bismuth                                           | < 0.0001 | mg/L          | 0.0001 |  |
| Dissolved Boron                                             | 0.143    | mg/L          | 0.010  |  |
| Dissolved Cadmium                                           | < 0.0001 | mg/L          | 0.0001 |  |
| Dissolved Calcium                                           | 69.4     | mg/L          | 0.05   |  |
| Dissolved Chromium                                          | < 0.0001 | mg/L          | 0.0001 |  |
| Dissolved Cobalt                                            | < 0.0001 | mg/L          | 0.0001 |  |
| Dissolved Copper                                            | 0.0019   | mg/L          | 0.0001 |  |
| Dissolved Iron                                              | 0.009    | mg/L          | 0.003  |  |
| Dissolved Lead                                              | <0.0001  | mg/L          | 0.0001 |  |
| Dissolved Magnesium                                         | 17.4     | mg/L          | 0.05   |  |
| Dissolved Manganese                                         | 0.0152   | mg/L          | 0.0001 |  |
| Dissolved Mercury                                           | <0.05    | ug/L          | 0.05   |  |
| Dissolved Molybdenum                                        | 0.0021   | mg/L          | 0.0001 |  |
| Dissolved Nickel                                            | 0.0010   | mg/L          | 0.0001 |  |
| Dissolved Potassium                                         | 3.35     | mg/L          | 0.05   |  |
|                                                             |          | •             |        |  |

| Analyte                                           | Result         | Units        | MDL            |  |
|---------------------------------------------------|----------------|--------------|----------------|--|
| Dissolved Selenium                                | 0.0002         | mg/L         | 0.0001         |  |
| Dissolved Silicon                                 | 2.77           | mg/L         | 0.01           |  |
| Dissolved Silver                                  | < 0.0001       | mg/L         | 0.0001         |  |
| Dissolved Sodium                                  | 81.7           | mg/L         | 0.05           |  |
| Dissolved Strontium                               | 1.07           | mg/L         | 0.0005         |  |
| Dissolved Thallium                                | <0.0003        | mg/L         | 0.0003         |  |
| Dissolved Tin                                     | < 0.0001       | mg/L         | 0.0001         |  |
| Dissolved Titanium                                | 0.0003         | mg/L         | 0.0001         |  |
| Dissolved Uranium                                 | 0.748          | ug/L         | 0.002          |  |
| Dissolved Vanadium                                | 0.0007         | mg/L         | 0.0001         |  |
| Dissolved Zinc                                    | 0.012          | mg/L         | 0.001          |  |
| Dissolved Zirconium                               | <0.0004        | mg/L         | 0.0004         |  |
| Iron                                              | 0.202          | mg/L         | 0.003          |  |
| Lead                                              | 0.0004         | mg/L         | 0.0001         |  |
| Magnesium                                         | 17.5           | mg/L         | 0.05           |  |
| Manganese                                         | 0.0203         | mg/L         | 0.0001         |  |
| Mercury                                           | < 0.05         | ug/L         | 0.05           |  |
| Molybdenum                                        | 0.0020         | mg/L         | 0.0001         |  |
| Nickel                                            | 0.0011<br>3.40 | mg/L         | 0.0001<br>0.05 |  |
| Potassium<br>Selenium                             | 0.0002         | mg/L         | 0.001          |  |
| Silicon                                           | 3.05           | mg/L<br>mg/L | 0.0001         |  |
| Silver                                            | <0.0001        | mg/L         | 0.001          |  |
| Sodium                                            | 80.8           | mg/L         | 0.0001         |  |
| Strontium                                         | 1.09           | mg/L         | 0.0005         |  |
| Thallium                                          | < 0.0003       | mg/L         | 0.0003         |  |
| Tin                                               | < 0.0001       | mg/L         | 0.0001         |  |
| Titanium                                          | 0.0031         | mg/L         | 0.0001         |  |
| Uranium                                           | 0.734          | ug/L         | 0.002          |  |
| Vanadium                                          | 0.0010         | mg/L         | 0.0001         |  |
| Zinc                                              | 0.017          | mg/L         | 0.001          |  |
| Zirconium                                         | < 0.0004       | mg/L         | 0.0004         |  |
| 1-methylnaphthalene (Subcontract)                 | <0.5           | ug/L         | 0.5            |  |
| 2-methylnaphthalene (Subcontract)                 | <0.5           | ug/L         | 0.5            |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)            | <0.1           | ug/L         | 0.1            |  |
| Acenaphthene (Subcontract)                        | <0.1           | ug/L         | 0.1            |  |
| Acenaphthylene (Subcontract)                      | <0.1           | ug/L         | 0.1            |  |
| Anthracene (Subcontract)                          | <0.1           | ug/L         | 0.1            |  |
| Benzo[a]anthracene (Subcontract)                  | <0.1           | ug/L         | 0.1            |  |
| Benzo[a]pyrene (Subcontract)                      | <0.01          | ug/L         | 0.01           |  |
| Benzo[b/j]fluoranthene (Subcontract)              | <0.1           | ug/L         | 0.1            |  |
| Benzo[e]pyrene (Subcontract)                      | <0.1           | ug/L         | 0.1            |  |
| Benzo[g,h,i]perylene (Subcontract)                | <0.2           | ug/L         | 0.2            |  |
| Benzo[k]fluoranthene (Subcontract)                | <0.1           | ug/L         | 0.1            |  |
| Chrysene (Subcontract)                            | <0.1           | ug/L         | 0.1            |  |
| Dibenzo(a,i)pyrene (Subcontract)                  | <0.1           | ug/L         | 0.1            |  |
| Dibenzo(a,j)acridine (Subcontract)                | <0.1           | ug/L         | 0.1            |  |
| Dibenzo[a,h]anthracene (Subcontract)              | <0.1<br><0.1   | ug/L         | 0.1<br>0.1     |  |
| Fluoranthene (Subcontract) Fluorene (Subcontract) | <0.1<br><0.1   | ug/L<br>ug/L | 0.1            |  |
| indeno[1,2,3-cd]pyrene (Subcontract)              | <0.1           | ug/L<br>ug/L | 0.1            |  |
| Perylene (Subcontract)                            | <0.2           | ug/L<br>ug/L | 0.2            |  |
| Phenanthrene (Subcontract)                        | <0.1           | ug/L<br>ug/L | 0.3            |  |
| Pyrene (Subcontract)                              | <0.1           | ug/L         | 0.1            |  |
| PAHs Total (Subcontract)                          | <2             | ug/L         | 2              |  |
| Naphthalene (Subcontract)                         | < 0.5          | ug/L         | 0.5            |  |
|                                                   | 0.0            | -3, -        | 0.0            |  |

| C-1 West Duplicate 2019-09-30 16:52:00 Record 604015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                                              | Result   | Units | MDL    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|-------|--------|--|
| Dissolved Organic Carbon   2.6   mg/L   0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C-1 West Duplicate 2019-09-30 16:52:00 Record 604015 |          |       |        |  |
| Dissolved Organic Carbon   2.6   mg/L   0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ammonia + Ammonium as N                              | 0.07     | ma/L  | 0.01   |  |
| Escherichia coli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |          |       |        |  |
| Hardness (Calculation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                    |          |       |        |  |
| Nitrate + Nitrite as N (Calculation)   2.13 mg/L   0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |          |       |        |  |
| Nitrate + Nitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                    |          |       |        |  |
| Nitrite as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |          |       |        |  |
| o-Phosphate as P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |          |       |        |  |
| PH   R   R   R   R   R   R   R   R   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |          |       |        |  |
| Phosphorus Dissolved Total   0.410   mg/L   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |          |       |        |  |
| Phosphorus Dissolved Total   0,410 mg/L   0,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |          |       | 0.0.   |  |
| Phosphorus Total   0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                                    |          | -     | 0.010  |  |
| Temperature - Field                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                |          |       |        |  |
| Total Blochem. Oxygen Demand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                |          |       | 0.010  |  |
| Total Kjeldahi Nitrogen as N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                |          |       | 1      |  |
| Total Organic Carbon   3.0 mg/L   0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • •                                                  |          |       |        |  |
| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                |          |       |        |  |
| Janonized Ammonia as NH3 at Field Temperature (Calculation)   Altuminum   0.299   mg/L   0.0002   mg/L   0.0001   mg/L   0.0 |                                                      |          |       |        |  |
| Aluminum 0.299 mg/L 0.0001 Antsenic 0.0013 mg/L 0.0001 Barium 0.0404 mg/L 0.0001 Beryllium -0.0001 mg/L 0.0001 Bismuth -0.0001 mg/L 0.0001 Bismuth -0.0001 mg/L 0.0001 Cadmium -0.0001 mg/L 0.0001 Catomium -0.0001 mg/L 0.0001 Catomium -0.0001 mg/L 0.0001 Catomium -0.0004 mg/L 0.0001 Catomium -0.0004 mg/L 0.0001 Cobalt 0.0003 mg/L 0.0001 Copper 0.0037 mg/L 0.0001 Dissolved Aluminum 0.014 mg/L 0.0001 Dissolved Arsenic 0.0002 mg/L 0.0001 Dissolved Beryllium 0.0416 mg/L 0.0001 Dissolved Beryllium -0.0416 mg/L 0.0001 Dissolved Beryllium -0.0011 mg/L 0.0001 Dissolved Beryllium -0.0001 mg/L 0.0001 Dissolved Calcium -0.0001 mg/L 0.0001 Dissolved Calcium -0.0001 mg/L 0.0001 Dissolved Calcium -0.0001 mg/L 0.0001 Dissolved Capper -0.0001 mg/L 0.0001 Dissolved Cobalt -0.0001 mg/L 0.0001 Dissolved Cobalt -0.0001 mg/L 0.0001 Dissolved Capper -0.0021 mg/L 0.0001 Dissolved Cobalt -0.0001 mg/L 0.0001 Dissolved Manganese -0.0012 mg/L 0.0001 Dissolved Manganese -0.0013 mg/L 0.0001 Dissolved Manganese -0.005 ug/L 0.005 Dissolved Manganese -0.05 ug/L 0.05 Dissolved Manganese -0.05 ug/L 0.05 Dissolved Manganese -0.05 ug/L 0.005 Dissolved Molybdenum -0.0021 mg/L 0.0001 Dissolved Molybdenum -0.0021 mg/L 0.0001 Dissolved Selenium -0.0021 mg/L 0.0001 Dissolved Selenium -0.0022 mg/L 0.005 Dissolved Selenium -0.0002 mg/L 0.0001 Dissolved Solicor -0.0001 mg/L 0.0001 Dissolved Solicor -0.0001 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |          |       |        |  |
| Antimony Arsenic 0.0002 mg/L 0.0001 Barrium 0.0404 mg/L 0.0001 Beryllium 0.0001 mg/L 0.0001 Bismuth 0.0001 mg/L 0.0001 Bismuth 0.0001 mg/L 0.0001  Cadmium Calcium 70.6 mg/L 0.0001 Cobalt 0.0003 mg/L 0.0001 Copper 0.0003 mg/L 0.0001 Dissolved Antimony Dissolved Arsenic Dissolved Beryllium 0.0001 Dissolved Beryllium 0.0001 Dissolved Brismuth 0.0001 Dissolved Cadmium 0.0001 mg/L 0.0001 Dissolved Cadmium 0.0002 mg/L 0.0001 Dissolved Brismuth 0.0013 mg/L 0.0001 Dissolved Cadmium 0.0014 mg/L 0.0001 Dissolved Cadmium 0.00001 Dissolved Cadmium 0.0001 Dissolved Copper 0.0001 Dissolved Copper 0.0001 Dissolved Magnaese 0.0001 Dissolved Magnaese 0.0001 Dissolved Magnaese 0.0001 Dissolved Molybdenum Dissolved Molybdenum Dissolved Molybdenum Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Silicon 0.0002 mg/L 0.0001 Dissolved Silicon 0.0001 Dissolved Silicon 0.0001 Dissolved Silicon 0.0001 Dissolved Silicon 0.0001 Dissolved Soldium 0.0001                                                                                                                                                                                         |                                                      |          |       |        |  |
| Arsenic Barium   0.0013   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |          |       |        |  |
| Barium   0.0404   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                    |          |       |        |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |          |       |        |  |
| Bismuth   Sonon   Bismuth   Sonon    |                                                      |          |       |        |  |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Beryllium                                            | <0.0001  | mg/L  |        |  |
| Cadmium         <0.0001         mg/L         0.0001           Calcium         70.6         mg/L         0.05           Chromium         0.0004         mg/L         0.0001           Cobalt         0.0003         mg/L         0.0001           Copper         0.0037         mg/L         0.0001           Dissolved Aluminum         0.014         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barylim         0.0416         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bismuth                                              | <0.0001  | mg/L  | 0.0001 |  |
| Calcium<br>Chromium         70.6<br>0.0004         mg/L<br>mg/L<br>0.0001         0.05<br>0.0001           Cobalt<br>Copper<br>0.0037         mg/L<br>0.0001         0.0001           Dissolved Aluminum<br>Dissolved Aluminum<br>0.014         0.014<br>0.002         0.002           Dissolved Aluminum<br>Dissolved Aluminum<br>Dissolved Barium<br>0.0013         0.0001<br>0.0001         0.0001<br>0.0001           Dissolved Berlium<br>Dissolved Beryllium<br>Dissolved Bernum<br>Dissolved Cadmium<br>Dissolved Calcium<br>Dissolved Calcium<br>Dissolved Chromium<br>Dissolved Cobalt<br>Dissolved Cobalt<br>Dissolved Cobalt<br>Dissolved Lead<br>0.0001         0.0001<br>0.0001         0.0001<br>0.0001           Dissolved Cobalt<br>Dissolved Lead<br>Dissolved Magnesium<br>Dissolved Magnesium<br>Dissolved Mercury<br>Dissolved Mercury<br>Dissolved Mercury<br>Dissolved Nickel<br>Dissolved Potassium<br>Dissolved Potassium<br>Dissolved Potassium<br>Dissolved Silicon<br>Dissolved Silicon<br>Dissolved Silicon<br>Dissolved Silicon<br>Dissolved Sodium         0.001<br>0.002<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001         0.005<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Boron                                                | 0.143    | mg/L  | 0.010  |  |
| Chromium         0.0004         mg/L         0.0001           Cobalt         0.0003         mg/L         0.0001           Copper         0.0037         mg/L         0.0001           Dissolved Aluminum         0.014         mg/L         0.002           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barium         0.0416         mg/L         0.0001           Dissolved Berollium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cadmium                                              | < 0.0001 | mg/L  | 0.0001 |  |
| Cobalt<br>Copper         0.0003<br>0.0037         mg/L<br>mg/L<br>mg/L<br>0.0001         0.0001<br>0.0002           Dissolved Aluminum<br>Dissolved Artimony<br>Dissolved Arsenic<br>Dissolved Barium<br>Dissolved Barium<br>Dissolved Beryllium<br>Dissolved Bismuth<br>Dissolved Bismuth<br>Dissolved Boron<br>Dissolved Cadmium<br>Dissolved Cadmium<br>Dissolved Calcium<br>Dissolved Chromium<br>Dissolved Cobalt<br>Dissolved Copper<br>Dissolved Copper<br>Dissolved Magnesium<br>Dissolved Magnesium<br>Dissolved Mercury<br>Dissolved Molybdenum<br>Dissolved Molybdenum<br>Dissolved Potassium<br>Dissolved Potassium<br>Dissolved Potassium<br>Dissolved Selenium<br>Dissolved Silver<br>Dissolved Solium         mg/L<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Calcium                                              | 70.6     | mg/L  | 0.05   |  |
| Copper   0.0037   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Chromium                                             | 0.0004   | mg/L  | 0.0001 |  |
| Dissolved Aluminum         0.014         mg/L         0.002           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barium         0.0416         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cobalt                                               | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Aluminum         0.014         mg/L         0.002           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Barium         0.0013         mg/L         0.0001           Dissolved Barium         0.0001         mg/L         0.0001           Dissolved Bismuth         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Copper                                               | 0.0037   | mg/L  | 0.0001 |  |
| Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barium         0.0416         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dissolved Aluminum                                   | 0.014    |       | 0.002  |  |
| Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barium         0.0416         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dissolved Antimony                                   | 0.0002   |       | 0.0001 |  |
| Dissolved Barium         0.0416         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                    |          |       |        |  |
| Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolved Barium                                     |          |       | 0.0001 |  |
| Dissolved Bismuth         <0.0001         mg/L         0.0001           Dissolved Boron         0.150         mg/L         0.010           Dissolved Cadmium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |          |       |        |  |
| Dissolved Boron         0.150         mg/L         0.010           Dissolved Cadmium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                    |          |       |        |  |
| Dissolved Cadmium         < 0.0001         mg/L         0.0001           Dissolved Calcium         70.9         mg/L         0.05           Dissolved Chromium         < 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |          |       |        |  |
| Dissolved Calcium         70.9         mg/L         0.05           Dissolved Chromium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |       |        |  |
| Dissolved Chromium         <0.0001         mg/L         0.0001           Dissolved Cobalt         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                      |          |       |        |  |
| Dissolved Cobalt         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |          |       |        |  |
| Dissolved Copper         0.0021         mg/L         0.0001           Dissolved Iron         0.008         mg/L         0.003           Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |          |       |        |  |
| Dissolved Iron         0.008         mg/L         0.003           Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |          |       |        |  |
| Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |          |       |        |  |
| Dissolved Magnesium         18.3         mg/L         0.05           Dissolved Manganese         0.0158         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |          |       |        |  |
| Dissolved Manganese         0.0158         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |          |       |        |  |
| Dissolved Mercury         <0.05         ug/L         0.05           Dissolved Molybdenum         0.0021         mg/L         0.0001           Dissolved Nickel         0.0010         mg/L         0.0001           Dissolved Potassium         3.55         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.75         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                    |          |       |        |  |
| Dissolved Molybdenum         0.0021         mg/L         0.0001           Dissolved Nickel         0.0010         mg/L         0.0001           Dissolved Potassium         3.55         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.75         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                    |          |       |        |  |
| Dissolved Nickel         0.0010         mg/L         0.0001           Dissolved Potassium         3.55         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.75         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                    |          |       |        |  |
| Dissolved Potassium         3.55         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.75         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                    |          |       |        |  |
| Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.75         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |          |       |        |  |
| Dissolved Silicon 2.75 mg/L 0.01 Dissolved Silver <0.0001 mg/L 0.0001 Dissolved Sodium 82.3 mg/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |       |        |  |
| Dissolved Silver <0.0001 mg/L 0.0001 Dissolved Sodium 82.3 mg/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |          |       |        |  |
| Dissolved Sodium 82.3 mg/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dissolved Silicon                                    |          | mg/L  | 0.01   |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dissolved Silver                                     | <0.0001  | mg/L  | 0.0001 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dissolved Sodium                                     | 82.3     |       | 0.05   |  |
| Dissoived Strontium 1.13 mg/L 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dissolved Strontium                                  | 1.13     | mg/L  | 0.0005 |  |

| Analyte                                           | Result   | Units | MDL    |  |
|---------------------------------------------------|----------|-------|--------|--|
| Dissolved Thallium                                | <0.0003  | mg/L  | 0.0003 |  |
| Dissolved Tin                                     | < 0.0001 | mg/L  | 0.0001 |  |
| Dissolved Titanium                                | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Uranium                                 | 0.777    | ug/L  | 0.002  |  |
| Dissolved Vanadium                                | 0.0008   | mg/L  | 0.0001 |  |
| Dissolved Zinc                                    | 0.011    | mg/L  | 0.001  |  |
| Dissolved Zirconium                               | < 0.0004 | mg/L  | 0.0004 |  |
| Iron                                              | 0.426    | mg/L  | 0.003  |  |
| Lead                                              | 0.0010   | mg/L  | 0.0001 |  |
| Magnesium                                         | 17.8     | mg/L  | 0.05   |  |
| Manganese                                         | 0.0300   | mg/L  | 0.0001 |  |
| Mercury                                           | < 0.05   | ug/L  | 0.05   |  |
| Molybdenum                                        | 0.0020   | mg/L  | 0.0001 |  |
| Nickel                                            | 0.0014   | mg/L  | 0.0001 |  |
| Potassium                                         | 3.47     | mg/L  | 0.05   |  |
| Selenium                                          | 0.0002   | mg/L  | 0.0001 |  |
| Silicon                                           | 3.16     | mg/L  | 0.01   |  |
| Silver                                            | < 0.0001 | mg/L  | 0.0001 |  |
| Sodium                                            | 80.8     | mg/L  | 0.05   |  |
| Strontium                                         | 1.07     | mg/L  | 0.0005 |  |
| Thallium                                          | < 0.0003 | mg/L  | 0.0003 |  |
| Tin                                               | < 0.0001 | mg/L  | 0.0001 |  |
| Titanium                                          | 0.0058   | mg/L  | 0.0001 |  |
| Uranium                                           | 0.730    | ug/L  | 0.002  |  |
| Vanadium                                          | 0.0012   | mg/L  | 0.0001 |  |
| Zinc                                              | 0.022    | mg/L  | 0.001  |  |
| Zirconium                                         | <0.0004  | mg/L  | 0.0004 |  |
| 1-methylnaphthalene (Subcontract)                 | <0.5     | ug/L  | 0.5    |  |
| 2-methylnaphthalene (Subcontract)                 | < 0.5    | ug/L  | 0.5    |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)            | <0.1     | ug/L  | 0.1    |  |
| Acenaphthene (Subcontract)                        | <0.1     | ug/L  | 0.1    |  |
| Acenaphthylene (Subcontract)                      | <0.1     | ug/L  | 0.1    |  |
| Anthracene (Subcontract)                          | <0.1     | ug/L  | 0.1    |  |
| Benzo[a]anthracene (Subcontract)                  | <0.1     | ug/L  | 0.1    |  |
| Benzo[a]pyrene (Subcontract)                      | <0.01    | ug/L  | 0.01   |  |
| Benzo[b/j]fluoranthene (Subcontract)              | <0.1     | ug/L  | 0.1    |  |
| Benzo[e]pyrene (Subcontract)                      | <0.1     | ug/L  | 0.1    |  |
| Benzo[g,h,i]perylene (Subcontract)                | <0.2     | ug/L  | 0.2    |  |
| Benzo[k]fluoranthene (Subcontract)                | <0.1     | ug/L  | 0.1    |  |
| Chrysene (Subcontract)                            | <0.1     | ug/L  | 0.1    |  |
| Dibenzo(a,i)pyrene (Subcontract)                  | <0.1     | ug/L  | 0.1    |  |
| Dibenzo(a,j)acridine (Subcontract)                | <0.1     | ug/L  | 0.1    |  |
| Dibenzo[a,h]anthracene (Subcontract)              | <0.1     | ug/L  | 0.1    |  |
| Fluoranthene (Subcontract)                        | <0.1     | ug/L  | 0.1    |  |
| Fluorene (Subcontract)                            | <0.1     | ug/L  | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)              | <0.2     | ug/L  | 0.2    |  |
| Perylene (Subcontract)                            | <0.5     | ug/L  | 0.5    |  |
| Phenanthrene (Subcontract)                        | <0.1     | ug/L  | 0.1    |  |
| Pyrene (Subcontract)                              | <0.1     | ug/L  | 0.1    |  |
| PAHs Total (Subcontract)                          | <2       | ug/L  | 2      |  |
| Naphthalene (Subcontract)                         | <0.5     | ug/L  | 0.5    |  |
| C-3 Centre - G5 2019-09-30 16:35:00 Record 604016 |          |       |        |  |
| Ammonia + Ammonium as N                           | 0.62     | mg/L  | 0.01   |  |
| Conductivity - Field                              | 0.760    | mS/cm |        |  |
| Dissolved Organic Carbon                          | 3.4      | mg/L  | 0.4    |  |
| - January                                         |          | 9     |        |  |

| Analyte                                                     | Result   | Units     | MDL    |  |
|-------------------------------------------------------------|----------|-----------|--------|--|
| Dissolved Oxygen-Field                                      | 5.99     | mg/L      |        |  |
| Escherichia coli                                            | 1700     | CFU/100mL | 0      |  |
| Hardness (Calculation)                                      | 244      | mg/L      | 0.7    |  |
| Nitrate as N                                                | 1.77     | mg/L      | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                          | 1.88     | mg/L      | 0.02   |  |
| Nitrite as N                                                | 0.11     | mg/L      | 0.01   |  |
| o-Phosphate as P                                            | 0.37     | mg/L      | 0.05   |  |
| рН                                                          | 7.99     | pH        | 0.01   |  |
| pH - Field                                                  | 7.61     | pН        |        |  |
| Phosphorus Dissolved Total                                  | 0.260    | mg/L      | 0.010  |  |
| Phosphorus Total                                            | 0.371    | mg/L      | 0.010  |  |
| Temperature - Field                                         | 16.1     | C         |        |  |
| Total Biochem. Oxygen Demand                                | 2        | mg/L      | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 1.1      | mg/L      | 0.2    |  |
| Total Organic Carbon                                        | 4.0      | mg/L      | 0.4    |  |
| Total Suspended Solids                                      | 19.8     | mg/L      | 0.8    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 9.0      | ug/L      | 0.1    |  |
| Aluminum                                                    | 0.467    | mg/L      | 0.002  |  |
| Antimony                                                    | 0.0003   | mg/L      | 0.002  |  |
| Arsenic                                                     | 0.0005   | mg/L      | 0.0001 |  |
| Barium                                                      | 0.0484   | mg/L      | 0.0001 |  |
| Beryllium                                                   | < 0.0001 | mg/L      | 0.0001 |  |
| Bismuth                                                     | <0.0001  | mg/L      | 0.0001 |  |
| Boron                                                       | 0.197    | mg/L      | 0.010  |  |
| Cadmium                                                     | <0.0001  | mg/L      | 0.010  |  |
| Calcium                                                     | 67.0     | mg/L      | 0.0001 |  |
| Chromium                                                    | 0.0007   | mg/L      | 0.001  |  |
| Cobalt                                                      | 0.0007   |           | 0.0001 |  |
|                                                             | 0.0004   | mg/L      | 0.0001 |  |
| Copper<br>Dissolved Aluminum                                | 0.0033   | mg/L      | 0.0001 |  |
|                                                             |          | mg/L      |        |  |
| Dissolved Antimony Dissolved Arsenic                        | 0.0003   | mg/L      | 0.0001 |  |
|                                                             | 0.0012   | mg/L      | 0.0001 |  |
| Dissolved Barium                                            | 0.0459   | mg/L      | 0.0001 |  |
| Dissolved Beryllium                                         | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Bismuth                                           | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Boron                                             | 0.211    | mg/L      | 0.010  |  |
| Dissolved Cadmium                                           | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Calcium                                           | 68.9     | mg/L      | 0.05   |  |
| Dissolved Chromium                                          | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Cobalt                                            | 0.0002   | mg/L      | 0.0001 |  |
| Dissolved Copper                                            | 0.0011   | mg/L      | 0.0001 |  |
| Dissolved Iron                                              | 0.007    | mg/L      | 0.003  |  |
| Dissolved Lead                                              | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Magnesium                                         | 17.5     | mg/L      | 0.05   |  |
| Dissolved Manganese                                         | 0.0563   | mg/L      | 0.0001 |  |
| Dissolved Mercury                                           | < 0.05   | ug/L      | 0.05   |  |
| Dissolved Molybdenum                                        | 0.0022   | mg/L      | 0.0001 |  |
| Dissolved Nickel                                            | 0.0012   | mg/L      | 0.0001 |  |
| Dissolved Potassium                                         | 3.77     | mg/L      | 0.05   |  |
| Dissolved Selenium                                          | 0.0002   | mg/L      | 0.0001 |  |
| Dissolved Silicon                                           | 2.78     | mg/L      | 0.01   |  |
| Dissolved Silver                                            | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Sodium                                            | 88.3     | mg/L      | 0.05   |  |
| Dissolved Strontium                                         | 0.940    | mg/L      | 0.0005 |  |
| Dissolved Thallium                                          | <0.0003  | mg/L      | 0.0003 |  |
| Dissolved Tin                                               | <0.0001  | mg/L      | 0.0001 |  |
| Dissolved Titanium                                          | 0.0002   | mg/L      | 0.0001 |  |
|                                                             |          |           |        |  |

| Analyte                                                                  | Result     | Units        | MDL    |  |
|--------------------------------------------------------------------------|------------|--------------|--------|--|
| Dissolved Uranium                                                        | 0.675      | ug/L         | 0.002  |  |
| Dissolved Vanadium                                                       | 0.0011     | mg/L         | 0.0001 |  |
| Dissolved Zinc                                                           | 0.006      | mg/L         | 0.001  |  |
| Dissolved Zirconium                                                      | < 0.0004   | mg/L         | 0.0004 |  |
| Iron                                                                     | 0.883      | mg/L         | 0.003  |  |
| Lead                                                                     | 0.0019     | mg/L         | 0.0001 |  |
| Magnesium                                                                | 17.5       | mg/L         | 0.05   |  |
| Manganese                                                                | 0.0730     | mg/L         | 0.0001 |  |
| Mercury                                                                  | < 0.05     | ug/L         | 0.05   |  |
| Molybdenum                                                               | 0.0021     | mg/L         | 0.0001 |  |
| Nickel                                                                   | 0.0019     | mg/L         | 0.0001 |  |
| Potassium                                                                | 3.88       | mg/L         | 0.05   |  |
| Selenium                                                                 | 0.0003     | mg/L         | 0.0001 |  |
| Silicon                                                                  | 3.52       | mg/L         | 0.01   |  |
| Silver                                                                   | <0.0001    | mg/L         | 0.0001 |  |
| Sodium                                                                   | 82.1       | mg/L         | 0.05   |  |
| Strontium                                                                | 0.947      | mg/L         | 0.0005 |  |
| Thallium                                                                 | <0.0003    | mg/L         | 0.0003 |  |
| Tin                                                                      | < 0.0001   | mg/L         | 0.0001 |  |
| Titanium                                                                 | 0.0086     | mg/L         | 0.0001 |  |
| Uranium                                                                  | 0.666      | ug/L         | 0.002  |  |
| Vanadium                                                                 | 0.0019     | mg/L         | 0.002  |  |
| Zinc                                                                     | 0.020      | mg/L         | 0.0001 |  |
| Zirconium                                                                | < 0.0004   | mg/L         | 0.0004 |  |
| 1-methylnaphthalene (Subcontract)                                        | <0.5       | ug/L         | 0.5    |  |
| 2-methylnaphthalene (Subcontract)                                        | <0.5       | ug/L         | 0.5    |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                                   | <0.1       | ug/L         | 0.1    |  |
| Acenaphthene (Subcontract)                                               | <0.1       | ug/L         | 0.1    |  |
| Acenaphthylene (Subcontract)                                             | <0.1       | ug/L         | 0.1    |  |
| Anthracene (Subcontract)                                                 | <0.1       | ug/L         | 0.1    |  |
| Benzo[a]anthracene (Subcontract)                                         | <0.1       | ug/L         | 0.1    |  |
| Benzo[a]pyrene (Subcontract)                                             | <0.1       | ug/L         | 0.1    |  |
| Benzo[b/j]fluoranthene (Subcontract)                                     | <0.01      | ug/L         | 0.1    |  |
| Benzo[e]pyrene (Subcontract)                                             | <0.1       | ug/L         | 0.1    |  |
| Benzo[g,h,i]perylene (Subcontract)                                       | <0.1       | ug/L         | 0.1    |  |
| Benzo[k]fluoranthene (Subcontract)                                       | <0.2       | ug/L         | 0.2    |  |
| Chrysene (Subcontract)                                                   | <0.1       |              | 0.1    |  |
| Dibenzo(a,i)pyrene (Subcontract)                                         | <0.1       | ug/L<br>ug/L | 0.1    |  |
| Dibenzo(a,j)pyrene (Subcontract)  Dibenzo(a,j)acridine (Subcontract)     | <0.1       | ug/L<br>ug/L | 0.1    |  |
| Dibenzo[a,j]acridine (Subcontract)  Dibenzo[a,h]anthracene (Subcontract) | <0.1       | ug/L<br>ug/L | 0.1    |  |
| Fluoranthene (Subcontract)                                               | <0.1       | ug/L<br>ug/L | 0.1    |  |
| Fluorene (Subcontract)                                                   | <0.1       | ug/L<br>ug/L | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                                     | <0.1       | ug/L<br>ug/L | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)  Perylene (Subcontract)             |            | -            |        |  |
| ,                                                                        | <0.5       | ug/L         | 0.5    |  |
| Phenanthrene (Subcontract)                                               | <0.1       | ug/L         | 0.1    |  |
| Pyrene (Subcontract)                                                     | <0.1       | ug/L         | 0.1    |  |
| PAHs Total (Subcontract)                                                 | <2<br><0.5 | ug/L         | 2      |  |
| Naphthalene (Subcontract)                                                | <0.5       | ug/L         | 0.5    |  |
| C-3 West 2019-09-30 16:25:00 Record 604017                               |            |              |        |  |
| Ammonia + Ammonium as N                                                  | 0.59       | mg/L         | 0.01   |  |
| Conductivity - Field                                                     | 0.771      | mS/cm        | -      |  |
| Dissolved Organic Carbon                                                 | 2.9        | mg/L         | 0.4    |  |
| Dissolved Oxygen-Field                                                   | 6.38       | mg/L         |        |  |
| Escherichia coli                                                         | 1200       | CFU/100mL    | 0      |  |
| Hardness (Calculation)                                                   | 248        | mg/L         | 0.7    |  |
| rial arross (Salsalation)                                                |            | ···ə, –      | J      |  |
|                                                                          |            |              |        |  |

Analyte

Result

Units

MDL

| Analyte                                                     | Result  | Units | MDL    |  |
|-------------------------------------------------------------|---------|-------|--------|--|
| Nitrate as N                                                | 1.80    | mg/L  | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                          | 1.93    | mg/L  | 0.02   |  |
| Nitrite as N                                                | 0.13    | mg/L  | 0.01   |  |
| o-Phosphate as P                                            | 0.38    | mg/L  | 0.05   |  |
| рН                                                          | 8.03    | pН    | 0.01   |  |
| pH - Field                                                  | 7.65    | pH    |        |  |
| Phosphorus Dissolved Total                                  | 0.271   | mg/L  | 0.010  |  |
| Phosphorus Total                                            | 0.388   | mg/L  | 0.010  |  |
| Temperature - Field                                         | 15.9    | Č     |        |  |
| Total Biochem. Oxygen Demand                                | <2      | mg/L  | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 1.1     | mg/L  | 0.2    |  |
| Total Organic Carbon                                        | 3.7     | mg/L  | 0.4    |  |
| Total Suspended Solids                                      | 20.8    | mg/L  | 0.8    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 9.2     | ug/L  | 0.1    |  |
| Aluminum                                                    | 0.468   | mg/L  | 0.002  |  |
| Antimony                                                    | 0.0003  | mg/L  | 0.0001 |  |
| Arsenic                                                     | 0.0015  | mg/L  | 0.0001 |  |
| Barium                                                      | 0.0480  | mg/L  | 0.0001 |  |
| Beryllium                                                   | <0.0001 | mg/L  | 0.0001 |  |
| Bismuth                                                     | <0.0001 | mg/L  | 0.0001 |  |
| Boron                                                       | 0.193   | mg/L  | 0.010  |  |
| Cadmium                                                     | <0.0001 | mg/L  | 0.0001 |  |
| Calcium                                                     | 68.9    | mg/L  | 0.05   |  |
| Chromium                                                    | 0.0007  | mg/L  | 0.0001 |  |
| Cobalt                                                      | 0.0007  | mg/L  | 0.0001 |  |
| Copper                                                      | 0.0036  |       | 0.0001 |  |
| Dissolved Aluminum                                          | 0.0030  | mg/L  | 0.0001 |  |
| Dissolved Antimony                                          | 0.0003  | mg/L  | 0.002  |  |
| Dissolved Antimory  Dissolved Arsenic                       | 0.0003  | mg/L  |        |  |
|                                                             | 0.0012  | mg/L  | 0.0001 |  |
| Dissolved Barium                                            |         | mg/L  | 0.0001 |  |
| Dissolved Beryllium                                         | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Bismuth                                           | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Boron                                             | 0.204   | mg/L  | 0.010  |  |
| Dissolved Cadmium                                           | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Calcium                                           | 69.8    | mg/L  | 0.05   |  |
| Dissolved Chromium                                          | 0.0001  | mg/L  | 0.0001 |  |
| Dissolved Cobalt                                            | 0.0002  | mg/L  | 0.0001 |  |
| Dissolved Copper                                            | 0.0010  | mg/L  | 0.0001 |  |
| Dissolved Iron                                              | 0.015   | mg/L  | 0.003  |  |
| Dissolved Lead                                              | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Magnesium                                         | 17.6    | mg/L  | 0.05   |  |
| Dissolved Manganese                                         | 0.0542  | mg/L  | 0.0001 |  |
| Dissolved Mercury                                           | <0.05   | ug/L  | 0.05   |  |
| Dissolved Molybdenum                                        | 0.0021  | mg/L  | 0.0001 |  |
| Dissolved Nickel                                            | 0.0013  | mg/L  | 0.0001 |  |
| Dissolved Potassium                                         | 3.74    | mg/L  | 0.05   |  |
| Dissolved Selenium                                          | 0.0002  | mg/L  | 0.0001 |  |
| Dissolved Silicon                                           | 2.80    | mg/L  | 0.01   |  |
| Dissolved Silver                                            | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Sodium                                            | 89.8    | mg/L  | 0.05   |  |
| Dissolved Strontium                                         | 0.952   | mg/L  | 0.0005 |  |
| Dissolved Thallium                                          | <0.0003 | mg/L  | 0.0003 |  |
| Dissolved Tin                                               | <0.0001 | mg/L  | 0.0001 |  |
| Dissolved Titanium                                          | 0.0002  | mg/L  | 0.0001 |  |
| Dissolved Uranium                                           | 0.702   | ug/L  | 0.002  |  |
| Dissolved Vanadium                                          | 0.0011  | mg/L  | 0.0001 |  |
| Dissolved Zinc                                              | 0.005   | mg/L  | 0.001  |  |
|                                                             |         | -     |        |  |

| Analyte                                                        | Resuit       | Units        | MDL             |  |
|----------------------------------------------------------------|--------------|--------------|-----------------|--|
| Dissolved Zirconium                                            | <0.0004      | mg/L         | 0.0004          |  |
| Iron                                                           | 0.890        | mg/L         | 0.003           |  |
| Lead                                                           | 0.0021       | mg/L         | 0.0001          |  |
| Magnesium                                                      | 17.9         | mg/L         | 0.05            |  |
| Manganese                                                      | 0.0713       | mg/L         | 0.0001          |  |
| Mercury                                                        | < 0.05       | ug/L         | 0.05            |  |
| Molybdenum                                                     | 0.0021       | mg/L         | 0.0001          |  |
| Nickel                                                         | 0.0018       | mg/L         | 0.0001          |  |
| Potassium                                                      | 3.87         | mg/L         | 0.05            |  |
| Selenium                                                       | 0.0002       | mg/L         | 0.0001          |  |
| Silicon                                                        | 3.62         | mg/L         | 0.01            |  |
| Silver                                                         | <0.0001      | mg/L         | 0.0001          |  |
| Sodium                                                         | 84.2         | mg/L         | 0.05            |  |
| Strontium                                                      | 0.976        | mg/L         | 0.0005          |  |
| Thallium                                                       | < 0.0003     | mg/L         | 0.0003          |  |
| Tin                                                            | < 0.0001     | mg/L         | 0.0001          |  |
| Titanium                                                       | 0.0089       | mg/L         | 0.0001          |  |
| Uranium                                                        | 0.690        | ug/L         | 0.002           |  |
| Vanadium<br>—.                                                 | 0.0019       | mg/L         | 0.0001          |  |
| Zinc                                                           | 0.021        | mg/L         | 0.001           |  |
| Zirconium                                                      | <0.0004      | mg/L         | 0.0004          |  |
| 1-methylnaphthalene (Subcontract)                              | < 0.5        | ug/L         | 0.5             |  |
| 2-methylnaphthalene (Subcontract)                              | <0.5         | ug/L         | 0.5             |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                         | <0.1         | ug/L         | 0.1             |  |
| Acenaphthene (Subcontract)                                     | <0.1         | ug/L         | 0.1             |  |
| Acenaphthylene (Subcontract)                                   | <0.1         | ug/L         | 0.1             |  |
| Anthracene (Subcontract)                                       | <0.1<br><0.1 | ug/L         | 0.1<br>0.1      |  |
| Benzo[a]anthracene (Subcontract)  Benzo[a]pyrene (Subcontract) | <0.1         | ug/L<br>ug/L | 0.1             |  |
| Benzo[b/j]fluoranthene (Subcontract)                           | <0.01        | ug/L<br>ug/L | 0.01            |  |
| Benzo[e]pyrene (Subcontract)                                   | <0.1         | ug/L<br>ug/L | 0.1             |  |
| Benzo[g,h,i]perylene (Subcontract)                             | <0.1         | ug/L         | 0.2             |  |
| Benzo[k]fluoranthene (Subcontract)                             | <0.1         | ug/L         | 0.1             |  |
| Chrysene (Subcontract)                                         | <0.1         | ug/L         | 0.1             |  |
| Dibenzo(a,i)pyrene (Subcontract)                               | <0.1         | ug/L         | 0.1             |  |
| Dibenzo(a,j)acridine (Subcontract)                             | <0.1         | ug/L         | 0.1             |  |
| Dibenzo[a,h]anthracene (Subcontract)                           | <0.1         | ug/L         | 0.1             |  |
| Fluoranthene (Subcontract)                                     | <0.1         | ug/L         | 0.1             |  |
| Fluorene (Subcontract)                                         | <0.1         | ug/L         | 0.1             |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                           | <0.2         | ug/L         | 0.2             |  |
| Perylene (Subcontract)                                         | <0.5         | ug/L         | 0.5             |  |
| Phenanthrene (Subcontract)                                     | <0.1         | ug/L         | 0.1             |  |
| Pyrene (Subcontract)                                           | <0.1         | ug/L         | 0.1             |  |
| PAHs Total (Subcontract)                                       | <2           | ug/L         | 2               |  |
| Naphthalene (Subcontract)                                      | < 0.5        | ug/L         | 0.5             |  |
| C-4 West 2019-09-30 16:15:00 Record 604018                     |              | -            |                 |  |
| Ammonia + Ammonium as N                                        | 0.84         | mg/L         | 0.01            |  |
| Conductivity - Field                                           | 0.64         | mS/cm        | 0.01            |  |
| Dissolved Organic Carbon                                       | 3.9          | mg/L         | 0.4             |  |
| Dissolved Organic Carbon  Dissolved Oxygen-Field               | 4.85         | mg/L         | U. <del>T</del> |  |
| Escherichia coli                                               | 800          | CFU/100mL    | 0               |  |
| Hardness (Calculation)                                         | 233          | mg/L         | 0.7             |  |
| Nitrate as N                                                   | 1.64         | mg/L         | 0.01            |  |
| Nitrate+Nitrite as N (Calculation)                             | 1.73         | mg/L         | 0.02            |  |
| Nitrite as N                                                   | 0.09         | mg/L         | 0.01            |  |
|                                                                |              | J            |                 |  |
|                                                                |              |              |                 |  |

Analyte

Result

Units

MDL

| Analyte                                                     | Result   | Units | MDL    |  |
|-------------------------------------------------------------|----------|-------|--------|--|
| o-Phosphate as P                                            | 0.33     | mg/L  | 0.05   |  |
| рН                                                          | 7.94     | pН    | 0.01   |  |
| pH - Field                                                  | 7.52     | pH    |        |  |
| Phosphorus Dissolved Total                                  | 0.217    | mg/L  | 0.010  |  |
| Phosphorus Total                                            | 0.363    | mg/L  | 0.010  |  |
| Temperature - Field                                         | 16.3     | C     |        |  |
| Total Biochem. Oxygen Demand                                | 2        | mg/L  | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 1.4      | mg/L  | 0.2    |  |
| Total Organic Carbon                                        | 4.4      | mg/L  | 0.4    |  |
| Total Suspended Solids                                      | 21.2     | mg/L  | 0.8    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 10.1     | ug/L  | 0.1    |  |
| Aluminum                                                    | 0.489    | mg/L  | 0.002  |  |
| Antimony                                                    | 0.0003   | mg/L  | 0.0001 |  |
| Arsenic                                                     | 0.0016   | mg/L  | 0.0001 |  |
| Barium                                                      | 0.0492   | mg/L  | 0.0001 |  |
| Beryllium                                                   | < 0.0001 | mg/L  | 0.0001 |  |
| Bismuth                                                     | <0.0001  | mg/L  | 0.0001 |  |
| Boron                                                       | 0.206    | mg/L  | 0.010  |  |
| Cadmium                                                     | <0.0001  | mg/L  | 0.010  |  |
| Calcium                                                     | 63.4     |       | 0.0001 |  |
|                                                             | 0.0008   | mg/L  | 0.0001 |  |
| Chromium                                                    |          | mg/L  | 0.0001 |  |
| Cobalt                                                      | 0.0004   | mg/L  |        |  |
| Copper                                                      | 0.0036   | mg/L  | 0.0001 |  |
| Dissolved Aluminum                                          | 0.002    | mg/L  | 0.002  |  |
| Dissolved Antimony                                          | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Arsenic                                           | 0.0012   | mg/L  | 0.0001 |  |
| Dissolved Barium                                            | 0.0486   | mg/L  | 0.0001 |  |
| Dissolved Beryllium                                         | < 0.0001 | mg/L  | 0.0001 |  |
| Dissolved Bismuth                                           | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Boron                                             | 0.209    | mg/L  | 0.010  |  |
| Dissolved Cadmium                                           | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Calcium                                           | 65.4     | mg/L  | 0.05   |  |
| Dissolved Chromium                                          | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Cobalt                                            | 0.0002   | mg/L  | 0.0001 |  |
| Dissolved Copper                                            | 0.0011   | mg/L  | 0.0001 |  |
| Dissolved Iron                                              | 0.006    | mg/L  | 0.003  |  |
| Dissolved Lead                                              | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Magnesium                                         | 16.7     | mg/L  | 0.05   |  |
| Dissolved Manganese                                         | 0.0630   | mg/L  | 0.0001 |  |
| Dissolved Mercury                                           | <0.05    | ug/L  | 0.05   |  |
| Dissolved Molybdenum                                        | 0.0020   | mg/L  | 0.0001 |  |
| Dissolved Nickel                                            | 0.0018   | mg/L  | 0.0001 |  |
| Dissolved Potassium                                         | 3.75     | mg/L  | 0.05   |  |
| Dissolved Selenium                                          | 0.0002   | mg/L  | 0.0001 |  |
| Dissolved Silicon                                           | 2.75     | mg/L  | 0.01   |  |
| Dissolved Silver                                            | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Sodium                                            | 82.1     | mg/L  | 0.05   |  |
| Dissolved Strontium                                         | 0.869    | mg/L  | 0.0005 |  |
| Dissolved Thallium                                          | <0.0003  | mg/L  | 0.0003 |  |
| Dissolved Tin                                               | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Titanium                                          | 0.0001   | mg/L  | 0.0001 |  |
| Dissolved Uranium                                           | 0.601    | ug/L  | 0.002  |  |
| Dissolved Vanadium                                          | 0.0012   | mg/L  | 0.0001 |  |
| Dissolved Zinc                                              | 0.004    | mg/L  | 0.001  |  |
| Dissolved Zirconium                                         | <0.0004  | mg/L  | 0.0004 |  |
| Iron                                                        | 0.990    | mg/L  | 0.003  |  |
| Lead                                                        | 0.0021   | mg/L  | 0.0001 |  |
|                                                             |          |       |        |  |

| Analyte                                                     | Result          | Units        | MDL             |  |
|-------------------------------------------------------------|-----------------|--------------|-----------------|--|
| Magnesium                                                   | 17.0            | mg/L         | 0.05            |  |
| Manganese                                                   | 0.0882          | mg/L         | 0.0001          |  |
| Mercury                                                     | < 0.05          | ug/L         | 0.05            |  |
| Molybdenum                                                  | 0.0020          | mg/L         | 0.0001          |  |
| Nickel                                                      | 0.0019          | mg/L         | 0.0001          |  |
| Potassium                                                   | 3.89            | mg/L         | 0.05            |  |
| Selenium                                                    | 0.0003          | mg/L         | 0.0001          |  |
| Silicon                                                     | 3.55            | mg/L         | 0.01            |  |
| Silver                                                      | <0.0001         | mg/L         | 0.0001          |  |
| Sodium                                                      | 79.8            | mg/L         | 0.05            |  |
| Strontium                                                   | 0.881           | mg/L         | 0.0005          |  |
| Thallium<br>                                                | < 0.0003        | mg/L         | 0.0003          |  |
| Tin                                                         | <0.0001         | mg/L         | 0.0001          |  |
| Titanium                                                    | 0.0092          | mg/L         | 0.0001          |  |
| Uranium                                                     | 0.602           | ug/L         | 0.002           |  |
| Vanadium                                                    | 0.0021<br>0.020 | mg/L         | 0.0001<br>0.001 |  |
| Zinc<br>Zirconium                                           | <0.004          | mg/L         | 0.001           |  |
| 1-methylnaphthalene (Subcontract)                           | <0.0004         | mg/L<br>ug/L | 0.0004          |  |
| 2-methylnaphthalene (Subcontract)                           | <0.5            | ug/L         | 0.5             |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                      | <0.1            | ug/L         | 0.1             |  |
| Acenaphthene (Subcontract)                                  | <0.1            | ug/L         | 0.1             |  |
| Acenaphthylene (Subcontract)                                | <0.1            | ug/L         | 0.1             |  |
| Anthracene (Subcontract)                                    | <0.1            | ug/L         | 0.1             |  |
| Benzo[a]anthracene (Subcontract)                            | <0.1            | ug/L         | 0.1             |  |
| Benzo[a]pyrene (Subcontract)                                | <0.01           | ug/L         | 0.01            |  |
| Benzo[b/j]fluoranthene (Subcontract)                        | <0.1            | ug/L         | 0.1             |  |
| Benzo[e]pyrene (Subcontract)                                | <0.1            | ug/L         | 0.1             |  |
| Benzo[g,h,i]perylene (Subcontract)                          | <0.2            | ug/L         | 0.2             |  |
| Benzo[k]fluoranthene (Subcontract)                          | <0.1            | ug/L         | 0.1             |  |
| Chrysene (Subcontract)                                      | <0.1            | ug/L         | 0.1             |  |
| Dibenzo(a,i)pyrene (Subcontract)                            | <0.1            | ug/L         | 0.1             |  |
| Dibenzo(a,j)acridine (Subcontract)                          | <0.1            | ug/L         | 0.1             |  |
| Dibenzo[a,h]anthracene (Subcontract)                        | <0.1            | ug/L         | 0.1             |  |
| Fluoranthene (Subcontract)                                  | <0.1            | ug/L         | 0.1             |  |
| Fluorene (Subcontract) indeno[1,2,3-cd]pyrene (Subcontract) | <0.1<br><0.2    | ug/L         | 0.1<br>0.2      |  |
| Perylene (Subcontract)                                      | <0.5            | ug/L<br>ug/L | 0.5             |  |
| Phenanthrene (Subcontract)                                  | <0.1            | ug/L         | 0.1             |  |
| Pyrene (Subcontract)                                        | <0.1            | ug/L         | 0.1             |  |
| PAHs Total (Subcontract)                                    | <2              | ug/L         | 2               |  |
| Naphthalene (Subcontract)                                   | <0.5            | ug/L         | 0.5             |  |
|                                                             | 0.0             | g/ <b>-</b>  | 0.0             |  |
| C-5 East - G6 2019-09-30 16:05:00 Record 604019             |                 | _            |                 |  |
| Ammonia + Ammonium as N                                     | 1.05            | mg/L         | 0.01            |  |
| Conductivity - Field                                        | 0.700           | mS/cm        | 0.4             |  |
| Dissolved Organic Carbon                                    | 4.1             | mg/L         | 0.4             |  |
| Dissolved Oxygen-Field                                      | 2.96            | mg/L         | 0               |  |
| Escherichia coli                                            | 390             | CFU/100mL    | 0               |  |
| Hardness (Calculation)                                      | 223             | mg/L         | 0.7             |  |
| Nitrate as N<br>Nitrate+Nitrite as N (Calculation)          | 1.44<br>1.51    | mg/L         | 0.01<br>0.02    |  |
| Nitrate+Nitrite as N (Calculation)  Nitrite as N            | 0.07            | mg/L<br>mg/L | 0.02            |  |
| o-Phosphate as P                                            | 0.07            | mg/L         | 0.01            |  |
| pH                                                          | 7.87            | pH           | 0.03            |  |
| pH - Field                                                  | 7.43            | pН           |                 |  |
|                                                             | -               | •            |                 |  |

| Phosphorus Dissolved Total   0.166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                                 | Result | Units | MDL    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|-------|--------|--|
| Phosphorus Total Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phosphorus Dissolved Total              | 0.166  | mg/L  | 0.010  |  |
| Total Blochem, Oxygen Demand   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                                       |        |       | 0.010  |  |
| Total Biochem, Oxygen Demand Total Kyledah Nitrogena s.N. 1.5 mg/L Total Cynganic Carbon Total Suppended Solids 26.8 mg/L 26.9 mg/L 26.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                       |        |       |        |  |
| Total Kjeldah Nitrogen as N Total Organic Carbon Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                       |        |       | 1      |  |
| Total Organic Carbon   1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |       | 0.2    |  |
| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |        |       |        |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) 10.3 ug/L 0.002   Antimony 0.0004 mg/L 0.0001   Barum 0.0495 mg/L 0.0001   Barum 0.0495 mg/L 0.0001   Barum 0.0495 mg/L 0.0001   Barum 0.0495 mg/L 0.0001   Barum 0.0001 mg/L 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                       |        |       |        |  |
| Aluminum 0.598 mg/L 0.002 Antimony 0.0004 mg/L 0.0001 Barium 0.0001 mg/L 0.0001 Beryllium 0.0001 mg/L 0.0001 Bismuth 0.0001 mg/L 0.0001 Bismuth 0.0001 mg/L 0.0001 Cadmium 0.0001 mg/L 0.0001 Calcium 61.4 mg/L 0.001 Calcium 61.4 mg/L 0.001 Capper 0.0001 mg/L 0.0001 Copper 0.0001 mg/L 0.0001 Dissolved Arsenic 0.0002 mg/L 0.0001 Dissolved Arsenic 0.0002 mg/L 0.0001 Dissolved Barium 0.0472 mg/L 0.0001 Dissolved Barium 0.0472 mg/L 0.0001 Dissolved Calcium 0.0001 mg/L 0.0001 Dissolved Calcium 0.0001 mg/L 0.0001 Dissolved Calcium 61.7 mg/L 0.0001 Dissolved Capper 0.0001 mg/L 0.0001 Dissolved Copper 0.0001 mg/L 0.0001 Dissolved Capper 0.0001 mg/L 0.0001 Dissolved Capper 0.0001 mg/L 0.0001 Dissolved Capper 0.0001 mg/L 0.0001 Dissolved Magnesium 16.7 mg/L 0.0001 Dissolved Magnesium 16.7 mg/L 0.0001 Dissolved Magnesium 16.7 mg/L 0.0001 Dissolved Folamium 16.7 mg/L 0.0001 Dissolved Magnesium 16.7 mg/L 0.0001 Dissolved Folamium 16.7 mg/L 0.0001 Dissolved Tinnium 10.0002 mg/L 0.0001 Dissolved Tinnium 10.0002 mg/L 0.0001 Dissolved Tinnium 10.0001 mg/L 0.0001 Dissolved Tinnium 10.0002 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                       |        |       |        |  |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • • • • • • • • • • • • • • • • • • • |        |       |        |  |
| Arsenic   Bailum   0.0405   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antimony                                |        |       |        |  |
| Barlum   0.0495   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |        |       |        |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |       |        |  |
| Bismuth   8-0.0001   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Beryllium                               |        |       |        |  |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                       |        |       |        |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        |       |        |  |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        |       |        |  |
| Chromium   Cobalt   Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |       |        |  |
| Cobalt   Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |        |       |        |  |
| Copper   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |        |       |        |  |
| Dissolved Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |        |       |        |  |
| Dissolved Antimony   Dissolved Barium   Dissolved Barium   Dissolved Barium   Dissolved Beryllium   O.0001   mg/L   O.0001   Dissolved Beryllium   O.0001   mg/L   O.0001   Dissolved Boron   Dissolved Boron   Dissolved Cadmium   O.0001   mg/L   O.0001   Dissolved Cadmium   O.0001   mg/L   O.0001   Dissolved Chromium   O.0001   mg/L   O.0001   Dissolved Copper   O.0007   mg/L   O.0001   Dissolved Copper   O.0007   mg/L   O.0001   Dissolved Iron   O.011   mg/L   O.0001   Dissolved Manganese   O.0001   mg/L   O.0001   Dissolved Manganese   O.0001   mg/L   O.0001   Dissolved Mercury   O.05   ug/L   O.0001   Dissolved Mercury   O.05   ug/L   O.0001   Dissolved Mercury   O.001   mg/L   O.0001   Dissolved Mickel   O.0012   mg/L   O.0001   Dissolved Potassium   O.0002   mg/L   O.0001   Dissolved Selenium   O.0002   mg/L   O.0001   Dissolved Selenium   O.0002   mg/L   O.0001   Dissolved Solium   O.0002   mg/L   O.0001   Dissolved Titanium   O.0001   mg/L   O.0001   D.0001   D.0001   D.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · ·                                     |        |       |        |  |
| Dissolved Arsenic   Dissolved Barulm   Dissolved Baryllium   O.0001   mg/L   O.0001   Dissolved Baryllium   O.0001   mg/L   O.0001   Dissolved Bismuth   O.0001   mg/L   O.0001   Dissolved Cadmium   O.0001   mg/L   O.0001   Dissolved Cadmium   O.0001   mg/L   O.0001   Dissolved Cadmium   O.0001   mg/L   O.005   Dissolved Chromium   O.00001   mg/L   O.0001   Dissolved Cohalt   O.0002   mg/L   O.0001   Dissolved Cohalt   O.0002   mg/L   O.0001   Dissolved Cohalt   O.0002   mg/L   O.0001   Dissolved Iron   Dissolved Iron   Dissolved Manganese   O.0001   mg/L   O.003   Dissolved Manganese   Dissolved Marganese   Dissolved Molybdenum   Dissolved Molybdenum   Dissolved Molybdenum   Dissolved Silcon   O.0012   mg/L   O.005   Dissolved Selenium   O.0002   mg/L   O.005   Dissolved Silcon   Dissolved Silcon   O.0002   mg/L   O.001   Dissolved Silcon   Dissolved Silcon   O.0002   mg/L   O.001   Dissolved Silcon   O.0002   mg/L   O.0001   Dissolved Thallium   O.0003   mg/L   O.0001   Dissolved Tranium   O.0001   mg/L   O.0001   Dissolved Tranium   O.0002   mg/L   O.0001   Dissolved Tranium   O.0004   mg/L   O.0001   Dissolved Tranium   O.0002   mg/L   O.0001   Dissolved Tranium   O.00004   mg/L   O.0001   Dissolved Tranium   O.00004   mg/L   O.0001   Dissolved Tranium   O.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |       |        |  |
| Dissolved Barium   0.0472   mg/L   0.0001     Dissolved Bismuth   0.0001   mg/L   0.0001     Dissolved Bismuth   0.0001   mg/L   0.0001     Dissolved Cadmium   0.0001   mg/L   0.0001     Dissolved Cadmium   0.0001   mg/L   0.0001     Dissolved Calcium   61.7   mg/L   0.005     Dissolved Cobalt   0.0002   mg/L   0.0001     Dissolved Copper   0.0007   mg/L   0.0001     Dissolved Copper   0.0007   mg/L   0.0001     Dissolved Lead   0.0011   mg/L   0.003     Dissolved Manganese   0.0762   mg/L   0.0001     Dissolved Mercury   0.0762   mg/L   0.0001     Dissolved Molybdenum   0.0020   mg/L   0.0001     Dissolved Nolybdenum   0.0020   mg/L   0.0001     Dissolved Nolybdenum   0.0020   mg/L   0.0001     Dissolved Silcon   0.0012   mg/L   0.0001     Dissolved Silcon   0.0002   mg/L   0.0001     Dissolved Silcon   0.0001   mg/L   0.0001     Dissolved Silcon   0.869   mg/L   0.005     Dissolved Titalnium   0.0001   mg/L   0.0001     Dissolved Titalnium   0.0001   mg/L   0.0001     Dissolved Vanadium   0.577   ug/L   0.002     Dissolved Vanadium   0.0014   mg/L   0.0001     Dissolved Zirconium   0.0004   mg/L   0.0001     Dissolved Zirconium   0.0002   mg/L   0.0001     Dissolved Zirconium   0.0002   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                                       |        |       |        |  |
| Dissolved Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |       |        |  |
| Dissolved Bismuth   Co.0001   mg/L   Dissolved Cadmium   Co.0001   mg/L   Dissolved Cadmium   Co.0001   mg/L   Dissolved Calcium   Co.0001   mg/L   Dissolved Chemium   Co.0001   mg/L   Dissolved Chemium   Co.0001   mg/L   Dissolved Copper   Dissolved Copper   Dissolved Iron   Dissolved Iron   Dissolved Lead   Co.0001   mg/L   Dissolved Magnesium   Dissolved Mangnesium   Dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |        |       |        |  |
| Dissolved Boron   Dissolved Cadmium   d.0.001   mg/L   0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       |        |       |        |  |
| Dissolved Cadmium   Sisolved Calcium   Sisolved Calcium   Sisolved Chromium   Sisolved Chromium   Sisolved Cobalt   Dissolved Copper   Dissolved Copper   Dissolved Copper   Dissolved Copper   Dissolved Copper   Dissolved Iron   Dissolved Iron   Dissolved Iron   Dissolved Iron   Dissolved Magnesium   Sisolved Michael   Dissolved Mich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |       |        |  |
| Dissolved Calcium   61.7   mg/L   0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |        |       |        |  |
| Dissolved Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |        |       |        |  |
| Dissolved Copper   0.0002 mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |        |       |        |  |
| Dissolved Copper<br>Dissolved Iron         0.0007<br>Dissolved Lead         mg/L<br>0.003         0.0001           Dissolved Lead<br>Dissolved Magnesium<br>Dissolved Manganese<br>Dissolved Mercury<br>Dissolved Molybdenum<br>Dissolved Nickel<br>Dissolved Nickel<br>Dissolved Potassium<br>Dissolved Selenium<br>Dissolved Selenium<br>Dissolved Sodium<br>Dissolved Sodium<br>Dissolved Silver<br>Dissolved Strontium<br>Dissolved Tinalium<br>Dissolved Titanium<br>Dissolved Titanium<br>Dissolved Uranium<br>Dissolved Vanadium<br>Dissolved Vanadium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Dissolved Zirconium<br>Magnesium<br>Manganese         0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0.0001<br>0 |                                         |        |       |        |  |
| Dissolved Iron         0.011         mg/L         0.003           Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |        |       |        |  |
| Dissolved Lead   Co.0001   mg/L   Co.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |        |       |        |  |
| Dissolved Magnesium         16.7         mg/L         0.05           Dissolved Manganese         0.0762         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        |       |        |  |
| Dissolved Manganese         0.0762         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |        |       |        |  |
| Dissolved Mercury         <0.05         ug/L         0.05           Dissolved Molybdenum         0.0020         mg/L         0.0001           Dissolved Nickel         0.0012         mg/L         0.0001           Dissolved Potassium         3.95         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.69         mg/L         0.001           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |        |       |        |  |
| Dissolved Molybdenum   0.0020   mg/L   0.0001     Dissolved Nickel   0.0012   mg/L   0.0001     Dissolved Potassium   3.95   mg/L   0.05     Dissolved Selenium   0.0002   mg/L   0.0001     Dissolved Silicon   2.69   mg/L   0.001     Dissolved Siliver   <0.0001   mg/L   0.0001     Dissolved Siliver   <0.0001   mg/L   0.0001     Dissolved Strontium   0.869   mg/L   0.0005     Dissolved Tranlium   <0.0003   mg/L   0.0003     Dissolved Tin   <0.0001   mg/L   0.0001     Dissolved Tin   <0.0001   mg/L   0.0001     Dissolved Tin   <0.0001   mg/L   0.0001     Dissolved Uranium   0.577   ug/L   0.002     Dissolved Vanadium   0.0012   mg/L   0.0001     Dissolved Zinc   0.004   mg/L   0.0001     Dissolved Zinc   0.004   mg/L   0.0004     Dissolved Zinc   0.0004   mg/L   0.0004     Dissolved Zinc   0.0004   mg/L   0.0004     Dissolved Zinc   0.0004   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |        |       |        |  |
| Dissolved Nickel         0.0012         mg/L         0.0001           Dissolved Potassium         3.95         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.69         mg/L         0.001           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                       |        |       |        |  |
| Dissolved Potassium         3.95         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.69         mg/L         0.001           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ·                                       |        |       |        |  |
| Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.69         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |       |        |  |
| Dissolved Silicon         2.69         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |       |        |  |
| Dissolved Silver         <0.0001         mg/L         0.0001           Dissolved Sodium         77.6         mg/L         0.05           Dissolved Strontium         0.869         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |        |       |        |  |
| Dissolved Sodium         77.6         mg/L         0.05           Dissolved Strontium         0.869         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |        |       |        |  |
| Dissolved Strontium         0.869         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |        |       |        |  |
| Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |        |       |        |  |
| Dissolved Tin         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        |       |        |  |
| Dissolved Titanium         <0.0001         mg/L         0.0001           Dissolved Uranium         0.577         ug/L         0.002           Dissolved Vanadium         0.0012         mg/L         0.0001           Dissolved Zinc         0.004         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |       |        |  |
| Dissolved Uranium         0.577         ug/L         0.002           Dissolved Vanadium         0.0012         mg/L         0.0001           Dissolved Zinc         0.004         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |        |       |        |  |
| Dissolved Vanadium         0.0012         mg/L         0.0001           Dissolved Zinc         0.004         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |        |       |        |  |
| Dissolved Zinc       0.004       mg/L       0.001         Dissolved Zirconium       <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |        |       |        |  |
| Dissolved Zirconium       <0.0004       mg/L       0.0004         Iron       1.18       mg/L       0.003         Lead       0.0023       mg/L       0.0001         Magnesium       16.5       mg/L       0.05         Manganese       0.0989       mg/L       0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |        |       |        |  |
| Iron 1.18 mg/L 0.003 Lead 0.0023 mg/L 0.0001 Magnesium 16.5 mg/L 0.05 Manganese 0.0989 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |        |       |        |  |
| Lead 0.0023 mg/L 0.0001<br>Magnesium 16.5 mg/L 0.05<br>Manganese 0.0989 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dissolved Zirconium                     |        |       |        |  |
| Magnesium 16.5 mg/L 0.05<br>Manganese 0.0989 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Iron                                    |        |       |        |  |
| Manganese 0.0989 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead                                    |        | mg/L  |        |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Magnesium                               | 16.5   | mg/L  | 0.05   |  |
| Mercury <0.05 ug/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Manganese                               | 0.0989 | mg/L  | 0.0001 |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mercury                                 | <0.05  | ug/L  | 0.05   |  |

| Analyte                                         | Result  | Units     | MDL    |          |
|-------------------------------------------------|---------|-----------|--------|----------|
| Molybdenum                                      | 0.0020  | mg/L      | 0.0001 |          |
| Nickel                                          | 0.0020  | mg/L      | 0.0001 |          |
| Potassium                                       | 3.92    | mg/L      | 0.05   |          |
| Selenium                                        | 0.0003  | mg/L      | 0.0001 |          |
| Silicon                                         | 3.71    | mg/L      | 0.01   |          |
| Silver                                          | <0.0001 | mg/L      | 0.0001 |          |
| Sodium                                          | 72.8    | mg/L      | 0.05   |          |
| Strontium                                       | 0.850   | mg/L      | 0.0005 |          |
| Thallium                                        | <0.0003 | mg/L      | 0.0003 |          |
| Tin                                             | <0.0001 | mg/L      | 0.0001 |          |
| Titanium                                        | 0.0112  | mg/L      | 0.0001 |          |
| Uranium                                         | 0.556   | ug/L      | 0.002  |          |
| Vanadium                                        | 0.0023  | mg/L      | 0.0001 |          |
| Zinc                                            | 0.021   | mg/L      | 0.001  |          |
| Zirconium                                       | <0.0004 | mg/L      | 0.0004 |          |
| 1-methylnaphthalene (Subcontract)               | <0.5    | ug/L      | 0.5    |          |
| 2-methylnaphthalene (Subcontract)               | <0.5    | ug/L      | 0.5    |          |
| 7H-dibenzo(c,g)carbazole (Subcontract)          | <0.1    | ug/L      | 0.1    |          |
| Acenaphthene (Subcontract)                      | <0.1    | ug/L      | 0.1    |          |
| Acenaphthylene (Subcontract)                    | <0.1    | ug/L      | 0.1    |          |
| Anthracene (Subcontract)                        | <0.1    | ug/L      | 0.1    |          |
| Benzo[a]anthracene (Subcontract)                | <0.1    | ug/L      | 0.1    |          |
| Benzo[a]pyrene (Subcontract)                    | <0.01   | ug/L      | 0.01   |          |
| Benzo[b/j]fluoranthene (Subcontract)            | <0.1    | ug/L      | 0.1    |          |
| Benzo[e]pyrene (Subcontract)                    | <0.1    | ug/L      | 0.1    |          |
| Benzo[g,h,i]perylene (Subcontract)              | <0.2    | ug/L      | 0.2    |          |
| Benzo[k]fluoranthene (Subcontract)              | <0.1    | ug/L      | 0.1    |          |
| Chrysene (Subcontract)                          | <0.1    | ug/L      | 0.1    |          |
| Dibenzo(a,i)pyrene (Subcontract)                | <0.1    | ug/L      | 0.1    |          |
| Dibenzo(a,j)acridine (Subcontract)              | <0.1    | ug/L      | 0.1    |          |
| Dibenzo[a,h]anthracene (Subcontract)            | <0.1    | ug/L      | 0.1    |          |
| Fluoranthene (Subcontract)                      | <0.1    | ug/L      | 0.1    |          |
| Fluorene (Subcontract)                          | <0.1    | ug/L      | 0.1    |          |
| indeno[1,2,3-cd]pyrene (Subcontract)            | <0.2    | ug/L      | 0.2    |          |
| Perylene (Subcontract)                          | <0.5    | ug/L      | 0.5    |          |
| Phenanthrene (Subcontract)                      | <0.1    | ug/L      | 0.1    |          |
| Pyrene (Subcontract)                            | <0.1    | ug/L      | 0.1    |          |
| PAHs Total (Subcontract)                        | <2      | ug/L      | 2      |          |
| Naphthalene (Subcontract)                       | <0.5    | ug/L      | 0.5    |          |
| C-6 East - G7 2019-09-30 13:40:00 Record 604020 |         |           |        |          |
| Ammonia + Ammonium as N                         | 0.28    | mg/L      | 0.01   |          |
| Conductivity - Field                            | 0.711   | mS/cm     |        |          |
| Dissolved Organic Carbon                        | 4.6     | mg/L      | 0.4    |          |
| Dissolved Oxygen-Field                          | 9.06    | mg/L      |        |          |
| Escherichia coli                                | 60      | CFU/100mL | 0      |          |
| Hardness (Calculation)                          | 257     | mg/L      | 0.7    |          |
| Nitrate as N                                    | 0.35    | mg/L      | 0.01   |          |
| Nitrate+Nitrite as N (Calculation)              | 0.35    | mg/L      | 0.02   |          |
| Nitrite as N                                    | < 0.05  | mg/L      | 0.05   |          |
| o-Phosphate as P                                | < 0.05  | mg/L      | 0.05   |          |
| рН                                              | 8.27    | рН        | 0.01   |          |
| pH - Field                                      | 8.20    | рН        |        |          |
| Phosphorus Dissolved Total                      | <0.010  | mg/L      | 0.010  |          |
| Phosphorus Total                                | 0.169   | mg/L      | 0.010  |          |
| Temperature - Field                             | 17.1    | С         |        |          |
|                                                 |         |           |        | - 40 60- |

| Analyte                                                     | Result   | Units | MDL    |  |
|-------------------------------------------------------------|----------|-------|--------|--|
| Total Biochem. Oxygen Demand                                | 7        | mg/L  | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 1.3      | mg/L  | 0.2    |  |
| Total Organic Carbon                                        | 5.2      | mg/L  | 0.4    |  |
| Total Suspended Solids                                      | 37.6     | mg/L  | 8.0    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 16.4     | ug/L  | 0.1    |  |
| Aluminum                                                    | 0.585    | mg/L  | 0.002  |  |
| Antimony                                                    | 0.0003   | mg/L  | 0.0001 |  |
| Arsenic                                                     | 0.0016   | mg/L  | 0.0001 |  |
| Barium                                                      | 0.0640   | mg/L  | 0.0001 |  |
| Beryllium                                                   | < 0.0001 | mg/L  | 0.0001 |  |
| Bismuth                                                     | <0.0001  | mg/L  | 0.0001 |  |
| Boron                                                       | 0.104    | mg/L  | 0.010  |  |
| Cadmium                                                     | <0.0001  | mg/L  | 0.0001 |  |
| Calcium                                                     | 67.0     | mg/L  | 0.05   |  |
| Chromium                                                    | 0.0010   | mg/L  | 0.0001 |  |
| Cobalt                                                      | 0.0005   | mg/L  | 0.0001 |  |
| Copper                                                      | 0.0043   | mg/L  | 0.0001 |  |
| Dissolved Aluminum                                          | <0.002   | mg/L  | 0.002  |  |
| Dissolved Antimony                                          | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Arsenic                                           | 0.0009   | mg/L  | 0.0001 |  |
| Dissolved Barium                                            | 0.0521   | mg/L  | 0.0001 |  |
| Dissolved Beryllium                                         | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Bismuth                                           | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Boron                                             | 0.109    | mg/L  | 0.010  |  |
| Dissolved Cadmium                                           | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Calcium                                           | 67.2     | mg/L  | 0.05   |  |
| Dissolved Chromium                                          | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Cobalt                                            | 0.0001   | mg/L  | 0.0001 |  |
| Dissolved Copper                                            | 0.0004   | mg/L  | 0.0001 |  |
| Dissolved Iron                                              | 0.007    | mg/L  | 0.003  |  |
| Dissolved Lead                                              | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Magnesium                                         | 20.5     | mg/L  | 0.05   |  |
| Dissolved Manganese                                         | 0.0228   | mg/L  | 0.0001 |  |
| Dissolved Mercury                                           | <0.05    | ug/L  | 0.05   |  |
| Dissolved Molybdenum                                        | 0.0068   | mg/L  | 0.0001 |  |
| Dissolved Nickel                                            | 0.0012   | mg/L  | 0.0001 |  |
| Dissolved Potassium                                         | 5.00     | mg/L  | 0.05   |  |
| Dissolved Selenium                                          | 0.0002   | mg/L  | 0.0001 |  |
| Dissolved Silicon                                           | 2.43     | mg/L  | 0.01   |  |
| Dissolved Silver                                            | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Sodium                                            | 70.2     | mg/L  | 0.05   |  |
| Dissolved Strontium                                         | 0.954    | mg/L  | 0.0005 |  |
| Dissolved Thallium                                          | < 0.0003 | mg/L  | 0.0003 |  |
| Dissolved Tin                                               | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Titanium                                          | <0.0001  | mg/L  | 0.0001 |  |
| Dissolved Uranium                                           | 0.966    | ug/L  | 0.002  |  |
| Dissolved Vanadium                                          | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Zinc                                              | 0.002    | mg/L  | 0.001  |  |
| Dissolved Zirconium                                         | <0.0004  | mg/L  | 0.0004 |  |
| Iron                                                        | 1.34     | mg/L  | 0.003  |  |
| Lead                                                        | 0.0030   | mg/L  | 0.0001 |  |
| Magnesium                                                   | 21.7     | mg/L  | 0.05   |  |
| Manganese                                                   | 0.160    | mg/L  | 0.0001 |  |
| Mercury                                                     | < 0.05   | ug/L  | 0.05   |  |
| Molybdenum                                                  | 0.0067   | mg/L  | 0.0001 |  |
| Nickel                                                      | 0.0023   | mg/L  | 0.0001 |  |
| Potassium                                                   | 5.54     | mg/L  | 0.05   |  |

| Analyte                                         | Result       | Units     | MDL        |  |
|-------------------------------------------------|--------------|-----------|------------|--|
| Selenium                                        | 0.0002       | mg/L      | 0.0001     |  |
| Silicon                                         | 3.62         | mg/L      | 0.01       |  |
| Silver                                          | < 0.0001     | mg/L      | 0.0001     |  |
| Sodium                                          | 65.3         | mg/L      | 0.05       |  |
| Strontium                                       | 1.05         | mg/L      | 0.0005     |  |
| Thallium                                        | < 0.0003     | mg/L      | 0.0003     |  |
| Tin                                             | <0.0001      | mg/L      | 0.0001     |  |
| Titanium                                        | 0.0121       | mg/L      | 0.0001     |  |
| Uranium                                         | 1.02         | ug/L      | 0.002      |  |
| Vanadium                                        | 0.0020       | mg/L      | 0.0001     |  |
| Zinc                                            | 0.020        | mg/L      | 0.001      |  |
| Zirconium                                       | <0.0004      | mg/L      | 0.0004     |  |
| 1-methylnaphthalene (Subcontract)               | <0.5         | ug/L      | 0.5        |  |
| 2-methylnaphthalene (Subcontract)               | <0.5         | ug/L      | 0.5        |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)          | <0.1         | ug/L      | 0.1        |  |
| Acenaphthene (Subcontract)                      | <0.1         | ug/L      | 0.1        |  |
| Acenaphthylene (Subcontract)                    | <0.1         | ug/L      | 0.1        |  |
| Anthracene (Subcontract)                        | <0.1         | ug/L      | 0.1        |  |
| Benzo[a]anthracene (Subcontract)                | <0.1         | ug/L      | 0.1        |  |
| Benzo[a]pyrene (Subcontract)                    | 0.01         | ug/L      | 0.01       |  |
| Benzo[b/j]fluoranthene (Subcontract)            | <0.1         | ug/L      | 0.1        |  |
| Benzo[e]pyrene (Subcontract)                    | <0.1         | ug/L      | 0.1        |  |
| Benzo[g,h,i]perylene (Subcontract)              | <0.2         | ug/L      | 0.2        |  |
| Benzo[k]fluoranthene (Subcontract)              | <0.1         | ug/L      | 0.1        |  |
| Chrysene (Subcontract)                          | <0.1         | ug/L      | 0.1        |  |
| Dibenzo(a,i)pyrene (Subcontract)                | <0.1         | ug/L      | 0.1        |  |
| Dibenzo(a,j)acridine (Subcontract)              | <0.1         | ug/L      | 0.1        |  |
| Dibenzo[a,h]anthracene (Subcontract)            | <0.1         | ug/L      | 0.1        |  |
| Fluoranthene (Subcontract)                      | <0.1         | ug/L      | 0.1        |  |
| Fluorene (Subcontract)                          | <0.1         | ug/L      | 0.1        |  |
| indeno[1,2,3-cd]pyrene (Subcontract)            | <0.2         | ug/L      | 0.2<br>0.5 |  |
| Perylene (Subcontract)                          | <0.5         | ug/L      | 0.5        |  |
| Phenanthrene (Subcontract) Pyrene (Subcontract) | <0.1<br><0.1 | ug/L      | 0.1        |  |
| PAHs Total (Subcontract)                        | <2           | ug/L      | 2          |  |
| Naphthalene (Subcontract)                       | <0.5         | ug/L      | 0.5        |  |
| Naprilialerie (Subcontract)                     | <b>\0.</b> 3 | ug/L      | 0.5        |  |
| G-1 2019-09-30 17:00:00 Record 604021           |              |           |            |  |
| Ammonia + Ammonium as N                         | 0.07         | mg/L      | 0.01       |  |
| Conductivity - Field                            | 0.729        | mS/cm     |            |  |
| Dissolved Organic Carbon                        | 2.5          | mg/L      | 0.4        |  |
| Dissolved Oxygen-Field                          | 10.4         | mg/L      |            |  |
| Escherichia coli                                | 2800         | CFU/100mL | 0          |  |
| Hardness (Calculation)                          | 249          | mg/L      | 0.7        |  |
| Nitrate as N                                    | 1.94         | mg/L      | 0.01       |  |
| Nitrate+Nitrite as N (Calculation)              | 2.14         | mg/L      | 0.02       |  |
| Nitrite as N                                    | 0.20         | mg/L      | 0.01       |  |
| o-Phosphate as P                                | 0.44         | mg/L      | 0.05       |  |
| рН                                              | 8.42         | рН        | 0.01       |  |
| pH - Field                                      | 8.36         | рН        |            |  |
| Phosphorus Dissolved Total                      | 0.420        | mg/L      | 0.010      |  |
| Phosphorus Total                                | 0.428        | mg/L      | 0.010      |  |
| Temperature - Field                             | 15.7         | С         |            |  |
| Total Biochem. Oxygen Demand                    | <2           | mg/L      | 1          |  |
| Total Kjeldahl Nitrogen as N                    | 0.5          | mg/L      | 0.2        |  |
| Total Organic Carbon                            | 2.4          | mg/L      | 0.4        |  |
|                                                 |              |           |            |  |

| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyte                | Result  | Units | MDL    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|-------|--------|--|
| Unionized Ammonia as NH3 at Field Temperature (Calculation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Suspended Solids | 5.3     | mg/L  | 0.8    |  |
| Aluminum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ·                      |         |       | 0.1    |  |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . ,                    |         |       |        |  |
| Arsenic   Barium   0.0386   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Antimony               |         |       |        |  |
| Barilum   0.0366   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | 0.0013  |       |        |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Barium                 |         |       |        |  |
| Bismuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Beryllium              |         |       |        |  |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                      |         |       |        |  |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Boron                  |         |       |        |  |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |         |       |        |  |
| Chromium   0.0002   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calcium                |         |       |        |  |
| Cobat   Copper   Co |                        |         |       |        |  |
| Copper   Dissolved Aluminum   Dissolved Arsenic   Dissolved Arsenic   Dissolved Barlum   Dissolved Barlum   Dissolved Barlum   Dissolved Beryllim   Dissolved Dissolved Beryllim   Dissolved Cadmium   Dissolved Chromium   Dissolved Chromium   Dissolved Copper   Dissolved Magnesium   T7-5   mg/L   D.05   Dissolved Dis | Cobalt                 |         |       |        |  |
| Dissolved Aluminum   0.013   mg/L   0.002     Dissolved Arsenic   0.0002   mg/L   0.0001     Dissolved Arsenic   0.0012   mg/L   0.0001     Dissolved Barium   0.0385   mg/L   0.0001     Dissolved Bismuth   0.0001   mg/L   0.0001     Dissolved Bismuth   0.0001   mg/L   0.0001     Dissolved Cadmium   0.0001   mg/L   0.0001     Dissolved Cobalt   0.0001   mg/L   0.0001     Dissolved Copper   0.0019   mg/L   0.0001     Dissolved Copper   0.0019   mg/L   0.0001     Dissolved Manganese   0.0019   mg/L   0.0001     Dissolved Manganese   0.0118   mg/L   0.0001     Dissolved Manganese   0.0118   mg/L   0.0001     Dissolved Molybdenum   0.0021   mg/L   0.0001     Dissolved Molybdenum   0.0021   mg/L   0.0001     Dissolved Selenium   0.0001   mg/L   0.0001     Dissolved Selenium   0.0001   mg/L   0.0001     Dissolved Selenium   0.0002   mg/L   0.005     Dissolved Silver   0.0001   mg/L   0.0001     Dissolved Tinalium   0.0002   mg/L   0.0001     Dissolved Tinalium   0.0002   mg/L   0.0001     Dissolved Tinalium   0.0002   mg/L   0.0001     Dissolved Zinc   0.000                           |         |       |        |  |
| Dissolved Antimony   0.0002 mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                    |         |       |        |  |
| Dissolved Arsenic Dissolved Barium Dissolved Barium Dissolved Barium Dissolved Beryllium 4.0.0001 mg/L 0.0001         0.0001           Dissolved Beryllium Olosol Dissolved Bismuth Dissolved Boron Dissolved Cadmium Dissolved Cadmium Dissolved Calcium 71.0 mg/L 0.0001         0.0001           Dissolved Cadmium Dissolved Calcium Dissolved Calcium Dissolved Copalt Copalt Copalt Copalt Dissolved Copalt Copa                                                                                             |                        |         |       |        |  |
| Dissolved Barium   0.0385   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                      |         |       |        |  |
| Dissolved Bismuth Dissolved Bronn Dissolved Bronn Dissolved Bronn Dissolved Bronn Dissolved Cadmium 40,0001 mg/L 0,0001         0,0001 mg/L 0,0001           Dissolved Cadmium Dissolved Calcium Dissolved Chromium Dissolved Copper Dissolved Head Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Lead Dissolved Magnesium Dissolved Magnesium Dissolved Minybeharum Dissolved Minybeharum Dissolved Minybeharum Dissolved Minybeharum Dissolved Minybeharum Dissolved Minybeharum Dissolved Silicon 2.88 mg/L 0,0001 Dissolved Silicon Dissolved Thailium Dissolved Trianium Dissolved Jrianium Dissolved Dissol                                                          |                        |         |       |        |  |
| Dissolved Bismuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |         |       |        |  |
| Dissolved Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                      |         |       |        |  |
| Dissolved Cadmium   Co.0001   mg/L   Co.0001     Dissolved Chromium   Co.0001   mg/L   Co.0001     Dissolved Copper   Co.0001   mg/L   Co.0001     Dissolved Copper   Co.0001   mg/L   Co.0001     Dissolved Iron   Co.0001   mg/L   Co.0001     Dissolved Iron   Co.0001   mg/L   Co.0001     Dissolved Manganese   Co.0001   mg/L   Co.0001     Dissolved Manganese   Co.0001   mg/L   Co.0001     Dissolved Manganese   Co.0001   mg/L   Co.0001     Dissolved Molydenum   Co.0001   mg/L   Co.0001     Dissolved Potassium   Co.0001   mg/L   Co.0001     Dissolved Selenium   Co.0002   mg/L   Co.0001     Dissolved Silicon   Dissolved Sodium   Silicon   Co.0001   mg/L   Co.0001     Dissolved Thailium   Co.0003   mg/L   Co.0001     Dissolved Thailium   Co.0003   mg/L   Co.0001     Dissolved Titanium   Dissolved Titanium   Co.0001   mg/L   Co.0001     Dissolved Titanium   Co.0001   mg/L   Co.0001     Dissolved Zirconium   Co.0001   |                        |         |       |        |  |
| Dissolved Chromium   O.0001   mg/L   O.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |         |       |        |  |
| Dissolved Chromium   Dissolved Copper   Dissolved Copper   Dissolved Copper   Dissolved Copper   Dissolved Iron   Dissolved Iron   Dissolved Iron   Dissolved Iron   Dissolved Magnesium   17.5   mg/L   D.0001   Dissolved Magnesium   17.5   mg/L   D.005   Dissolved Manganese   D.0118   mg/L   D.0001   Dissolved Mercury   C.0.5   ug/L   D.005   Dissolved Molydenum   Dissolved Molydenum   Dissolved Nolydenum   Dissolved Nolydenum   Dissolved Potassium   Dissolved Silicon   Dissolved Thallium   Dissolved Thallium   Dissolved Titanium   Dissolved Zirconium   C.0.0001   mg/L   D.0001   Dissolved Zirconium   Dissolved Zirc  |                        |         |       |        |  |
| Dissolved Cobalt   Co.0001   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |         |       |        |  |
| Dissolved Copper   Dissolved Iron   D.019   mg/L   D.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |         |       |        |  |
| Dissolved Iron   Dissolved Lead   0.0001   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |         |       |        |  |
| Dissolved Lead   C0.0001   mg/L   D.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • •                    |         |       |        |  |
| Dissolved Magnesium   17.5   mg/L   0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |         |       |        |  |
| Dissolved Manganese   Dissolved Mercury   Co.05   ug/L   Dissolved Molybdenum   Dissolved Nickel   Dissolved Nickel   Dissolved Potassium   Dissolved Potassium   Dissolved Potassium   Dissolved Potassium   Dissolved Selenium   Dissolved Selenium   Dissolved Sodium   Dissolved Sodium   B1.9   mg/L   D.0001   Dissolved Strontium   Dissolved Strontium   Dissolved Tina   Dissolved Titanium   Dissolved Titanium   Dissolved Titanium   Dissolved Varianium   Dissolved Varianium   Dissolved Varianium   Dissolved Varianium   Dissolved Varianium   Dissolved Varianium   Dissolved Zirco   Dissolved Zirco   Dissolved Zirco   Dissolved Zirco   Dissolved Zirconium   To.0227   mg/L   D.0001   Magnesium   Tr.5   mg/L   D.0001   Magnesium   Tr.5   mg/L   D.0001   Magnesium   Tr.5   mg/L   D.005   Molybdenum   D.0020   mg/L   D.0001   Magnesium   Tr.5   mg/L   D.005   Molybdenum   D.0020   mg/L   D.0001   Molybdenum   D  |                        |         |       |        |  |
| Dissolved Mercury   Co.05   Ug/L   Co.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |         |       |        |  |
| Dissolved Molybdenum         0.0021         mg/L         0.0001           Dissolved Nickel         0.0010         mg/L         0.0001           Dissolved Potassium         3.32         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.68         mg/L         0.001           Dissolved Siliver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |       |        |  |
| Dissolved Nickel   0.0010   mg/L   0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                      |         |       |        |  |
| Dissolved Potassium         3.32         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.68         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                      |         |       |        |  |
| Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.68         mg/L         0.01           Dissolved Silicon         2.68         mg/L         0.0001           Dissolved Sodium         81.9         mg/L         0.005           Dissolved Strontium         1.09         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |       |        |  |
| Dissolved Silicon         2.68         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |         |       |        |  |
| Dissolved Solium         81.9         mg/L         0.0001           Dissolved Strontium         1.09         mg/L         0.005           Dissolved Strontium         1.09         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |         |       |        |  |
| Dissolved Sodium         81.9         mg/L         0.05           Dissolved Strontium         1.09         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |         |       |        |  |
| Dissolved Strontium         1.09         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |         |       |        |  |
| Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |       |        |  |
| Dissolved Tin         <0.0001         mg/L         0.0001           Dissolved Titanium         0.0002         mg/L         0.0001           Dissolved Uranium         0.750         ug/L         0.002           Dissolved Vanadium         0.0007         mg/L         0.0001           Dissolved Zirc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |         |       |        |  |
| Dissolved Titanium         0.0002         mg/L         0.0001           Dissolved Uranium         0.750         ug/L         0.002           Dissolved Vanadium         0.0007         mg/L         0.0001           Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |         |       |        |  |
| Dissolved Uranium         0.750         ug/L         0.002           Dissolved Vanadium         0.0007         mg/L         0.0001           Dissolved Zirc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |       |        |  |
| Dissolved Vanadium         0.0007         mg/L         0.0001           Dissolved Zirc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |       |        |  |
| Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |         |       |        |  |
| Dissolved Zirconium         <0.0004         mg/L         0.0004           Iron         0.227         mg/L         0.003           Lead         0.0005         mg/L         0.0001           Magnesium         17.5         mg/L         0.05           Manganese         0.0181         mg/L         0.0001           Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |         |       |        |  |
| Iron       0.227       mg/L       0.003         Lead       0.0005       mg/L       0.0001         Magnesium       17.5       mg/L       0.05         Manganese       0.0181       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |         |       |        |  |
| Lead       0.0005       mg/L       0.0001         Magnesium       17.5       mg/L       0.05         Manganese       0.0181       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |         |       |        |  |
| Magnesium       17.5       mg/L       0.05         Manganese       0.0181       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |       |        |  |
| Manganese       0.0181       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |         |       |        |  |
| Mercury       <0.05       ug/L       0.05         Molybdenum       0.0020       mg/L       0.0001         Nickel       0.0012       mg/L       0.0001         Potassium       3.35       mg/L       0.05         Selenium       0.0002       mg/L       0.0001         Silicon       3.04       mg/L       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |         |       |        |  |
| Molybdenum       0.0020       mg/L       0.0001         Nickel       0.0012       mg/L       0.0001         Potassium       3.35       mg/L       0.05         Selenium       0.0002       mg/L       0.0001         Silicon       3.04       mg/L       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |       |        |  |
| Nickel       0.0012       mg/L       0.0001         Potassium       3.35       mg/L       0.05         Selenium       0.0002       mg/L       0.0001         Silicon       3.04       mg/L       0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                      |         |       |        |  |
| Potassium 3.35 mg/L 0.05  Selenium 0.0002 mg/L 0.0001  Silicon 3.04 mg/L 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molybdenum             |         |       |        |  |
| Selenium 0.0002 mg/L 0.0001<br>Silicon 3.04 mg/L 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |         |       |        |  |
| Silicon 3.04 mg/L 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Potassium              |         |       |        |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Selenium               | 0.0002  | mg/L  | 0.0001 |  |
| Silver <0.0001 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Silicon                |         | mg/L  |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silver                 | <0.0001 | mg/L  | 0.0001 |  |

| Analyte                                                     | Result   | Units     | MDL    |  |
|-------------------------------------------------------------|----------|-----------|--------|--|
| Sodium                                                      | 78.0     | mg/L      | 0.05   |  |
| Strontium                                                   | 1.10     | mg/L      | 0.0005 |  |
| Thallium                                                    | < 0.0003 | mg/L      | 0.0003 |  |
| Tin                                                         | < 0.0001 | mg/L      | 0.0001 |  |
| Titanium                                                    | 0.0037   | mg/L      | 0.0001 |  |
| Uranium                                                     | 0.741    | ug/L      | 0.002  |  |
| Vanadium                                                    | 0.0010   | mg/L      | 0.0001 |  |
| Zinc                                                        | 0.017    | mg/L      | 0.001  |  |
| Zirconium                                                   | < 0.0004 | mg/L      | 0.0004 |  |
| 1-methylnaphthalene (Subcontract)                           | < 0.5    | ug/L      | 0.5    |  |
| 2-methylnaphthalene (Subcontract)                           | < 0.5    | ug/L      | 0.5    |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                      | <0.1     | ug/L      | 0.1    |  |
| Acenaphthene (Subcontract)                                  | <0.1     | ug/L      | 0.1    |  |
| Acenaphthylene (Subcontract)                                | <0.1     | ug/L      | 0.1    |  |
| Anthracene (Subcontract)                                    | <0.1     | ug/L      | 0.1    |  |
| Benzo[a]anthracene (Subcontract)                            | <0.1     | ug/L      | 0.1    |  |
| Benzo[a]pyrene (Subcontract)                                | < 0.01   | ug/L      | 0.01   |  |
| Benzo[b/j]fluoranthene (Subcontract)                        | <0.1     | ug/L      | 0.1    |  |
| Benzo[e]pyrene (Subcontract)                                | <0.1     | ug/L      | 0.1    |  |
| Benzo[g,h,i]perylene (Subcontract)                          | <0.2     | ug/L      | 0.2    |  |
| Benzo[k]fluoranthene (Subcontract)                          | <0.1     | ug/L      | 0.1    |  |
| Chrysene (Subcontract)                                      | <0.1     | ug/L      | 0.1    |  |
| Dibenzo(a,i)pyrene (Subcontract)                            | <0.1     | ug/L      | 0.1    |  |
| Dibenzo(a,j)acridine (Subcontract)                          | <0.1     | ug/L      | 0.1    |  |
| Dibenzo[a,h]anthracene (Subcontract)                        | <0.1     | ug/L      | 0.1    |  |
| Fluoranthene (Subcontract)                                  | <0.1     | ug/L      | 0.1    |  |
| Fluorene (Subcontract)                                      | <0.1     | ug/L      | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                        | <0.2     | ug/L      | 0.2    |  |
| Perylene (Subcontract)                                      | <0.5     | ug/L      | 0.5    |  |
| Phenanthrene (Subcontract)                                  | <0.1     | ug/L      | 0.1    |  |
| Pyrene (Subcontract)                                        | <0.1     | ug/L      | 0.1    |  |
| PAHs Total (Subcontract)                                    | <2       | ug/L      | 2      |  |
| Naphthalene (Subcontract)                                   | <0.5     | ug/L      | 0.5    |  |
| Naphthalene (Gubeomaet)                                     | ٧٥.٥     | ug/L      | 0.5    |  |
| G-4 2019-09-30 16:40:00 Record 604022                       |          |           |        |  |
| Ammonia + Ammonium as N                                     | 0.40     | mg/L      | 0.01   |  |
| Conductivity - Field                                        | 0.780    | mS/cm     |        |  |
| Dissolved Organic Carbon                                    | 2.6      | mg/L      | 0.4    |  |
| Dissolved Oxygen-Field                                      | 7.01     | mg/L      |        |  |
| Escherichia coli                                            | 1900     | CFU/100mL | 0      |  |
| Hardness (Calculation)                                      | 257      | mg/L      | 0.7    |  |
| Nitrate as N                                                | 2.07     | mg/L      | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                          | 2.35     | mg/L      | 0.02   |  |
| Nitrite as N                                                | 0.28     | mg/L      | 0.01   |  |
| o-Phosphate as P                                            | 0.43     | mg/L      | 0.05   |  |
| Hq                                                          | 8.06     | pН        | 0.01   |  |
| pH - Field                                                  | 7.67     | рН        |        |  |
| Phosphorus Dissolved Total                                  | 0.343    | mg/L      | 0.010  |  |
| Phosphorus Total                                            | 0.425    | mg/L      | 0.010  |  |
| Temperature - Field                                         | 15.7     | g, =<br>C | -      |  |
| Total Biochem. Oxygen Demand                                | <2       | mg/L      | 1      |  |
| Total Kjeldahl Nitrogen as N                                | 1.2      | mg/L      | 0.2    |  |
| Total Organic Carbon                                        | 2.8      | mg/L      | 0.4    |  |
| Total Suspended Solids                                      | 10.3     | mg/L      | 0.8    |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 6.5      | ug/L      | 0.1    |  |
| Aluminum                                                    | 0.307    | mg/L      | 0.002  |  |
| , uammam                                                    | 0.001    | g, ⊏      |        |  |

| Antimony 0.0002 mg/L 0.0001 Arsenic 0.0014 mg/L 0.0001 Barium 0.0460 mg/L 0.0001 Beryllium <0.0001 mg/L 0.0001 Bismuth <0.0001 mg/L 0.0001 Bismuth <0.0001 mg/L 0.0001 Cadmium <0.0001 mg/L 0.0001 Calcium 71.6 mg/L 0.005 Chromium 0.0004 mg/L 0.0001 Cobalt 0.0003 mg/L 0.0001 Cobalt 0.0003 mg/L 0.0001 Cissolved Aluminum 0.0004 mg/L 0.0001 Dissolved Arsenic 0.0001 mg/L 0.0001 Dissolved Barium 0.0002 mg/L 0.0001 Dissolved Barium 0.0434 mg/L 0.0001 Dissolved Beryllium 0.0001 mg/L 0.0001 Dissolved Barium 0.0434 mg/L 0.0001 Dissolved Barium 0.0434 mg/L 0.0001 Dissolved Cadmium 0.0001 mg/L 0.0001 Dissolved Cadmium 0.0001 mg/L 0.0001 Dissolved Calcium 72.4 mg/L 0.0001 Dissolved Calcium 72.4 mg/L 0.0001 Dissolved Cobalt 0.0001 mg/L 0.0001 Dissolved Cobalt 0.0001 mg/L 0.0001 Dissolved Coper 0.0012 mg/L 0.0001 Dissolved Coper 0.0012 mg/L 0.0001 Dissolved Manganese 0.0001 mg/L 0.0001 Dissolved Manganese 0.0001 mg/L 0.0001 Dissolved Mickel 0.0002 mg/L 0.0001 Dissolved Mickel 0.0002 mg/L 0.0001 Dissolved Selenium 0.0002 mg/L 0.0001 Dissolved Stelnium 0.0002 mg/L 0.0001 Dissolved Thallium 0.0002 mg/L 0.0001 Dissolved Thallium 0.0002 mg/L 0.0001 Dissolved Tinanium Dissolved Tinanium 0.0002 mg/L 0.0001 Dissolved Tinanium 0.0002 mg/L 0.0001 Dissolved Tinanium 0.0002 mg/L 0.0001 Dissolved Tinanium 0.0009 mg/L 0.0001 Dissolved Tinanium 0.0000  mg/L 0.0001 Dissolved Tinanium 0.0000 mg/L 0.0001 Dissolved Tin                                                                                                                                                                                                                                                | Analyte            | Result   | Units | MDL    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|-------|--------|--|
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Antimony           | 0.0002   | mg/L  | 0.0001 |  |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Arsenic            | 0.0014   | mg/L  | 0.0001 |  |
| Bismuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Barium             | 0.0460   | mg/L  | 0.0001 |  |
| Boron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Beryllium          | < 0.0001 | mg/L  | 0.0001 |  |
| Cadmium         <0.0001         mg/L         0.0001           Calcium         71.6         mg/L         0.05           Chromium         0.0004         mg/L         0.0001           Cobalt         0.0003         mg/L         0.0001           Copper         0.0035         mg/L         0.0001           Dissolved Aluminum         0.004         mg/L         0.0001           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Antimony         0.0013         mg/L         0.0001           Dissolved Baryllium         0.0013         mg/L         0.0001           Dissolved Baryllium         0.0001         mg/L         0.0001           Dissolved Bismuth         0.0001         mg/L         0.0001           Dissolved Baryllium         0.0001         mg/L         0.0001           Dissolved Cadmium         0.0001         mg/L         0.0001           Dissolved Cadrium         0.0001         mg/L         0.0001           Dissolved Calcium         72.4         mg/L         0.005           Dissolved Copper         0.0012         mg/L         0.0001           Dissolved Mangaesium         0.001         mg/L         0.005<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bismuth            | < 0.0001 | mg/L  | 0.0001 |  |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Boron              | 0.169    | mg/L  | 0.010  |  |
| Chromium         0.0004         mg/L         0.0001           Cobalt         0.0003         mg/L         0.0001           Copper         0.0035         mg/L         0.0001           Dissolved Aluminum         0.004         mg/L         0.0002           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Barium         0.0001         mg/L         0.0001           Dissolved Beryllium         0.0001         mg/L         0.0001           Dissolved Calcium         72.4         mg/L         0.0001           Dissolved Calcium         72.4         mg/L         0.0001           Dissolved Copper         0.0001         mg/L         0.0001           Dissolved Copper         0.0001         mg/L         0.0001           Dissolved Manganesium         18.1         mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cadmium            | < 0.0001 | mg/L  | 0.0001 |  |
| Cobalt<br>Copper         0.0003<br>0.0035         mg/L<br>mg/L<br>0.0001         0.0001<br>0.0001           Dissolved Aluminum<br>Dissolved Arsenic<br>Dissolved Arsenic<br>Dissolved Barium<br>Dissolved Baryllium<br>Dissolved Beryllium<br>Dissolved Boron<br>Dissolved Boron<br>Dissolved Cadmium<br>Dissolved Cadmium<br>Obissolved Calcium<br>Dissolved Calcium<br>Dissolved Calcium<br>Dissolved Cobalt<br>Dissolved Cobalt<br>Dissolved Copper<br>Dissolved Copper<br>Dissolved Manganese<br>Dissolved Manganese<br>Dissolved Molybdenum<br>Dissolved Potassium<br>Dissolved Potassium<br>Dissolved Sodium<br>Dissolved Solicon<br>Dissolved Solicon<br>Dissolved Solicon<br>Dissolved Solicon<br>Dissolved Solicon<br>Dissolved Solicon<br>Dissolved Molybdenum<br>Dissolved Solicon<br>Dissolved Tinalium<br>Dissolved Tinalium<br>Dissolved Tinalium<br>Dissolved Vanadium<br>Dissolved Jinalium<br>Dissolved Jinalium<br>Dissolve | Calcium            | 71.6     | mg/L  | 0.05   |  |
| Copper         0.0035         mg/L         0.0001           Dissolved Aluminum         0.0002         mg/L         0.0002           Dissolved Artsenic         0.00013         mg/L         0.0001           Dissolved Barium         0.0434         mg/L         0.0001           Dissolved Bismuth         0.0001         mg/L         0.0001           Dissolved Bismuth         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chromium           | 0.0004   | mg/L  | 0.0001 |  |
| Dissolved Aluminum         0.004         mg/L         0.002           Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Baryllium         0.0001         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cobalt             | 0.0003   | mg/L  | 0.0001 |  |
| Dissolved Antimony         0.0002         mg/L         0.0001           Dissolved Arsenic         0.0013         mg/L         0.0001           Dissolved Beryllium         0.0434         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          | mg/L  | 0.0001 |  |
| Dissolved Barium         0.0434         mg/L         0.0001           Dissolved Barium         0.0434         mg/L         0.0001           Dissolved Beryllium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | mg/L  |        |  |
| Dissolved Barium         0.0434         mg/L         0.0001           Dissolved Bismuth         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolved Antimony |          | mg/L  |        |  |
| Dissolved Beryllium Dissolved Bismuth Dissolved Bronn Dissolved Bronn Dissolved Cadmium Spl. Dissolved Calcium 72.4 mg/L Dissolved Cobalt Dissolved Copper Dissolved Copper Dissolved Copper Dissolved Copper Dissolved Lead Con001 mg/L Dissolved Lead Con001 mg/L Dissolved Lead Con001 mg/L Dissolved Magnesium Dissolved Magnesium 18.1 mg/L Dissolved Magnese Dissolved Magnese Dissolved Molybdenum Dissolved Nickel Dissolved Nickel Dissolved Nickel Dissolved Nickel Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Selenium Dissolved Sodium Dissolved Sodium Plissolved Sodium Plissolved Sodium Plissolved Sodium Plissolved Strontium Lo2 mg/L Dissolved Trallium Co.0003 mg/L Dissolved Trallium Co.0003 mg/L Dissolved Trallium Dissolved Trallium Dissolved Trallium Dissolved Trallium Dissolved Trallium Dissolved Tranium Dissolved Jennium Dissolved Dissolved Jennium Dissolved Dissolved Jennium Dissolved Dissolved Jennium Dis                                                                                                                                                                                                                                                                        |                    |          | mg/L  |        |  |
| Dissolved Bismuth         <0.0001         mg/L         0.0001           Dissolved Cadmium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -     |        |  |
| Dissolved Boron         0.175         mg/L         0.010           Dissolved Cadmium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |          | -     |        |  |
| Dissolved Cadmium Dissolved Calcium 72.4         mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |          | -     |        |  |
| Dissolved Calcium         72.4         mg/L         0.05           Dissolved Chromium         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |          | •     |        |  |
| Dissolved Chromium         <0.0001         mg/L         0.0001           Dissolved Copper         0.0001         mg/L         0.0001           Dissolved Copper         0.0012         mg/L         0.0001           Dissolved Iron         0.009         mg/L         0.0001           Dissolved Mangesium         18.1         mg/L         0.0001           Dissolved Manganese         0.0398         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |          | •     |        |  |
| Dissolved Copper         0.0001         mg/L         0.0001           Dissolved Copper         0.0012         mg/L         0.0001           Dissolved Iron         0.009         mg/L         0.0003           Dissolved Iron         0.009         mg/L         0.0001           Dissolved Magnesium         18.1         mg/L         0.0001           Dissolved Manganese         0.0398         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |          | -     |        |  |
| Dissolved Copper         0.0012         mg/L         0.0001           Dissolved Iron         0.009         mg/L         0.003           Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |          | -     |        |  |
| Dissolved Iron         0.009         mg/L         0.003           Dissolved Lead         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |          | •     |        |  |
| Dissolved Lead         <0.0001         mg/L         0.0001           Dissolved Magnesium         18.1         mg/L         0.05           Dissolved Manganese         0.0398         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |          | -     |        |  |
| Dissolved Magnesium         18.1         mg/L         0.05           Dissolved Manganese         0.0398         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          | -     |        |  |
| Dissolved Manganese         0.0398         mg/L         0.0001           Dissolved Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |          | -     |        |  |
| Dissolved Mercury         <0.05         ug/L         0.05           Dissolved Molybdenum         0.0022         mg/L         0.0001           Dissolved Nickel         0.0012         mg/L         0.0001           Dissolved Potassium         3.75         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.79         mg/L         0.001           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                  |          | -     |        |  |
| Dissolved Molybdenum         0.0022         mg/L         0.0001           Dissolved Nickel         0.0012         mg/L         0.0001           Dissolved Potassium         3.75         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.79         mg/L         0.001           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |          | -     |        |  |
| Dissolved Nickel         0.0012         mg/L         0.0001           Dissolved Potassium         3.75         mg/L         0.05           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.79         mg/L         0.001           Dissolved Silicon         2.79         mg/L         0.0001           Dissolved Silicon         93.4         mg/L         0.0001           Dissolved Sodium         93.4         mg/L         0.005           Dissolved Strontium         1.02         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                  |          |       |        |  |
| Dissolved Potassium         3.75         mg/L         0.005           Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.79         mg/L         0.01           Dissolved Siliver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |          | -     |        |  |
| Dissolved Selenium         0.0002         mg/L         0.0001           Dissolved Silicon         2.79         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          | -     |        |  |
| Dissolved Silicon         2.79         mg/L         0.01           Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |          | -     |        |  |
| Dissolved Silver         <0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |          | -     |        |  |
| Dissolved Sodium         93.4         mg/L         0.05           Dissolved Strontium         1.02         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          |       |        |  |
| Dissolved Strontium         1.02         mg/L         0.0005           Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |          | -     |        |  |
| Dissolved Thallium         <0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |          |       |        |  |
| Dissolved Tin         <0.0001         mg/L         0.0001           Dissolved Titanium         0.0002         mg/L         0.0001           Dissolved Uranium         0.741         ug/L         0.002           Dissolved Vanadium         0.0009         mg/L         0.0001           Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |          | -     |        |  |
| Dissolved Titanium         0.0002         mg/L         0.0001           Dissolved Uranium         0.741         ug/L         0.002           Dissolved Vanadium         0.0009         mg/L         0.0001           Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          | -     |        |  |
| Dissolved Uranium         0.741         ug/L         0.002           Dissolved Vanadium         0.0009         mg/L         0.0001           Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |          | -     |        |  |
| Dissolved Vanadium         0.0009         mg/L         0.0001           Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          | -     |        |  |
| Dissolved Zinc         0.009         mg/L         0.001           Dissolved Zirconium         <0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |          | -     |        |  |
| Dissolved Zirconium         <0.0004         mg/L         0.0004           Iron         0.628         mg/L         0.003           Lead         0.0012         mg/L         0.0001           Magnesium         18.4         mg/L         0.05           Manganese         0.0504         mg/L         0.0001           Mercury         <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |          | -     |        |  |
| Iron     0.628     mg/L     0.003       Lead     0.0012     mg/L     0.0001       Magnesium     18.4     mg/L     0.05       Manganese     0.0504     mg/L     0.0001       Mercury     <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          | -     |        |  |
| Lead       0.0012       mg/L       0.0001         Magnesium       18.4       mg/L       0.05         Manganese       0.0504       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |          | -     |        |  |
| Magnesium       18.4       mg/L       0.05         Manganese       0.0504       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          | -     |        |  |
| Manganese       0.0504       mg/L       0.0001         Mercury       <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |          | -     |        |  |
| Mercury <0.05 ug/L 0.05<br>Molybdenum 0.0021 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  |          | -     |        |  |
| Molybdenum 0.0021 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |          | -     |        |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                  |          | -     |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                  |          | -     |        |  |
| Potassium 3.84 mg/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |          | -     |        |  |
| Selenium 0.0003 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Selenium           |          | -     |        |  |
| Silicon 3.26 mg/L 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |          | -     |        |  |
| Silver <0.0001 mg/L 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Silver             |          | -     |        |  |
| Sodium 87.9 mg/L 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |          | -     |        |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Strontium          |          | -     |        |  |
| 5050000 119/E 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | 1.02     | mg/L  | 0.0003 |  |

| Analyte                                                     | Result          | Units        | MDL     |  |
|-------------------------------------------------------------|-----------------|--------------|---------|--|
| Tin                                                         | <0.0001         | mg/L         | 0.0001  |  |
| Titanium                                                    | 0.0060          | mg/L         | 0.0001  |  |
| Uranium                                                     | 0.730           | ug/L         | 0.002   |  |
| Vanadium                                                    | 0.0014          | mg/L         | 0.0001  |  |
| Zinc                                                        | 0.021           | mg/L         | 0.001   |  |
| Zirconium                                                   | <0.0004         | mg/L         | 0.0004  |  |
| 1-methylnaphthalene (Subcontract)                           | <0.5            | ug/L         | 0.5     |  |
| 2-methylnaphthalene (Subcontract)                           | <0.5            | ug/L         | 0.5     |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                      | <0.1            | ug/L         | 0.1     |  |
| Acenaphthene (Subcontract)                                  | <0.1            | ug/L         | 0.1     |  |
| Acenaphthylene (Subcontract)                                | <0.1            | ug/L         | 0.1     |  |
| Anthracene (Subcontract)                                    | <0.1            | ug/L         | 0.1     |  |
| ,                                                           | <0.1            |              | 0.1     |  |
| Benzo[a]anthracene (Subcontract)                            |                 | ug/L         |         |  |
| Benzo[a]pyrene (Subcontract)                                | <0.01           | ug/L         | 0.01    |  |
| Benzo[b/j]fluoranthene (Subcontract)                        | <0.1            | ug/L         | 0.1     |  |
| Benzo[e]pyrene (Subcontract)                                | <0.1            | ug/L         | 0.1     |  |
| Benzo[g,h,i]perylene (Subcontract)                          | <0.2            | ug/L         | 0.2     |  |
| Benzo[k]fluoranthene (Subcontract)                          | <0.1            | ug/L         | 0.1     |  |
| Chrysene (Subcontract)                                      | <0.1            | ug/L         | 0.1     |  |
| Dibenzo(a,i)pyrene (Subcontract)                            | <0.1            | ug/L         | 0.1     |  |
| Dibenzo(a,j)acridine (Subcontract)                          | <0.1            | ug/L         | 0.1     |  |
| Dibenzo[a,h]anthracene (Subcontract)                        | <0.1            | ug/L         | 0.1     |  |
| Fluoranthene (Subcontract)                                  | <0.1            | ug/L         | 0.1     |  |
| Fluorene (Subcontract)                                      | <0.1            | ug/L         | 0.1     |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                        | <0.2            | ug/L         | 0.2     |  |
| Perylene (Subcontract)                                      | <0.5            | ug/L         | 0.5     |  |
| Phenanthrene (Subcontract)                                  | <0.1            | ug/L         | 0.1     |  |
| Pyrene (Subcontract)                                        | <0.1            | ug/L         | 0.1     |  |
| PAHs Total (Subcontract)                                    | <2              | ug/L         | 2       |  |
| Naphthalene (Subcontract)                                   | <0.5            | ug/L         | 0.5     |  |
| R-1 2019-09-30 13:20:00 Record 604023                       |                 |              |         |  |
| Ammonia + Ammonium as N                                     | 0.03            | mg/L         | 0.01    |  |
| Conductivity - Field                                        | 1.200           | mS/cm        |         |  |
| Dissolved Organic Carbon                                    | 2.4             | mg/L         | 0.4     |  |
| Dissolved Oxygen-Field                                      | 8.67            | mg/L         | <b></b> |  |
| Escherichia coli                                            | 10              | CFU/100mL    | 0       |  |
| Hardness (Calculation)                                      | 414             | mg/L         | 0.7     |  |
| Nitrate as N                                                | 0.33            | mg/L         | 0.01    |  |
| Nitrate+Nitrite as N (Calculation)                          | 0.33            | mg/L         | 0.01    |  |
| Nitrate Find the as N (Calculation)  Nitrite as N           | < 0.05          | mg/L         | 0.02    |  |
| o-Phosphate as P                                            | <0.05           | mg/L         | 0.05    |  |
| ·                                                           | 8.11            | pH           | 0.03    |  |
| pH<br>pH - Field                                            | 7.76            | рH           | 0.01    |  |
| рп - гіеіd<br>Phosphorus Dissolved Total                    | < 0.010         | -            | 0.010   |  |
| ·                                                           |                 | mg/L         |         |  |
| Phosphorus Total                                            | <0.010          | mg/L         | 0.010   |  |
| Temperature - Field                                         | 18.1            | C<br>ma/l    | 4       |  |
| Total Biochem. Oxygen Demand                                | <2              | mg/L         | 1       |  |
| Total Kjeldahl Nitrogen as N                                | 0.3             | mg/L         | 0.2     |  |
| Total Organic Carbon                                        | 2.9             | mg/L         | 0.4     |  |
| Total Suspended Solids                                      | 3.4             | mg/L         | 0.8     |  |
|                                                             |                 | ug/L         | 0.1     |  |
| Unionized Ammonia as NH3 at Field Temperature (Calculation) | 0.7             |              |         |  |
| Aluminum                                                    | 0.024           | mg/L         | 0.002   |  |
| Aluminum<br>Antimony                                        | 0.024<br>0.0002 | mg/L<br>mg/L | 0.0001  |  |
| Aluminum                                                    | 0.024           | mg/L         |         |  |

| Analyte                             | Result         | Units        | MDL    |  |
|-------------------------------------|----------------|--------------|--------|--|
| Beryllium                           | <0.0001        | mg/L         | 0.0001 |  |
| Bismuth                             | < 0.0001       | mg/L         | 0.0001 |  |
| Boron                               | 0.131          | mg/L         | 0.010  |  |
| Cadmium                             | < 0.0001       | mg/L         | 0.0001 |  |
| Calcium                             | 117            | mg/L         | 0.05   |  |
| Chromium                            | < 0.0001       | mg/L         | 0.0001 |  |
| Cobalt                              | < 0.0001       | mg/L         | 0.0001 |  |
| Copper                              | 0.0012         | mg/L         | 0.0001 |  |
| Dissolved Aluminum                  | < 0.002        | mg/L         | 0.002  |  |
| Dissolved Antimony                  | 0.0002         | mg/L         | 0.0001 |  |
| Dissolved Arsenic                   | 0.0005         | mg/L         | 0.0001 |  |
| Dissolved Barium                    | 0.0611         | mg/L         | 0.0001 |  |
| Dissolved Beryllium                 | < 0.0001       | mg/L         | 0.0001 |  |
| Dissolved Bismuth                   | < 0.0001       | mg/L         | 0.0001 |  |
| Dissolved Boron                     | 0.141          | mg/L         | 0.010  |  |
| Dissolved Cadmium                   | < 0.0001       | mg/L         | 0.0001 |  |
| Dissolved Calcium                   | 118            | mg/L         | 0.05   |  |
| Dissolved Chromium                  | <0.0001        | mg/L         | 0.0001 |  |
| Dissolved Cobalt                    | <0.0001        | mg/L         | 0.0001 |  |
| Dissolved Copper                    | 0.0010         | mg/L         | 0.0001 |  |
| Dissolved Iron                      | 0.004          | mg/L         | 0.003  |  |
| Dissolved Lead                      | <0.0001        | mg/L         | 0.0001 |  |
| Dissolved Magnesium                 | 28.9           | mg/L         | 0.05   |  |
| Dissolved Manganese                 | 0.101          | mg/L         | 0.0001 |  |
| Dissolved Mercury                   | <0.05          | ug/L         | 0.05   |  |
| Dissolved Molybdenum                | 0.0021         | mg/L         | 0.0001 |  |
| Dissolved Nickel                    | 0.0021         | mg/L         | 0.0001 |  |
| Dissolved Potassium                 | 4.87           | mg/L         | 0.05   |  |
| Dissolved Selenium                  | 0.0002         | mg/L         | 0.0001 |  |
| Dissolved Silicon                   | 3.80           | mg/L         | 0.01   |  |
| Dissolved Silver                    | <0.0001        | mg/L         | 0.0001 |  |
| Dissolved Sodium                    | 124            | mg/L         | 0.05   |  |
| Dissolved Strontium                 | 2.58           | mg/L         | 0.0005 |  |
| Dissolved Thallium                  | < 0.0003       | mg/L         | 0.0003 |  |
| Dissolved Trialidin                 | <0.0001        | mg/L         | 0.0001 |  |
| Dissolved Titanium                  | 0.0001         | mg/L         | 0.0001 |  |
| Dissolved Uranium                   | 1.47           |              | 0.0001 |  |
| Dissolved Vanadium                  | 0.0001         | ug/L<br>mg/L | 0.002  |  |
| Dissolved Variadium  Dissolved Zinc | 0.0001         | mg/L         | 0.0001 |  |
| Dissolved Zinc  Dissolved Zirconium | <0.004         | mg/L         | 0.001  |  |
| Iron                                | 0.140          | mg/L         | 0.0004 |  |
| Lead                                | 0.140          | mg/L         | 0.003  |  |
| Magnesium                           | 28.9           | mg/L         | 0.0001 |  |
| Manganese                           | 0.136          | mg/L         | 0.001  |  |
| Manganese<br>Mercury                | 0.136<br><0.05 |              | 0.0001 |  |
| Molybdenum                          |                | ug/L<br>mg/L | 0.001  |  |
| -                                   | 0.0020         | mg/L         |        |  |
| Nickel<br>Potassium                 | 0.0007         | mg/L         | 0.0001 |  |
|                                     | 5.01           | mg/L         | 0.05   |  |
| Selenium                            | 0.0002         | mg/L         | 0.0001 |  |
| Silicon                             | 3.97           | mg/L         | 0.01   |  |
| Silver                              | < 0.0001       | mg/L         | 0.0001 |  |
| Sodium                              | 121            | mg/L         | 0.05   |  |
| Strontium                           | 2.61           | mg/L         | 0.0005 |  |
| Thallium                            | < 0.0003       | mg/L         | 0.0003 |  |
| Tin                                 | <0.0001        | mg/L         | 0.0001 |  |
| Titanium                            | 0.0006         | mg/L         | 0.0001 |  |
| Uranium                             | 1.46           | ug/L         | 0.002  |  |

| Analyte                                                     | Result   | Units        | MDL    |  |
|-------------------------------------------------------------|----------|--------------|--------|--|
| Vanadium                                                    | 0.0002   | mg/L         | 0.0001 |  |
| Zinc                                                        | 0.005    | mg/L         | 0.001  |  |
| Zirconium                                                   | < 0.0004 | mg/L         | 0.0004 |  |
| 1-methylnaphthalene (Subcontract)                           | <0.5     | ug/L         | 0.5    |  |
| 2-methylnaphthalene (Subcontract)                           | <0.5     | ug/L         | 0.5    |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                      | <0.1     | ug/L         | 0.1    |  |
| Acenaphthene (Subcontract)                                  | <0.1     | ug/L         | 0.1    |  |
| Acenaphthylene (Subcontract)                                | <0.1     | ug/L         | 0.1    |  |
| Anthracene (Subcontract)                                    | <0.1     | ug/L         | 0.1    |  |
| Benzo[a]anthracene (Subcontract)                            | <0.1     | ug/L         | 0.1    |  |
| Benzo[a]pyrene (Subcontract)                                | <0.01    | ug/L         | 0.01   |  |
| Benzo[b/j]fluoranthene (Subcontract)                        | <0.1     | ug/L         | 0.01   |  |
| · · · · · · · · · · · · · · · · ·                           |          |              |        |  |
| Benzo[e]pyrene (Subcontract)                                | <0.1     | ug/L         | 0.1    |  |
| Benzo[g,h,i]perylene (Subcontract)                          | <0.2     | ug/L         | 0.2    |  |
| Benzo[k]fluoranthene (Subcontract)                          | <0.1     | ug/L         | 0.1    |  |
| Chrysene (Subcontract)                                      | <0.1     | ug/L         | 0.1    |  |
| Dibenzo(a,i)pyrene (Subcontract)                            | <0.1     | ug/L         | 0.1    |  |
| Dibenzo(a,j)acridine (Subcontract)                          | <0.1     | ug/L         | 0.1    |  |
| Dibenzo[a,h]anthracene (Subcontract)                        | <0.1     | ug/L         | 0.1    |  |
| Fluoranthene (Subcontract)                                  | <0.1     | ug/L         | 0.1    |  |
| Fluorene (Subcontract)                                      | <0.1     | ug/L         | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                        | <0.2     | ug/L         | 0.2    |  |
| Perylene (Subcontract)                                      | <0.5     | ug/L         | 0.5    |  |
| Phenanthrene (Subcontract)                                  | <0.1     | ug/L         | 0.1    |  |
| Pyrene (Subcontract)                                        | <0.1     | ug/L         | 0.1    |  |
| PAHs Total (Subcontract)                                    | <2       | ug/L         | 2      |  |
| Naphthalene (Subcontract)                                   | <0.5     | ug/L         | 0.5    |  |
| R-2 2019-09-30 13:00:00 Record 604024                       |          |              |        |  |
| Ammonia + Ammonium as N                                     | <0.01    | mg/L         | 0.01   |  |
| Conductivity - Field                                        | 1.205    | mS/cm        |        |  |
| Dissolved Organic Carbon                                    | 2.4      | mg/L         | 0.4    |  |
| Dissolved Oxygen-Field                                      | 9.75     | mg/L         |        |  |
| Escherichia coli                                            | 30       | CFU/100mL    | 0      |  |
| Hardness (Calculation)                                      | 457      | mg/L         | 0.7    |  |
| Nitrate as N                                                | 0.31     | mg/L         | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                          | 0.31     | mg/L         | 0.01   |  |
| Nitrate Find the as N (Calculation)  Nitrite as N           | < 0.05   |              | 0.02   |  |
|                                                             |          | mg/L         |        |  |
| o-Phosphate as P                                            | <0.05    | mg/L         | 0.05   |  |
| pH<br>pH Field                                              | 8.14     | pН           | 0.01   |  |
| pH - Field                                                  | 8.02     | pH           | 0.040  |  |
| Phosphorus Dissolved Total                                  | <0.010   | mg/L         | 0.010  |  |
| Phosphorus Total                                            | <0.010   | mg/L         | 0.010  |  |
| Temperature - Field                                         | 18.4     | С            | _      |  |
| Total Biochem. Oxygen Demand                                | <2       | mg/L         | 1      |  |
| Total Kjeldahl Nitrogen as N                                | <0.2     | mg/L         | 0.2    |  |
| Total Organic Carbon                                        | 3.4      | mg/L         | 0.4    |  |
| Total Suspended Solids                                      | <2       | mg/L         | 2      |  |
| Inionized Ammonia as NH3 at Field Temperature (Calculation) | < 0.4    | ug/L         | 0.4    |  |
| Aluminum                                                    | 0.012    | mg/L         | 0.002  |  |
| Antimony                                                    | 0.0002   | mg/L         | 0.0001 |  |
| , ·                                                         | 0.0005   | mg/L         | 0.0001 |  |
| Arsenic                                                     | 0.0500   | mg/L         | 0.0001 |  |
| Arsenic<br>Barium                                           | 0.0592   | 1119/ =      |        |  |
|                                                             | < 0.0592 |              | 0.0001 |  |
| Barium                                                      |          | mg/L<br>mg/L |        |  |

| Analyte              | Result             | Units | MDL    |          |
|----------------------|--------------------|-------|--------|----------|
| Cadmium              | <0.0001            | mg/L  | 0.0001 |          |
| Calcium              | 115                | mg/L  | 0.05   |          |
| Chromium             | < 0.0001           | mg/L  | 0.0001 |          |
| Cobalt               | <0.0001            | mg/L  | 0.0001 |          |
| Copper               | 0.0011             | mg/L  | 0.0001 |          |
| Dissolved Aluminum   | <0.002             | mg/L  | 0.002  |          |
| Dissolved Antimony   | 0.0002             | mg/L  | 0.0001 |          |
| Dissolved Arsenic    | 0.0005             | mg/L  | 0.0001 |          |
| Dissolved Barium     | 0.0624             | mg/L  | 0.0001 |          |
| Dissolved Beryllium  | < 0.0001           | mg/L  | 0.0001 |          |
| Dissolved Bismuth    | < 0.0001           | mg/L  | 0.0001 |          |
| Dissolved Boron      | 0.137              | mg/L  | 0.010  |          |
| Dissolved Cadmium    | < 0.0001           | mg/L  | 0.0001 |          |
| Dissolved Calcium    | 136                | mg/L  | 0.05   |          |
| Dissolved Chromium   | < 0.0001           | mg/L  | 0.0001 |          |
| Dissolved Cobalt     | <0.0001            | mg/L  | 0.0001 |          |
| Dissolved Copper     | 0.0010             | mg/L  | 0.0001 |          |
| Dissolved Iron       | 0.004              | mg/L  | 0.003  |          |
| Dissolved Lead       | <0.0001            | mg/L  | 0.0001 |          |
| Dissolved Magnesium  | 28.6               | mg/L  | 0.05   |          |
| Dissolved Manganese  | 0.106              | mg/L  | 0.0001 |          |
| Dissolved Mercury    | <0.05              | ug/L  | 0.05   |          |
| Dissolved Molybdenum | 0.0020             | mg/L  | 0.0001 |          |
| Dissolved Nickel     | 0.0007             | mg/L  | 0.0001 |          |
| Dissolved Potassium  | 4.96               | mg/L  | 0.05   |          |
| Dissolved Selenium   | 0.0002             | mg/L  | 0.0001 |          |
| Dissolved Silicon    | 4.41               | mg/L  | 0.01   |          |
| Dissolved Silver     | <0.0001            | mg/L  | 0.0001 |          |
| Dissolved Sodium     | 123                | mg/L  | 0.05   |          |
| Dissolved Strontium  | 2.57               | mg/L  | 0.0005 |          |
| Dissolved Thallium   | <0.0003            | mg/L  | 0.0003 |          |
| Dissolved Tin        | <0.0001            | mg/L  | 0.0001 |          |
| Dissolved Titanium   | < 0.0001           | mg/L  | 0.0001 |          |
| Dissolved Uranium    | 1.45               | ug/L  | 0.002  |          |
| Dissolved Vanadium   | 0.0001             | mg/L  | 0.0001 |          |
| Dissolved Zinc       | 0.003              | mg/L  | 0.001  |          |
| Dissolved Zirconium  | <0.0004            | mg/L  | 0.0004 |          |
| Iron                 | 0.119              | mg/L  | 0.003  |          |
| Lead                 | <0.0001            | mg/L  | 0.0001 |          |
| Magnesium            | 27.9               | mg/L  | 0.05   |          |
| Manganese            | 0.125              | mg/L  | 0.0001 |          |
| Mercury              | <0.05              | ug/L  | 0.05   |          |
| Molybdenum           | 0.0020             | mg/L  | 0.0001 |          |
| Nickel               | 0.0020             | mg/L  | 0.0001 |          |
| Potassium            | 4.78               | mg/L  | 0.05   |          |
| Selenium             | 0.0002             | mg/L  | 0.0001 |          |
| Silicon              | 3.79               | mg/L  | 0.01   |          |
| Silver               | <0.0001            | mg/L  | 0.0001 |          |
| Sodium               | 118                | mg/L  | 0.05   |          |
| Strontium            | 2.52               | mg/L  | 0.0005 |          |
| Thallium             | < 0.0003           | mg/L  | 0.0003 |          |
| Tin                  | < 0.0001           | mg/L  | 0.0001 |          |
| Titanium             | 0.0003             | mg/L  | 0.0001 |          |
| Uranium              | 1.45               | ug/L  | 0.002  |          |
| Vanadium             | 0.0002             | mg/L  | 0.0001 |          |
| Zinc                 | 0.0002             | mg/L  | 0.001  |          |
| Zirconium            | <0.004             | mg/L  | 0.0004 |          |
| Zirodilidili         | 0.000 <del>-</del> | 9,∟   | 3.0004 | B 60 100 |

| Analyte                                                              | Result   | Units     | MDL    |  |
|----------------------------------------------------------------------|----------|-----------|--------|--|
| 1-methylnaphthalene (Subcontract)                                    | <0.5     | ug/L      | 0.5    |  |
| 2-methylnaphthalene (Subcontract)                                    | <0.5     | ug/L      | 0.5    |  |
| 7H-dibenzo(c,g)carbazole (Subcontract)                               | <0.1     | ug/L      | 0.1    |  |
| Acenaphthene (Subcontract)                                           | <0.1     | ug/L      | 0.1    |  |
| Acenaphthylene (Subcontract)                                         | <0.1     | ug/L      | 0.1    |  |
| Anthracene (Subcontract)                                             | <0.1     | ug/L      | 0.1    |  |
| Benzo[a]anthracene (Subcontract)                                     | <0.1     | ug/L      | 0.1    |  |
| Benzo[a]pyrene (Subcontract)                                         | <0.01    | ug/L      | 0.01   |  |
| Benzo[b/j]fluoranthene (Subcontract)                                 | <0.1     | ug/L      | 0.1    |  |
| Benzo[e]pyrene (Subcontract)                                         | <0.1     | ug/L      | 0.1    |  |
| Benzo[g,h,i]perylene (Subcontract)                                   | <0.2     | ug/L      | 0.2    |  |
| Benzo[k]fluoranthene (Subcontract)                                   | <0.1     | ug/L      | 0.1    |  |
| Chrysene (Subcontract)                                               | <0.1     | ug/L      | 0.1    |  |
| Dibenzo(a,i)pyrene (Subcontract)                                     | <0.1     | ug/L      | 0.1    |  |
| Dibenzo(a,j)pyrene (Subcontract)  Dibenzo(a,j)acridine (Subcontract) | <0.1     |           | 0.1    |  |
| , <del>,</del> ,                                                     |          | ug/L      |        |  |
| Dibenzo[a,h]anthracene (Subcontract)                                 | <0.1     | ug/L      | 0.1    |  |
| Fluoranthene (Subcontract)                                           | <0.1     | ug/L      | 0.1    |  |
| Fluorene (Subcontract)                                               | <0.1     | ug/L      | 0.1    |  |
| indeno[1,2,3-cd]pyrene (Subcontract)                                 | <0.2     | ug/L      | 0.2    |  |
| Perylene (Subcontract)                                               | <0.5     | ug/L      | 0.5    |  |
| Phenanthrene (Subcontract)                                           | <0.1     | ug/L      | 0.1    |  |
| Pyrene (Subcontract)                                                 | <0.1     | ug/L      | 0.1    |  |
| PAHs Total (Subcontract)                                             | <2       | ug/L      | 2      |  |
| Naphthalene (Subcontract)                                            | <0.5     | ug/L      | 0.5    |  |
| Boat Launch 2019-09-30 13:50:00 Record 604025                        |          |           |        |  |
| Ammonia + Ammonium as N                                              | 0.18     | mg/L      | 0.01   |  |
| Conductivity - Field                                                 | 0.710    | mS/cm     |        |  |
| Dissolved Organic Carbon                                             | 4.4      | mg/L      | 0.4    |  |
| Dissolved Oxygen-Field                                               | 10.46    | mg/L      |        |  |
| Escherichia coli                                                     | 30       | CFU/100mL | 0      |  |
| Hardness (Calculation)                                               | 259      | mg/L      | 0.7    |  |
| Nitrate as N                                                         | 0.34     | mg/L      | 0.01   |  |
| Nitrate+Nitrite as N (Calculation)                                   | 0.34     | mg/L      | 0.02   |  |
| Nitrite as N                                                         | <0.05    | mg/L      | 0.05   |  |
| o-Phosphate as P                                                     | <0.05    | mg/L      | 0.05   |  |
| pH                                                                   | 8.32     | pH        | 0.03   |  |
| pH - Field                                                           | 8.41     | рН        | 0.01   |  |
| Phosphorus Dissolved Total                                           | <0.010   | mg/L      | 0.010  |  |
| Phosphorus Total                                                     | 0.010    |           | 0.010  |  |
| Temperature - Field                                                  | 17.1     | mg/L<br>C | 0.010  |  |
| Temperature - Field<br>Total Biochem. Oxygen Demand                  | 9        |           | 1      |  |
|                                                                      |          | mg/L      | 1      |  |
| Total Kjeldahl Nitrogen as N                                         | 1.3      | mg/L      | 0.2    |  |
| Total Organic Carbon                                                 | 5.3      | mg/L      | 0.4    |  |
| Total Suspended Solids                                               | 35.4     | mg/L      | 0.8    |  |
| Jnionized Ammonia as NH3 at Field Temperature (Calculation)          | 16.6     | ug/L      | 0.1    |  |
| Aluminum                                                             | 0.496    | mg/L      | 0.002  |  |
| Antimony                                                             | 0.0003   | mg/L      | 0.0001 |  |
| Arsenic                                                              | 0.0015   | mg/L      | 0.0001 |  |
| Barium                                                               | 0.0622   | mg/L      | 0.0001 |  |
| Beryllium                                                            | <0.0001  | mg/L      | 0.0001 |  |
| Bismuth                                                              | <0.0001  | mg/L      | 0.0001 |  |
| Boron                                                                | 0.100    | mg/L      | 0.010  |  |
| Cadmium                                                              | < 0.0001 | mg/L      | 0.0001 |  |
| Caumum                                                               |          |           |        |  |
| Cadriidii                                                            | 68.7     | mg/L      | 0.05   |  |

| Analyte                                  | Result          | Units        | MDL             |               |
|------------------------------------------|-----------------|--------------|-----------------|---------------|
| Cobalt                                   | 0.0004          | mg/L         | 0.0001          |               |
| Copper                                   | 0.0034          | mg/L         | 0.0001          |               |
| Dissolved Aluminum                       | <0.002          | mg/L         | 0.002           |               |
| Dissolved Antimony                       | 0.0003          | mg/L         | 0.0001          |               |
| Dissolved Arsenic                        | 0.0009          | mg/L         | 0.0001          |               |
| Dissolved Barium                         | 0.0581          | mg/L         | 0.0001          |               |
| Dissolved Beryllium                      | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Bismuth                        | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Boron                          | 0.103           | mg/L         | 0.010           |               |
| Dissolved Cadmium                        | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Calcium                        | 66.7            | mg/L         | 0.05            |               |
| Dissolved Chromium                       | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Cobalt                         | 0.0001          | mg/L         | 0.0001          |               |
| Dissolved Copper Dissolved Iron          | 0.0005<br>0.008 | mg/L<br>mg/L | 0.0001<br>0.003 |               |
| Dissolved Iron Dissolved Lead            | <0.0001         | mg/L         | 0.003           |               |
| Dissolved Magnesium                      | 20.4            | mg/L         | 0.05            |               |
| Dissolved Magnesidm  Dissolved Manganese | 0.0076          | mg/L         | 0.0001          |               |
| Dissolved Manganese  Dissolved Mercury   | <0.05           | ug/L         | 0.05            |               |
| Dissolved Molybdenum                     | 0.0068          | mg/L         | 0.0001          |               |
| Dissolved Nickel                         | 0.0013          | mg/L         | 0.0001          |               |
| Dissolved Potassium                      | 5.05            | mg/L         | 0.05            |               |
| Dissolved Selenium                       | 0.0002          | mg/L         | 0.0001          |               |
| Dissolved Silicon                        | 2.45            | mg/L         | 0.01            |               |
| Dissolved Silver                         | < 0.0001        | mg/L         | 0.0001          |               |
| Dissolved Sodium                         | 67.4            | mg/L         | 0.05            |               |
| Dissolved Strontium                      | 0.983           | mg/L         | 0.0005          |               |
| Dissolved Thallium                       | <0.0003         | mg/L         | 0.0003          |               |
| Dissolved Tin                            | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Titanium                       | <0.0001         | mg/L         | 0.0001          |               |
| Dissolved Uranium                        | 0.983           | ug/L         | 0.002           |               |
| Dissolved Vanadium                       | 0.0004          | mg/L         | 0.0001          |               |
| Dissolved Zinc                           | 0.001           | mg/L         | 0.001           |               |
| Dissolved Zirconium                      | <0.0004         | mg/L         | 0.0004          |               |
| Iron                                     | 1.12            | mg/L         | 0.003           |               |
| Lead<br>Magnesium                        | 0.0026<br>21.2  | mg/L<br>mg/L | 0.0001<br>0.05  |               |
| Manganese                                | 0.148           | mg/L         | 0.0001          |               |
| Mercury                                  | < 0.05          | ug/L         | 0.05            |               |
| Molybdenum                               | 0.0068          | mg/L         | 0.0001          |               |
| Nickel                                   | 0.0020          | mg/L         | 0.0001          |               |
| Potassium                                | 5.27            | mg/L         | 0.05            |               |
| Selenium                                 | 0.0002          | mg/L         | 0.0001          |               |
| Silicon                                  | 3.51            | mg/L         | 0.01            |               |
| Silver                                   | < 0.0001        | mg/L         | 0.0001          |               |
| Sodium                                   | 64.4            | mg/L         | 0.05            |               |
| Strontium                                | 1.04            | mg/L         | 0.0005          |               |
| Thallium                                 | <0.0003         | mg/L         | 0.0003          |               |
| Tin                                      | <0.0001         | mg/L         | 0.0001          |               |
| Titanium                                 | 0.0102          | mg/L         | 0.0001          |               |
| Uranium                                  | 0.987           | ug/L         | 0.002           |               |
| Vanadium<br>                             | 0.0018          | mg/L         | 0.0001          |               |
| Zinc                                     | 0.015           | mg/L         | 0.001           |               |
| Zirconium                                | <0.0004         | mg/L         | 0.0004          |               |
| 1-methylnaphthalene (Subcontract)        | <0.5            | ug/L         | 0.5             |               |
| 2-methylnaphthalene (Subcontract)        | < 0.5           | ug/L         | 0.5             |               |
| 7H-dibenzo(c,g)carbazole (Subcontract)   | <0.1            | ug/L         | 0.1             |               |
|                                          |                 |              |                 | Page 24 of 25 |

| Analy                                   | yte Result | Units | MDL  |
|-----------------------------------------|------------|-------|------|
| Acenaphthene (Subcontrac                | ct) <0.1   | ug/L  | 0.1  |
| Acenaphthylene (Subcontrac              | ct) <0.1   | ug/L  | 0.1  |
| Anthracene (Subcontrac                  | ct) <0.1   | ug/L  | 0.1  |
| Benzo[a]anthracene (Subcontrac          | ct) <0.1   | ug/L  | 0.1  |
| Benzo[a]pyrene (Subcontrac              | ct) <0.01  | ug/L  | 0.01 |
| Benzo[b/j]fluoranthene (Subcontraction) | ct) <0.1   | ug/L  | 0.1  |
| Benzo[e]pyrene (Subcontrac              | ct) <0.1   | ug/L  | 0.1  |
| Benzo[g,h,i]perylene (Subcontraction)   | ct) <0.2   | ug/L  | 0.2  |
| Benzo[k]fluoranthene (Subcontrac        | ct) <0.1   | ug/L  | 0.1  |
| Chrysene (Subcontrac                    | ct) <0.1   | ug/L  | 0.1  |
| Dibenzo(a,i)pyrene (Subcontrac          | ct) <0.1   | ug/L  | 0.1  |
| Dibenzo(a,j)acridine (Subcontrac        | ct) <0.1   | ug/L  | 0.1  |
| Dibenzo[a,h]anthracene (Subcontrac      | ct) <0.1   | ug/L  | 0.1  |
| Fluoranthene (Subcontrac                | ct) <0.1   | ug/L  | 0.1  |
| Fluorene (Subcontrac                    | ct) <0.1   | ug/L  | 0.1  |
| indeno[1,2,3-cd]pyrene (Subcontrac      | ct) <0.2   | ug/L  | 0.2  |
| Perylene (Subcontrac                    | ct) <0.5   | ug/L  | 0.5  |
| Phenanthrene (Subcontrac                | ct) <0.1   | ug/L  | 0.1  |
| Pyrene (Subcontrac                      | ct) <0.1   | ug/L  | 0.1  |
| PAHs Total (Subcontraction              | ct) <2     | ug/L  | 2    |
| Naphthalene (Subcontrac                 | ct) <0.5   | ug/L  | 0.5  |

Report Comment: Total PAHs is the sum of the individual PAH compounds reported.

CHAIN OF CUSTODY

ENVIRONMENTAL LABORATORY 700 Woodward Avenue, Hamilton, Ontario L8H 6P4 Tel: 905-546-2424 Ext 5834 Fax: 905-545-0234

LABORATORY WORK ORDER NUMBER

is the sample(s) taken from a source intended for Human Consumption?

ANALYSIS REQUESTED:

Client Name: HAMILTON WATER - Water & Wastewater System Planning Contact Name: Mani Seradj (cc: Kimberley Tasker-SLR) Address: 77 JAMES STREET NORTH SUITE 400

Phone: 905-546-2424 EXT 4480

YES 🗆 NO 🖾

| Ch | edoke | Creek | Surface | Water | Analy | sis 2019 |
|----|-------|-------|---------|-------|-------|----------|
|    |       |       |         |       |       |          |

| LAB USE ONLY | Sample Location  | # of bottles | Fleid Temperature *C | Field Conductivity<br>mS/cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field pH<br>pH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field Dissolved Oxygen<br>mg/L | Sample Matrix | Sample Type   | Sample Date | Sample Time<br>(24 hour clock) 00:00 |     |
|--------------|------------------|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|---------------|-------------|--------------------------------------|-----|
| 604014       | C-1WEST          | 5            | 15.7                 | 0.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.23                          | Water         | Surface Water | Septedia    | 16:50                                | x   |
| 604016       | C-3 Centre       | 5            | 16.1                 | 0.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.99                           | Water         | Surface Water | Sidzola     | 16:35                                | x   |
| 604017       | C-3 West         | 5            | 15.9                 | 0.771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.35                           | Water         | Surface Water | Sept3019    | 16:25                                | x   |
| 604018       | C-4 West         | 5            | 16.3                 | 0.739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.85                           | Water         | Surface Water | Setable     | 16:15                                | x   |
| 604019       | C-5 East         | 5            | 16.8                 | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.96                           | Water         | Surface Water | Sept 3017   | 16:05                                | x   |
| 604020       | C-6 East         | 5            | 17.1                 | 0.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.06                           | Water         | Surface Water | Sidala      | 13:40                                | x   |
| 604021       | G-1              | 7            | 15,7                 | 0,729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.4                           | Water         | Surface Water | Sentable    | 17:00                                | x   |
| 604022       | G-4              | 5            | 15.7                 | 0.780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.01                           | Water         | Surface Water | Sept30/19   | 16:40                                | x   |
|              | -G-5             |              |                      | No. of Contrast of | and the same of th |                                | Water         | Surface Water | 1.1         |                                      | ×   |
|              | G-6              |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | W⊯er          | Surface Water |             | ***********                          | x   |
|              | G-7              |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Water         | Surface Water |             |                                      | x   |
| 604023       | R-1              | 5            | 18.1                 | 1.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.67                           | Water         | Surface Water | Sept30      | 13:20                                | x   |
| 604024       | R-2              | 5            | 18.4                 | 1.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.75                           | Water         | Surface Water | Sept30/19   | 13:00                                | x   |
| 604025       | Boat Launch      | 5            | 17.1                 | 0.710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.46                          | Water         | Surface Water | September 1 | 13:50                                | x   |
|              | Chedoke Upstream |              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | Water         | Surface Water | 4-11        |                                      | L.x |
| 604015       | a West           | 5            |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | WARE          | SW            | Sept30/19   | 16:52                                | X   |
|              | DUPLIE           | ,            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |               |               | 1           |                                      |     |
|              |                  |              | CLIENT               | PEOUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RES CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V REPO                         | PTD           |               |             |                                      |     |

APPLY PWQO GUIDELINES AT REPORTING D

FOR LAB USE ONLY: nments: Chedoke Creek Surface Water Analysis 2020 TAT: 21 Days. ONE WORK ORDER

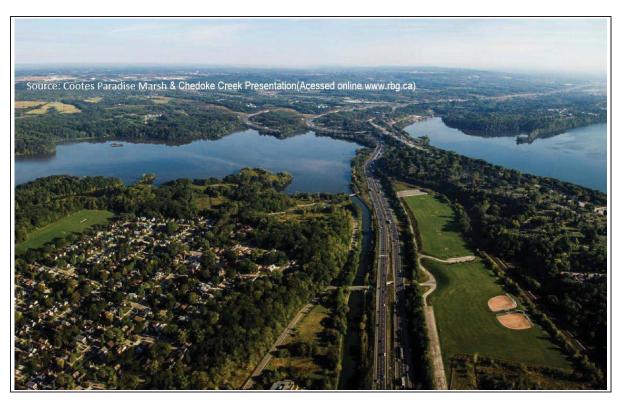
rature Descriptor as Received de COLD COOL TO THE TOUCH ☐ AMBIENT TEMPERATURE (representative of the sou

FOR LAB USE ONLY:

Sample(s) Delivered by: (Sign & Print Name) Sample(s) Collected by: (Sign & Print Name) KIMBERLEY TACKEN

Sample(s) meet requirements as per PW-WW-CR-EL-P-021-P-012

13:00-16:52.


Print preservation report. Deliver samples to the bench.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 178 of 406

# APPENDIX C Ecological Receptors Supporting Information

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

SLR Project No.: 209.40666.00000



Photograph 1. Study area of Chedoke Creek within Cootes Paradise ESA.



Photograph 2. Riparian bank edged with armour stone along Chedoke Creek.



Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

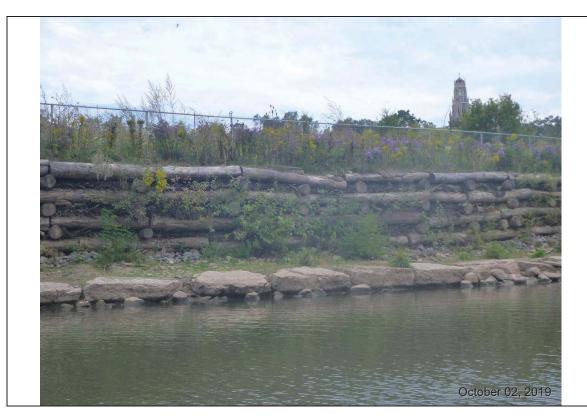
SLR Project No.: 209.40666.00001



Photograph 3. Steep concrete banks near box culvert at Glen Road and Tope Crescent.



Photograph 4. Treed vegetation found along the Chedoke Creek.




Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

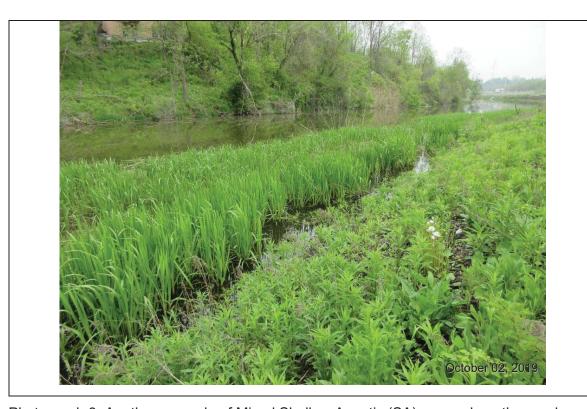
SLR Project No.: 209.40666.00001



Photograph 5. Band of Cultural Meadow found along eastern banks of Chedoke Creek.



Photograph 6. Evidence of previous restoration efforts along shoreline.




Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

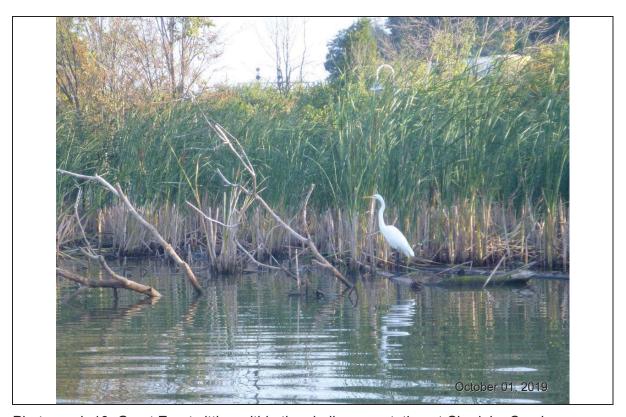
SLR Project No.: 209.40666.00001



Photograph 7. An example of Mixed Shallow Aquatic (SA) areas along the creek side.



Photograph 8. Another example of Mixed Shallow Aquatic (SA) areas along the creek.




Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

SLR Project No.: 209.40666.00001



Photograph 9. Example of shallow vegetation that provide opportunities for fish and wildlife.



Photograph 10. Great Egret sitting within the shallow vegetation at Chedoke Creek.



Ecological Risk Assessment Chedoke Creek Hamilton, Ontario

SLR Project No.: 209.40666.00001

### 209.40666

### **Hamilton Fish List**

Recorded fish community observed in seining and electrofishing fish surveys since 1970. Data from the watersheds were obtained from over 600 unpublished studies and were compiled into databases by the Hamilton Conservation Authority and Conservation Halton. Data from Cootes Paradise and Hamilton Harbour were from electrofishing, and entrapment surveys by DFO, RBG, and OMNR. Abundance Levels are based on quartiles with "1" as the lowest, and "4" as the highest relative abundance.

Bowlby et Al, 2009

### Cootes Paradise / Chedoke Creek

\*\* Invaders and Cold Water Species are Excluded

### \* Strikeouts - Listed in SNC report but not listed in Bowlby 2009. Bowlby Considered more relevant to Study Area

| Scientific Name          | Species                | Abundance |
|--------------------------|------------------------|-----------|
| Notropis atherinoides    | Emerald shiner         | 4         |
| N. hudsonius             | Spottail shiner        | 4         |
| Castostomus commersoni   | Common white sucker    | 4         |
| Ameiurus nebulosus       | Brown bullhead         | 4         |
| Ictalurus punctatus      | Channel Catfish        | 4         |
| Lepomis gibbosus         | Pumpkinseed            | 4         |
| Micropterus salmoides    | Largemouth bass        | 4         |
| Perca flavescens         | Yellow perch           | 4         |
| Aplodinotus grunniens    | Fresh Water Drum       | 4         |
| Amia calva               | Bowfin                 | 3         |
| Esox lucius              | Northern pike          | 3         |
| Pimephales notatus       | Bluntnose minnow       | 3         |
| P. promelas              | Fathead minnow         | 3         |
| Ambloplites rupestris    | Rock bass              | 3         |
| Lepomis cyanellus        | Green sunfish          | 3         |
| Pomoxis nigromaculatus   | Black crappie          | 3         |
| Etheostoma nigrum        | Johny Darter           | 3         |
| Labidesthes sicculus     | Brook Silverside       | 3         |
| Lepisosteus osseus       | Longnose gar           | 2         |
| Luxilus cornutus         | Common shiner          | 2         |
| Notemigonus crysoleucas  | Golden shiner          | 2         |
| Ameiurus melas           | Black Bullhead         | 2         |
| Noturus gyrinus          | Tadpole Madtom         | 2         |
| Micropterus dolomieu     | Smallmouth bass        | 2         |
| Sander vitreus           | Walleye                | 2         |
| Ictiobus cyprinellus     | Bigmouth Bufflo        | 2         |
| Moxostoma macrolepidotum | Shorthead Redhorse     | 2         |
| Lepisosteus osseus       | Spotted gar            | 1         |
| N. micropogon            | River chub             | 1         |
| N. ludibundus            | Sand shiner            | 1         |
| R. cataractae            | Longnose dace          | 1         |
| Semotilus atromaculatus  | Creek chub             | 1         |
| Morone chrysops          | White bass             | 1         |
| Pomoxis annularis        | White crappie          | 1         |
| Moxostoma anisurum       | Silver Redhorse        | 1         |
| Moxostoma valenciennesi  | Greater Redhorse       | 1         |
| Moxostoma erythrurum     | Goldern Redhorse       | 1         |
| Lampetra appendix        | American brook lamprey |           |
| Salvelinus fontinalis    | Brook trout            |           |

Umbra limi Central mudminnow

Chrosomus eos Northern redbelly dace

C. neogaeus Finescale dace Clinostomus elongates Redside dace Hybognathus hankinsoni Brassy minnow Nocomis biguttatus Hornyhead chub Notropis heterolepis Blacknose shiner N. rubellus Rosyface shiner Cyprinella spiloptera Spotfin shiner Notropis volucellus Mimic shiner Rhinichthys atratulus Blacknose dace Striped shiner **Luxilus chrysocephalus** Semotilus margarita Pearl dace

Hypentelium nigricans
Culaea inconstans
Northern hog sucker
Brook stickleback

L. macrochirus Bluegill

Etheostoma caeruleum Rainbow darter
E. flabellare Fantail darter

### Cootes Paradise Heritage Lands Management Plan , Inventory, Issues and Opportunities, May 2018 (CPHLI, 2018), DFO SAR MAPS , 2019

Northern Brook Lamprey (SC) Ichthyomyzon fossor (CPHLI, 2018) - 1997 (historic), DFO

Eastern Pondmussel (SC)

Mapleleaf Mussel (SC)

Ligumia nasuta

(CPHLI, 2018), DFO

Quadrula quadrula

(CPHLI, 2018), DFO

Lilliput (THR)

Toxolasma parvum

(CPHLI, 2018), DFO

### DO NOT INCLUDE - HABITATS NOT RELANT SOURCES (DATES) CANNOT SOURCE NOT OBSERVED - Hendrie Valley Report (2018) or by LISTED BY DFO - EXCLUDE

Silver Lamprey (SC) Ichthyomyzon unicuspis - CPHLI, 2018

Lake Sturgeon (THR) Acipenser fulvescens - CPHLI, 2018 - Historic-

Spotted Gar (THR)

Lepisosteus oculatus

American Eel (END)

Anguilla rostrata

CPHLI, 2018

CPHLI, 2018

Redside Dace (END) Clinostomus elongatus CPHLI, 2018 1950 (historic)

Black Redhorse (END)

Grass Pickerel (SC)

Kiyi (SC)

Silver Shiner (THR)

Mexestoma duquesnei

Esex americanus vermiculatus

CPHLI, 2018

CPHLI, 2018

CPHLI, 2018

CPHLI, 2018

CPHLI, 2018

Shortnose Cisco Coregonus reighardi - CPHLI, 2018 - Historic

209.40666.000 Chedoke Creek - Flora Screening Flora

The following represents a selection of dominate vegetation known to occur and or observed within the Chedoke Creek Study Area

Source: SLR Consulting Canada, 2019 Field Inventories, Hamilton Conservation (Various Resources), Royal Botanical Garden (Various Resources).

RBG - Princes Point / TPO1 - FOD

Cootes Paradise Sanctuary 15 Dry Tall
Coronation Park Grass
Cootes Paradise Sanctuary 1 Prarie

Species E

Botantial

Emergent Species American Bulrush

Blueflag Iris Broad-leaved Cattail Broad-leaved Arrowhead

Common Reed Narrow-leaved Cattail Narrow-leaved Arrowhead

Pickerel Weed Reed Canary Grass Water Plantain Water Smartweed

Submerent Species

**Brittle Naiad** 

Canada Waterweed

Coontail

Curly-leaved Pondweed

Eurasian Milfoil

Floating-leaved Pondweed

Sago Pondweed

Floating Leaf
Duckweed Sp.
White Water lily
Yellow Water Lily

### Source:

Cootes Paradise Heritage Lands Management Plan, Inventory, Issues and Opportunities, May 2018

Hamilton Conservation Authority (HCA) 2008. Chedoke Creek Subwatershed Stewardship Action Plan

# Hamilton Fauna Species List - complied by KLF based on Secondary Sources, Report Resources and in field habitat assesments

\*\* Hendrie Valley is a current and recent report with relevant species lists, local and habitat affinities and opertunities Radiasso, et al. 2019. 2019 Environmental Review of Hendrie Valley RBG Report No. 2019-6.

Cootes Analise Hendrige Lands Affinities and Opertunities, May 2019 CHHI. 2019 Use and season and Copport uses the Nation of Contest Analise Contest An

| Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scientific Name                                                                                                                                                                                                      | Screening<br>Source                                                                                                                           | Notes from CPHLI        | COSSARO, SARO, ESA                                                                                                                                                                                                                                             | COSSARO, SARO, ESA Hendrie Valley / Last Seen / Heard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Omnivorous Eastern Muks Turtle Blanding's Turtle Midland Painted Turtle Northern Map Turtle Snapping Turtle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stemotherus odoratus<br>Emydodea blandingii<br>Chrysemys picta marginata<br>Graptemys geographica<br>Chelydra serpentina                                                                                             | CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018                                                                       |                         | SC<br>THR<br>N/A - COSEWIC SC<br>SC<br>SC<br>SC                                                                                                                                                                                                                | 2009/1965 Extirpated<br>2018 Present<br>2018 Present<br>2018 Present<br>2018 Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | aquatic invertebrates, fish, frogs, crayfish, carrinon berrites, and aquatic debris. Capache of calcining live fish aquatic invertebrates, fish, frogs, crayfish, carrinon berrites, and aquatic invertebrates, fish, frogs, crayfish, carrinon berrites, and aquatic debris. Capache of calcining live fish aquatic invertebrates, fish, frogs, crayfish, carrinon berries, and aquatic debris. Capache of calcining live fish aquatic invertebrates, fish, frogs, crayfish, carrinon berries, and aquatic debris. Capache of calcining live fish aquatic invertebrates. |
| Eastern Ribbonsnake<br>White Pelcan<br>Bald Eagle<br>Golden Eagle<br>Homed Grebe<br>Put Re Mron Has ubspecies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thamnophis sauritus Pelecanus eryttrorthynchos Haliaeetus leucocephalus Aquila chrysaetos Podiceps auritus Caldris cantulus rufa                                                                                     | CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018                                                                            | NON BREEDING            | SC THR SC                                                                                                                                                                                                                  | Not identified / list ed<br>2018 Present<br>2011 Present<br>2017 Present<br>2018 Present<br>2018 Present<br>2018 Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| burt-breasted Sandpiper<br>Red-necked Phalarope<br>Black Tern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Calidon subrunicollis<br>Phalaropus lobatus<br>Chlidonias niger                                                                                                                                                      | CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018                                                                                                     |                         | N/A COSEWIC SC<br>SC<br>SC                                                                                                                                                                                                                                     | Not identified / listed<br>Not identified / listed<br>Not identified / listed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Herbacious / Omnivore - seeds of aquatic Cacheai Wilgeon Arres amen Debe (Debe Mars) (Mars) ( | ode of aquatic plands, submen<br>Aras stripera<br>Aras armericana<br>Aras cubipes<br>Aras choras<br>Aras choras<br>Aras crecca<br>Aras crecca<br>Aras crecca<br>Aras crecca<br>Aritya americana<br>Gallinula galeata | Gent and emerge<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018<br>CPHL, 2018 | nt (e. smartweeds, ponk | Nweeds, algae and duckw<br>Rare, Hamilton NA<br>Rare, Hamilton NA | Plands, submorgent and enrergent (e. smartveeds, pondweeds, algoa and duckweeds) as well as aquatic insects, mollusks and an actual control of the control |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Hooded Merganser<br>Great Black-backed Gull<br>Pickerel Frog<br>Osprey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lophodytes cucullatus Larus marinus Lithobates palustris Pandion haliaetus                                                                                                                                           | CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018<br>CPHLI, 2018                                                                                      |                         | Rare, Hamilton NAI<br>Rare, Hamilton NAI<br>Rare, Hamilton NAI<br>Rare, Hamilton NAI                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "— Feeds manity on small fish, captival and other criteriaeness, and audicult neseds, also some datholes, a aftern unlusts, small amounts of plant material. Young duckfligs eat mostly insects at first, moults, small amounts of plant material. Young duckfligs eat mostly insects at first, are eats carried, this mollissis, crustineaens, aquatic worms, known to eat rodefunts berries eggs of birds "eastes terrestrial and aquatic inventebrates, including smalls, small crayfish and a variety of freects "exclusive by the fish.                              |

| e e                                                                                                  |  |
|------------------------------------------------------------------------------------------------------|--|
| j                                                                                                    |  |
| 5                                                                                                    |  |
| 20                                                                                                   |  |
| Š                                                                                                    |  |
| D<br>L                                                                                               |  |
| 2                                                                                                    |  |
| 5                                                                                                    |  |
| =                                                                                                    |  |
| 5                                                                                                    |  |
|                                                                                                      |  |
| 8                                                                                                    |  |
| Š                                                                                                    |  |
| 5                                                                                                    |  |
| 9                                                                                                    |  |
| E P                                                                                                  |  |
| 22                                                                                                   |  |
| 5                                                                                                    |  |
| =                                                                                                    |  |
| Ð                                                                                                    |  |
| TO<br>ED                                                                                             |  |
| 2                                                                                                    |  |
| 2                                                                                                    |  |
| 2                                                                                                    |  |
| T)                                                                                                   |  |
| Ě                                                                                                    |  |
| 5                                                                                                    |  |
| 2                                                                                                    |  |
| Species lists are not entire and provide a few reprensative species only for Troping Levels / Groups |  |
| 25                                                                                                   |  |
| iii                                                                                                  |  |
| 5                                                                                                    |  |
| 5                                                                                                    |  |
| <i>n</i><br>≥                                                                                        |  |
|                                                                                                      |  |

Carnivorous Birds / Mannais / Reptiles - NON RARE - NON SAR Representative of Tropic Level Group Known or Observed for Cheabke Creek
Receitable or District - Sample Great Birds - Annal Hard Asio stake or trassers. m States, aquatic insects, leaches, and frogs
Henors - Example Great Bird Henor Ardrea Invenders. Creek Henor Bords (Streek Henor Bords) - CPH1, 2018 |
Certail Egyet Andrea Level Streek Birds - Common Loon Great Birds - CPH1, 2018 |
Common Loon Great Birds - CPH1, 2018 |
Common Coole Birds - CPH1, 2018 |
Common Goods - CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CPH1, 2018 |
CP

Shorebirds - NON RARE - NON SAR Representative of Tropic Lovel Group Known or Observed for Chedoke Creek

Anniverous - Insects and insect brave during the bread darks provided and the control of the co

Herbivorous Species - NON RARE - NON SAR Representative of Tropic Level Group Known or Observed for Checkoke Creek levevs, seeds, tools of many types of pond weeks, aquatic Vegetalen Tubers and rhizomes Cared Goose Brante canaderes CPHL, 2018

Analysed See Area palkythyndros CPHL, 2018

Tumpeter Swan Cypnes boxchafor CPHL, 2018

Misskat CPHL, 2018

Ordana 20edhebus CPHL, 2018

Amphibians - NON RARE - NON SAR Represnative of Tropic Level Group Known or Observed for Chedoke Creek Greek Technical CPH-1, 2018
Peuderat churcher CPH-1, 2018
Peuderat churcher CPH-1, 2018
Untrem Leopard Frog
Litrobates pipiens
CPH-1, 2018

Not a Huge Concern - Not including at this time
Secondary Species - When mammalian prey is searce, set birds, eggs, frogs, fish, and insects.

Or treeded vegestion / Leaves but do send time in Checkke Creek and or substrates (beavers for example)
Certimeded vegestion / Leaves but do send time in Checkke Creek and or substrates (beaver Creek and or substrates)

Rain? (Hamilton NA)
Reversa Mink Neovesorvision CPRLI, 2018

tree bark and cambium, but can also eat roots and bugs and aquatic plants

soft austrates for Hibernation / percutaneous absorption through that iskin/will lay aggs in vegetainn soft austrates for Hibernation / percutaneous absorption through that iskin/will kny aggs in vegetainn soft austrates for Hibernation / percutaneous absorption through their skin/will kny aggs in vegetaion soft austrates for Hibernation / percutaneous absorption intrough their skin/will kny aggs in vegetaion.

# 209.40866 \*\*\* Hamilton Reference List -complied by KLF based on Secondary Sources and Report Resources in field and Internet Research \*\*\* Not all sources are listed yet see folder 06 KLF BG\_Research [SAR FloaFauna]

| MASTER RESOURSE LIST - SAR / WILDLIFE                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNC Lavalin<br>Bowbly at Al<br>Eakins, R. J<br>Hamilton Conservation Authority (HCA)                                               | 2010<br>2009<br>2019<br>88                            | SNC Lavalin, 2010. City of Hamilton B-Line Light Rapid Transit - Draft Environmental Project Report, Appendix B. INatural Heritage Features Sewbly, J. N. McCommed, and M.G. Heaton, 2008. Hamilton Handour and Watershed Ensherines Management Plan. On Institution Ministry of Natural Resources and Royal Botanical Gardens. Eakins, J. 3, 2019. Online Freshwater Fishes Life History Dalbasse, Version 4, 88. Online database, (http://www.ontariofishes.ca), accessed 03 January 2020 Checkver Cerk Watershele Fact Sheet, 2018. http://conscription.ca/wp-containting-pages/sites/5/2018/04/Checkver-Creek-Factsheet-2018.pdf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Government of Ontario<br>Department of Fisheries and Oceans<br>COSEWIC                                                             | 2019<br>2019<br>2013                                  | Government of Orlando, 2019. O. Reg. 23008. Schools at Risk Mapping Date modified: 2019-08-23, Acessed On-line January 3 2020. Current to E-Laws currency date December 8, 2019 Government of Orlando, 2019. O. Reg. 23008. Schools at Risk Mapping Date modified: 2019-08-23, Acessed On-line January 3, 2020. https://www.dio-mpo.gc.ca<br>Department of Fisheries and Oceans, 2019. Aquatic Species at Risk Mapping Date modified: 2019-08-23, Acessed On-line January 3, 2020. https://www.dio-mpo.gc.ca<br>COSEWIC, 2013. COSEWIC assessment and status report on the Lilipiuf Toxidamana parturn in Canada. Committee on the Administer of |
| COSEWIC                                                                                                                            | 2016<br>2007a                                         | Committee on the Status of Endangered Wildlife in Canada, Ottawa, xi + 86 pp. COSEWIC 2007, COSEWIC assessment and status report on the Eastern Pondances Ligurnia nasula in Canada, Committee on the Status of Endangered Wildlife in Canada, Ottawa, xi + 34 pp. COSEWIC 2007, COSEWIC assessment and understatus report on the northern book lamper othernowizon fossor (Great Lakes – Upper St. Lawrence pobulations and Saskatchewan – Nelson population) in Canada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COSEWIC<br>Schwetz, N<br>Cooles to Escarpment EcoPark System (CEES)<br>Vincent<br>Radassao et al.<br>Oldham et al.<br>eBIRD Canada | 2007b<br>2014<br>2018<br>2017<br>2019<br>1995<br>2019 | Committee on the Status of Endangered Wildlife in Canada, Ottawa. vi + 30 pp<br>Schwezz. N. 2014. Hamilton Conservation Authority, Nature Counts. Hamilton Natural Areas Inventory Project. 3rd Edition. Site Summariaes, Species Checklists. 753 pp + 287 pp.<br>Schwezz. N. 2014. Hamilton Conservation Authority, Nature Counts. Hamilton Natural Academ Renariaes Facility and Services of Practises Paralises Bouth Shore. RBG Report No. 2018-12. Royal Botanical Gardens. Burlington, ON.<br>Radassao, F., Barr, L., and Petrce, M. 2019. 2018 Environmental Review of Hendrie Valley, RBG Report No. 2019-6. Royal Botanical Gardens. Burlington, ON.<br>Goldham, M., Bakowsky, W. and Sutherhand, Dons Envisite Quality assessment for southern Ontario Natural Herizge information Centre, Ontario Ministry of Natural Resources, Peterborough, Ontario.<br>BIRD Canada, 2019, Online Durdas Marsh/Cooks Paradise (ganeral location), Acessed at https://lebird.org/canada/holspot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 189 of 406

### APPENDIX D ERA Analytical Chemistry Dataset

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

SLR Project No.: 209.40666.00000

January 2020

|                 |                     | Carbon               |                 | Partic               | le Size              |               |
|-----------------|---------------------|----------------------|-----------------|----------------------|----------------------|---------------|
| TABLE D-1: SOIL | PHYSICAL PARAMETERS | Total Organic Carbon | % gravel (>2mm) | % sand by hydrometer | % silt by hydrometer | % clay (<4um) |
|                 |                     | μg/g                 | %               | %                    | %                    | %             |
| ON PSQG LEL     |                     | 10000                |                 |                      |                      |               |
| ON PSOG SEL     |                     | 100000               |                 |                      |                      |               |

|           |          | Sample |            |                |                    |        |    |    |    |     |
|-----------|----------|--------|------------|----------------|--------------------|--------|----|----|----|-----|
|           | Sample   | Depth  | Sample     |                |                    |        |    |    |    |     |
| Site Area | Location | (mbg)  | Date       | Sample ID      | Matrix Description |        |    |    |    |     |
| C-1       | C-1 West | 0-0.15 | 2019-Oct-2 | C1 WEST        | Grab               | 26,000 | <2 | 69 | 27 | 4   |
| C-3       | C-3 West | 0-0.15 | 2019-Oct-2 | C3 WEST        | Grab               | 39,000 | <2 | 39 | 53 | 8   |
| C-4       | C-4 West | 0-0.15 | 2019-Oct-1 | C4 WEST        | Grab               | 47,000 | <2 | 32 | 61 | 7.3 |
| G-4       | G-4 Comp | 0-0.15 | 2019-Oct-2 | G4             | Grab               | 31,000 | <2 | 49 | 45 | 5.9 |
| G-5       | G-5 Comp | 0-0.15 | 2019-Oct-2 | C3 CENTRE / G5 | Grab               | 20,000 | <2 | 83 | 11 | 4.3 |
| G-6       | G-6 Comp | 0-0.15 | 2019-Oct-1 | C5 EAST / G6   | Grab               | 39,000 | <2 | 28 | 56 | 16  |

### Standards / Guidelines Descriptions:

- ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
- ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level

### Notes:

m - metres

 $\mu g/g$  - micrograms per gram

- '-' sample not analyzed for parameter indicated
- formatting of cells indicates exceedances of like-formatted standards
- where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

μm - micrometres

- laboratory reports detail detection limits, testing protocols and QA/QC procedures.
- % percent
- '-' sample not analyzed for parameter indicated
- > denotes particle size greater than 75 micrometres

SLR Project No.: 209.40666.00000 January 2020

City of Hamilton Ecological Risk Assessment

|      | (listot to mus) eHA9                                      | mg/g | 0.001                    | 4           | 200         |                                |                              |        |                       | 98.7           | 6.7        | 23             | 4.85            | 16              | 11              | 13         | 6.19          | 6.9           | 20.5          | 16            | 5.3           | 6.5           | 42.2             | 5.1             | 2.97            | 4.4             | 5.3         | 8.2            | 5.7            | 7.3          |
|------|-----------------------------------------------------------|------|--------------------------|-------------|-------------|--------------------------------|------------------------------|--------|-----------------------|----------------|------------|----------------|-----------------|-----------------|-----------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|-----------------|-----------------|-----------------|-------------|----------------|----------------|--------------|
|      | sHA9 Jrlgiew Teluselom yveed                              | g/gm | 0.001                    |             |             |                                |                              |        |                       | Γ.             | 5.5        |                |                 |                 |                 | 9.1        |               |               |               | 0.0           |               | ,             | ,                |                 |                 |                 | 4.5         |                | 4.8            | 6.1          |
|      | sHA9 trigisw nelucelom trigil                             | mg/g | 0.001                    |             |             |                                |                              |        |                       |                | 1.1        |                |                 |                 |                 | 3.7        |               |               |               |               |               |               |                  |                 |                 |                 | 0.79        |                | 0.91           | 1.3          |
|      | pyrene                                                    | g/gm | 0.001                    | 0.49        | 17          | 0.49                           |                              |        |                       | 18.9           | 1.4        | 4.06           | 0.86            | 2.75            | 5.09            | 2.3        | 1.13          | 1.62          | 3.48          | 2 94          | 0.92          | 1.16          | 6.75             | 0.85            | 0.47            | 92'0            | 1.1         | 1.48           | 1.2            | 1.5          |
|      | phenanthrene                                              | B/BH | 0.001                    | 0.56        | 19          | 0.56                           |                              |        |                       | 16.5           | 98.0       | 3.63           | 0.39            | 3.23            | 1.13            | 2.5        | 9.0           | 1.16          | 3.32          | 0.03          | 0.58          | 0.72          | 9.53             | 0.73            | 0.25            | 0.45            | 9.0         | 0.94           | 89.0           | 0.89         |
|      | naphthalene                                               | mg/g | 0.001                    |             |             |                                | 0.0346                       |        |                       | <0.1           | 0.014      | 0.22           | <0.1            | 0.24            | <0.1            | 0.13       | <0.1          | <0.1          | 0.14          | 0.023         | <0.1          | <0.1          | 0.98             | <0.1            | <0.1            | <0.1            | 0.014       | <0.1           | 0.0089         | 0.029        |
|      | methylnaphthalene, 2-                                     | B/BH | 0.001                    |             |             |                                | 0.0202                       |        |                       | <0.1           | 0.012      | <0.1           | <0.1            | 0.1             | <0.1            | 0.067      | <0.1          | <0.1          | 0.3           | 10.02         | <0.1          | <0.1          | 0.3              | <0.1            | <0.1            | <0.1            | 0.014       | <0.1           | 9600.0         | 0.027        |
|      | -ը 'əuəleyythalenly մ-                                    | g/gn |                          |             |             |                                |                              |        |                       | <0.1           |            | <0.1           | <0.1            | <0.1            | <0.1            |            | <0.1          | <0.1          | 0.15          | - 02          | 0.1           | <0.1          | 0.2              | <0.1            | <0.1            | <0.1            |             | <0.1           |                |              |
|      | enəາγq(bɔ-ɛ,允,凢)onəbni                                    | B/BH | 0.002                    | 0.2         | 6.4         | 0.2                            |                              |        |                       | 3.45           | 0.45       | 6.0            | 0.2             | 0.46            | 0.54            | 0.54       | 0.27          | 0.35          | 0.65          | 28.0          | 0.25          | 0.27          | 1.34             | 0.19            | 0.11            | 0.18            | 0.39        | 0.32           | 0.36           | 0.54         |
|      | fluorene                                                  | B/BH | 0.001                    | 0.19        | 3.2         | 0.19                           |                              |        |                       | 1.76           | 0.063      | 0.29           | <0.1            | 0.26            | <0.1            | 0.31       | <0.1          | 0.11          | 0.47          | 0.07          | <0.1          | <0.1          | 0.84             | <0.1            | <0.1            | <0.1            | 0.047       | <0.1           | 0.048          | 0.087        |
|      | fluoranthene                                              | B/BH | 0.001                    | 0.75        | 20.4        | 0.75                           |                              |        |                       | 24.5           | 1.9        | 5.25           | 1.1             | 3.7             | 2.56            | 3.2        | 1.41          | 2.12          | 4.5           | 2.5           | 1.15          | 1.44          | 9.08             | 1.11            | 0.59            | 96.0            | 1.5         | 1.91           | 1.6            | 2            |
| PAHS | enecent(a,6)anthracene                                    | mg/g | 0.0005                   | 90.0        | 5.6         | 90.0                           |                              |        |                       | 0.79           | 0.12       | 0.22           | <0.1            | 0.12            | 0.13            | 0.16       | <0.1          | <0.1          | 0.2           | 0.26          | <0.1          | <0.1          | 0.37             | <0.1            | <0.1            | <0.1            | 0.11        | <0.1           | 0.1            | 0.13         |
|      | сукдаеие                                                  | mg/g | 0.001                    | 0.34        | 9.5         | 0.34                           |                              |        |                       | 7.15           | 98.0       | 2.13           | 0.5             | 1.34            | 1.23            | 1.5        | 99.0          | 0.89          | 2.01          | 1 76          | 0.47          | 89.0          | 3.24             | 0.45            | 0.26            | 0.42            | 0.79        | 0.84           | 0.75           | 1.1          |
|      | penzo(a)pyrene                                            | g/gn | 0.001                    | 0.37        | 28.8        | 0.37                           |                              |        |                       | 6.01           | 69.0       | 1.71           | 0.39            | 1.05            | 0.91            | 0.94       | 0.48          | 0.69          | 1.5           | 1 69          | 0.39          | 0.5           | 2.4              | 0.36            | 0.18            | 0.33            | 0.57        | 89.0           | 0.58           | 0.75         |
|      | benzo(k)fluoranthene                                      | g/gn | 0.001                    | 0.24        | 26.8        | 0.24                           |                              |        |                       | 2.29           | 0.31       | 66.0           | <0.2            | 0.63            | 0.52            | 0.41       | 0.23          | 0.3           | 0.7           | 0.70          | <0.2          | 0.25          | 1.37             | <0.2            | <0.2            | <0.2            | 0.25        | 0.29           | 0.23           | 0.34         |
|      | benzo(£,ħ,i)perylene                                      | ng/g | 0.002                    | 0.17        | 6.4         | 0.17                           |                              |        |                       | 4.36           | 0.46       | 0.99           | 0.23            | 0.44            | 0.54            | 0.57       | 0.37          | 0.41          | 0.77          | 0 98          | 0.31          | 0.38          | 1.45             | 0.22            | 0.13            | 0.2             | 0.43        | 0.38           | 0.38           | 0.63         |
|      | senedtneroulf([+d)ozned                                   | g/gn | 0.001                    |             |             |                                |                              |        |                       |                | 1.1        |                |                 |                 |                 | 1.4        |               |               | , (           | C.T           | ,             |               |                  |                 |                 |                 | 0.98        |                | 6:0            | 1.3          |
|      | benzo(b)fluoranthene                                      | g/gn | 0.001                    |             |             |                                |                              |        |                       | 8.37           | 0.74       | 2.52           | 0.71            | 1.64            | 1.76            | 7          |               | 1.26          | 2.79          | 2 16          | 0.63          | 96.0          | 3.59             | 0.53            | 0.32            | 0.53            | 69.0        | 1.28           | 0.63           | 0.93         |
|      | ənəseritins(a)snəd                                        | g/gn | 0.001                    | 0.32        | 29.6        | 0.32                           |                              |        |                       | 9.9            | 9.0        | 1.79           | 0.38            | 1.1             | 0.79            | 1.1        | 0.44          | 0.71          | 1.69          | 1 99          | 0.42          | 0.46          | 2.96             | 0.38            | 0.18            | 0.34            | 0.45        | 89.0           | 0.54           | 0.61         |
|      | anthracene                                                | B/BH | 0.001                    | 0.22        | 77.7        | 0.22                           |                              |        |                       | 4.69           | 0.13       | 0.43           | <0.1            | 0.28            | 0.12            | 0.43       | <0.1          | 0.15          | 0.69          | 0.28          | <0.1          | <0.1          | 0.99             | 0.12            | <0.1            | <0.1            | 0.08        | 0.16           | 0.12           | 0.12         |
|      | acenaphthene                                              | B/BH | 0.0005                   |             |             |                                | 0.00671                      |        |                       | 1.49           | 0.049      | 0.26           | <0.1            | 0.27            | <0.1            | 0.27       | <0.1          | <0.1          | 0.25          | 0.05          | <0.1          | <0.1          | 0.83             | <0.1            | <0.1            | <0.1            | 0.03        | <0.1           | 0.038          | 0.084        |
|      | scensphthylene                                            | mg/g | 0.0005                   |             |             |                                | 0.00587                      |        |                       | <0.1           | 0.011      | <0.1           | <0.1            | <0.1            | <0.1            | 0.016      | <0.1          | <0.1          | 0.11          | 0.18          | 0.1           | <0.1          | <0.1             | <0.1            | <0.1            | <0.1            | 0.013       | <0.1           | 0.012          | 0.02         |
| Г    | moisture                                                  | %    | 0.3                      |             |             |                                |                              |        |                       | 27.1           | 56         | 31.1           | 34.4            | 23.6            | 67.9            | 47         | 45.6          | 32.5          | 53.2          | 78.7          | 25.5          | 16.4          | 21.8             | 22.2            | 25.1            | 30              | 42          | 40.6           | 23             | 52           |
|      |                                                           |      |                          |             |             |                                |                              |        | x<br>ion              |                |            |                |                 |                 |                 |            | T             |               | Ť             | Ť             | İ             |               |                  | Г               |                 | r               |             |                | 1              |              |
|      |                                                           |      |                          |             |             |                                |                              |        | Matrix<br>Description | Core           | Grab       | Core           | Core            | Core            | Core            | Grab       | Core          | Core          | Core          | Core          | Core          | Core          | Grab             | Grab            | Grab            | r. r            | an          | Grab           |                | Grab         |
|      | SNS                                                       |      |                          |             |             |                                |                              |        | ۵                     |                |            |                |                 |                 |                 | Ō          |               |               |               | Γ             |               |               | l _ l            |                 |                 | Г               | П           | П              | П              | Ō            |
|      | CARBO                                                     |      |                          |             |             |                                |                              |        | Sample ID             | C-1<15 (10:40) | C1 WEST    | C-2<15 (11:10) | C-3A<15 (16:50) | C-3B<15 (16:35) | C-3C<15 (16:20) | C3 WEST    | C-4A<15 14:35 | C-4B<15 15:15 | C-4C<15 15:35 | C-54<15 14·10 | C-5B<15 13:15 | C-5C<15 14:20 | G-1 Comp (10:30) | G2-Comp (12:00) | G3-Comp (13:40) | G4-Comp (15:20) |             | G-5 Comp 15:55 | C3 CENTRE / G5 | C5 EAST / G6 |
|      | MENT .                                                    |      |                          |             |             |                                |                              |        | ate                   | г              |            | -              |                 | - 1             |                 |            |               | - 1           |               |               | $\overline{}$ |               |                  |                 |                 |                 |             | 6              |                |              |
|      | TABLE D-2: SEDIMENT -<br>POLYCYCLIC AROMATIC HYDROCARBONS |      |                          |             |             |                                |                              |        | Sample Date           | 2018-Sep-18    | 2019-Oct-2 | 2018-Sep-18    | 2018-Sep-18     | 2018-Sep-18     | 2018-Sep-18     | 2019-Oct-2 | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-19   | 2019-00-1     | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-18      | 2018-Sep-18     | 2018-Sep-18     | 2018-Sep-18     | 2019-Oct-2  | 2018-Sep-19    | 2019-Oct-2     | 2019-Oct-1   |
|      | ABLE D-                                                   |      |                          |             |             |                                |                              | Sample | Depth<br>(mbg)        | 2,00           | CT:0-      | 0-0.15         | 0-0.15          | 0-0.15          | 0-0.15          |            | 0-0.15        | 0-0.15        | 0-0.15        | 0-0 15        | 0-0.15        | 0-0.15        | 0-0.1            | 0-0.1           | 0-0.1           | 0-0.1           | 0-0.15      | 0.0.1          | 0-0.15         | 0-0.15       |
|      | LYCYCLI                                                   |      |                          |             |             | :ground                        | (ISQG)                       |        | Sample<br>Location    |                |            |                |                 |                 |                 |            |               |               |               |               | ē             |               | П                |                 | П               |                 |             |                |                |              |
|      | PO                                                        |      | on Limit                 |             |             | ile 1 Back                     | shwater (                    |        | Sa<br>Loc             |                | C-T West   | C-2 West       | C-3 East        | C-3 Centre      | C-3 West        | )          | C-4 East      | C-4 Centre    | C-4 West      | C-5 Fact      | C-5 Centre    | C-5 West      | G-1 Comp         | G-2 Comp        | G-3 Comp        | 7 7             | ל<br>ל<br>ס | G-5 Comp       |                | G-6 Comp     |
|      |                                                           |      | Reported Detection Limit | ON PSQG LEL | ON PSQG SEL | ON Sediment Table 1 Background | CCME SedQG Freshwater (ISQG) |        | Site Area             | C-1            |            | C-2            | C-3             |                 |                 |            | C-4           |               |               | 2-2           | )             |               | 6-1              | 6-2             | 6-3             | 6-4             |             | 6-5            |                | 9-9          |

- Standards / Guidelines Descriptions:

   ON PSGG EL:Orbrario Provincial Sediment Quality Guideline Lowest Effect Level

   ON PSGG EL:Orbrario Provincial Sediment Quality Guideline Lowere Effect Level

   ON Sediment Table 18 Background:Orbrario Sediment Table 1: Full Depth Background Site Condition Standards

   COME SedGG Freshwater (ISGG):CCME Sediment Quality Guidelines for the Protection of Aquatic Life, Freshwater (Interim sediment Quality guidelines)

### Notes:

m - metres

µg/g - micrograms per gram % - percent

< - less than reported detection limit

\*\* - sample not analyzed for parameter indicated

• formatting of cells indicates exceedances of like-formatted standards

• where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

• where many exceedances formats are used, highlighted results reflect the least stringent standard/guideline exceeded

• PAH- polycyclic aromatic hydrocathors

• Total PAHs include acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, chenz(a)pyrene, chosen diphyrene, diphyrene, acenaphthylene, anthracene benz(a)anthracene, benz(a)anthracene, diphyrene, acenaphthylene, anthracene, preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the preparament of the prepar

SLR Project No.: 209.40666.00000 January 2020

| TABLE D-3: SEDIMENT - | METALS |  |
|-----------------------|--------|--|
|                       |        |  |

City of Hamilton Ecological Risk Assessment

|        | muinoɔɹiz                       | ng∕g     | 0.5                      | _                                 |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [             | 2.82       |                |                 |                 |                 | 0.78       |               |               | - 020         | 600           |               |               |                  |                 |                 |                 | 0.81             |                | 1.7            | 9.0                |
|--------|---------------------------------|----------|--------------------------|-----------------------------------|-------------|-------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|----------------|-----------------|-----------------|-----------------|------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------|-----------------|-----------------|-----------------|------------------|----------------|----------------|--------------------|
|        | zinc                            | mg/g     | 7                        | 65                                | 120         | 820         | 120                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 215           | 214        | 244            | 310             | 202             | 505             | 427        | 298           | 215           | 472           | 414           | 244           | 428           | 187              | 167             | 311             | 215             | 332              | 275            | 272            | 339                |
|        | muibenev                        | mg/g     | -                        |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25            |            | 17             | 13              | 13              | щ               | 24.9       | 18            | -             | 21            |               |               | 22            | 18               | 16              | 18              | 16              | 22.8             | 17             | ш              | 20.1               |
|        | muineru                         | -        | 0.05                     |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58          | -          | 0.55           | 0.46            | 0.58            | 0.88            | 0.766      | 0.64          | 0.48          | 0.76          | ╫             | 0.56          | 69.0          | 0.67             | 0.58            | 99.0            | 0.58            | 89.0             | 9.65           | 0.798          | 0.483              |
|        | นอารสินทา                       | -        | 0.5                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F             | 2          | °              | _               | -               |                 | <0.5       | <u> </u>      | -             | u             | ,             | l°            | 0             | -                | -               | _               | L               | <0.5             | L              | <0.5 0.        | <0.5 0.            |
|        | muinetit                        | 50       | 0                        |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H             | 0          | Ĥ              | Ė               | Ė               |                 | -          | Ĥ             | 1             | , 6           | 1             | ŀ             | H             | ŀ                |                 | Ė               | Ë               | Н                | Ë              | Н              | 101 <0             |
|        |                                 | /8 mg/   | -                        |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H             | 1.36 121   | Ĥ              | Ė               | Н               |                 | 32 139     | _             | +             |               | -             | H             | Н             | ŀ                | Н               | Ė               | Ë               | 31 126           | Ë              | 53 124         | 2.96 10            |
|        | nit                             | 7        | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L             | Н          | Ė              | Н               | _               | ~               | 5 4.32     | ,             | '             | +             | +             |               | Ľ             | H                |                 | - 8             | Ë               | 4 6.31           | Ļ              | 4 1.63         | Н                  |
|        | muilledt                        | mg/g     | 0.05                     |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000           | 0.12       | 0.11           | 0.12            | 0.11            | 0.23            | 0.255      | 0.16          | 0.12          | 0.2           | 0.17          | 0.13          | 0.2           | 0.11             | 0.08            | 0.13            | 0.13            | 0.204            | 0.14           | 0.214          | 0.18               |
|        | muitnorts                       | -        | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŀ             | 109        | Ŀ              | Ŀ               |                 | •               | 142        | ٠             | 1             | 1 12          | -             |               | Ŀ             | Ŀ                | Ŀ               |                 | Ŀ               | 129              | ·              | 137            | 108                |
|        | unipos                          | mg/g     | 100                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŀ             | 363        | Ŀ              | Ŀ               | Ŀ               | ٠               | 215        | •             | 1             | - 747         | ŀ             | ŀ             | Ŀ             | Ŀ                | Ŀ               | ·               | Ŀ               | 245              | Ŀ              | 209            | 321                |
|        | silver                          | mg/g     | 0.05                     |                                   |             |             | 9.5                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 11          | 0.083      | 0.19           | 0.3             | 0.37            | 1.6             | 0.607      | 0.58          | 0.27          | 3.3           | 3             | 0.53          | 1.3           | 0.13             | 0.1             | 0.48            | 0.31            | 0.387            | 0.42           | 0.263          | 0.342              |
| П      | wnjuələs                        | mg/g     | 0.5                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.7          | <0.5       | <0.7           | <0.7            | <0.7            | н               | <0.5       | <0.7          | <0.7          | 0.8           | 5 -           | <0.7          | 0.7           | <0.7             | <0.7            | <0.7            | <0.7            | <0.5             | <0.7           | <0.5           | <0.5               |
| П      | muissetoq                       | g/gn     | 100                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1             | 2390       |                |                 |                 |                 | 2330       |               |               | - 0270        |               |               |               |                  |                 |                 |                 | 2280             |                | 2030           | 1620               |
| П      | nickel                          | mg/g     | 0.5                      | 31                                | 16          | 75          | 16                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23            |            | 20             | 16              | 17              | 24              | 25.6       | 18            | 17            | 32            | -             | 22            | 29            | 22               | 21              | 21              | 20              | 22.3             | 21             | 50.6           | 18                 |
|        | wnuəpqʎjow                      | D0       | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60            | 1.05       | 6.0            | 9:0             | 0.7             | 2.4             | 1.49       | 1.2           | 8.0           | 1.8           |               | 6.0           | 1.5           | 1.2              | 8.0             | 1.1             | 6:0             | 1.15             | 1.1            |                | 1.05               |
|        | метситу                         | -        | 0.05                     | 0.1                               | 0.2         | 2           | 0.2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 0.057      |                |                 |                 |                 | 0.255      |               |               | - 0107        | ╀             | ,             |               |                  |                 |                 |                 | 0.104            |                | 0.1            | 0.104              |
|        | əsəueBuew                       | - 00     | $\dashv$                 |                                   | 460         | 1100        |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1             | 0 995      | H              | H               | -               |                 | 588 0      |               | +             | +             | -             |               | H             | ŀ                | H               | H               | ŀ               | <b>250</b> 0     | -              | 623            | 390 0              |
| als    |                                 | $\dashv$ | ┨                        | 4                                 | 46          | 11          |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F             | -          | H              | Н               | Н               | Ĥ               | _          | Ĥ             | +             |               | 3             | H             | Н             | H                | Н               | Ĥ               | Ë               | 400 55           | Ė              |                | ш                  |
| Metals | muisəngem                       | _        | 100                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L             | 3 30,100   |                |                 | •               | •               | 9 23,600   | •             | '             | . 20 10       | 1             |               |               | Ŀ                | •               | ŀ               | Ŀ               | 24,              | Ŀ              | Н              | 13,500             |
|        | muithil                         | 긔        | 0.5                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŀ             | 25.        | ٠              | ٠               |                 | •               | 26.        | ٠             | •             | , 00          | 9 '           |               | •             | Ŀ                |                 | ٠               | Ŀ               | 24.6             | ٠              | Ш              | 19.4               |
|        | peəl                            | ng/g     | 4                        | 23                                |             |             | 31                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2             | 7          | 34             | 59              | 28              | 87              | 44.9       | 32            | 78            | 72            | -             | 49            | 26            | 16               | 13              | 20              | 22              | ,                | 42             | 29.6           | 46.1               |
|        | iron                            | ng/g     | 100                      | 30000                             | 20000       | 40000       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŀ             | 23,000     |                |                 |                 |                 | 24,800     |               | •             | 25 600        |               |               |               |                  |                 |                 |                 | 22,600           |                | 21,100         | 18,800             |
|        | cobber                          | mg/g     | 0.5                      | 25                                | 16          | 110         | 16                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30            | 44.6       | 51             | 9               | 71              | 170             | 85.7       | 72            | 45            | 145           | 136           | 99            | 97            | 63               | 20              | 81              | 28              | 64.9             | 64             | 38.1           | 64.1               |
| П      | cobalt                          | mg/g     | 0.1                      |                                   |             |             | 20                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 6           | 8.41       | 8.5            | 6.4             | 7               | 9.8             | 10.3       | 7             | 8.9           | 1 5           | 1 =           | 7.9           | 10            | 9.1              | 8.2             | 7.8             | 7.7             | 8.77             | 7.2            | 9.07           | 6.91               |
|        | chromium (III+VI)               | g/gn     | 0.5                      | 31                                | 56          | 110         | 56                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22            | 21.8       | 19             | 16              | 56              | 31              | 31.5       | 22            | 13            | 41            | 37            | 20            | 32            | 21               | 21              | 20              | 22              | 25.7             | 2.1            | 19.8           | 22.6               |
|        | muiɔleɔ                         | mg/g     | 100                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 75,600     |                |                 |                 |                 | 009'69     |               |               | - 61 900      | - 1000        |               |               |                  |                 |                 |                 | 67,400           |                | 78,400         | 41,500             |
|        | muimbeo                         | g/gn     | 0.05                     | 7                                 | 9.0         | 10          | 9.0                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.41          |            | 0.58           | 92.0            | 0.39            | 0.81            | 0.753      | 0.74          | 0.56          | 6.1           |               | 98.0          | 3.1           | 0.37             | 0.27            | 95.0            | 0.39            | 0.623            | 0.57           | ш              | 609.0              |
|        | poron                           | B/BH     | -                        |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17            | 23.5       | 15             | 11              | 13              | 15              | 21.7       | 11            | 17            | 20            | -             | 15            | 21            | 17               | 17              | 15              | 14              | 22.6             | 13             | 20.1           | 14.9               |
|        | hismuth                         | bo       | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ļ.            | 0.22       |                | ī               |                 |                 | .03        |               | -             | 216           | -             |               |               |                  |                 |                 |                 | 0.55             |                | ш              | 0.75               |
|        | peryllium                       | -        | 0.2                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43            | 255        | 0.4            | 0.28            | 0.33            | 0.44            | 9.0        | 0.35          | 0.32          | 0.46          | ╫             | 0.36          | 0.45          | 0.42             | 0.41            | 0.38            | 0.38            | 0.55 (           | 0.37           | 53             | 0.44               |
|        |                                 | 4        | $\dashv$                 |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C             | 0          | Н              | Н               | Н               | Н               | 4          | Н             | +             | +             | -             | Н             | Н             | ⊢                | Н               | Н               | Н               | Н                | H              | 0              | ш                  |
|        | muined                          | _        | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110           | _          | Н              | 69              | 82              | $\rightarrow$   | 7 106      | Щ             | $\rightarrow$ | 141           |               |               | 134           | 130              | 8               | 130             | 88              | 3 102            | 77             | 1 75.5         | 9 77.              |
|        | arsenic                         | _        | 0.7                      | 4                                 | 9           | 33          | 9                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.6           | -          | 8 4.6          | 8.8             | 3.5             |                 | 1 4.97     | $\vdash$      | _             | 5.5           |               | 3.7           | 8 5.7         | 8.8              | .8              | 8 3.9           | 3.6             | 2 4.1            | 8 3.9          | 0.66 3.71      | 0.92   4.29   77.8 |
|        | antimony                        | $\dashv$ | 0.1                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0>           | _          | <0.8           | <0.8            | <0.8            | <0.8            | 1.11       | <0.8          | 0.8           | 0.8           |               | <0.8          | <0.8          | <0.8             | <0.8            | <0.8            | <0.8            | 6.0 C            | 8:0>           | 9.0            | 0.9                |
|        | munimule                        | 4        | 100                      |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŀ             | 10,500     | ŀ              |                 |                 |                 | 12,200     | ٠             | '             | 12 200        | 13,20         | ŀ             | ŀ             | Ŀ                | ٠               | ŀ               | Ŀ               | 10,700 0.92 4.13 |                | 9420           | 9030               |
|        | (dsl) Hq                        | pH_Units |                          |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 8.45       |                |                 |                 |                 | 8.22       |               |               | . 6           |               |               | ١.            |                  |                 |                 | ŀ               | 8.31             |                | 8.18           | 8.1                |
|        |                                 | Ť        | 1                        | _                                 |             |             | Г                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +             |            | Н              | H               | Н               | H               | 7          | H             | $\dagger$     | t             | t             | t             | Н             | r                | Н               | H               | r               | ۲                | H              | ۲              | H                  |
|        |                                 |          |                          |                                   |             |             |                                | M<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal<br>Signal |               |            |                |                 |                 |                 |            |               |               |               |               |               |               |                  |                 |                 |                 |                  |                |                |                    |
|        |                                 |          |                          |                                   |             |             |                                | , in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d d           | Grab       | Core           | Core            | Core            | Core            | Grab       | Core          | Core          | Core          | S each        | Core          | Core          | Grab             | Grab            | Grab            | 400             | g                | 40.0           |                | Grab               |
|        |                                 |          |                          |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Г             |            | Ĭ              |                 |                 |                 | Ĭ          |               |               |               | Г             |               |               |                  |                 |                 | Г               | П                | Г              | П              |                    |
|        |                                 |          |                          |                                   |             |             |                                | o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.40)        | 1          | 11:10)         | (16:50          | (16:35          | (16:20          | إ          | 14:35         | 15:15         | 15:35         | 14:10         | 13:15         | 14:20         | 10 (10:          | p (12:0         | p (13:4         | p (15:2         |                  | 15:5           | RE / G:        | 99/                |
|        | <u>.</u>                        |          |                          |                                   |             |             |                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7-1<15 (10:40 | C1 WEST    | 5-2<15 (11:10) | C-3A<15 (16:50) | C-3B<15 (16:35) | C-3C<15 (16:20) | C3 WEST    | C-4A<15 14:35 | C-48<15 15:15 | C-4C<15 15:35 | C-5A<15 14:10 | C-58<15 13:15 | C-5C<15 14:20 | G-1 Comp (10:30) | G2-Comp (12:00) | G3-Comp (13:40) | G4-Comp (15:20) | J                | G-5 Comp 15:55 | C3 CENTRE / G5 | C5 EAST / G6       |
|        | MEN                             |          |                          |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ٦,            | Ť          | ř              |                 |                 |                 |            | П             | т             | т             |               | 0             |               |                  |                 |                 |                 |                  |                |                | П                  |
|        | EDIN<br>ALS                     |          |                          |                                   |             |             |                                | open of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2018-Sen-18   | 2019-Oct-2 | 2018-Sep-18    | 2018-Sep-18     | 2018-Sep-18     | 2018-Sep-18     | 2019-Oct-2 | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-19   | 2018-Sep-18      | 2018-Sep-18     | 2018-Sep-18     | 2018-Sep-18     | 2019-Oct-2       | 2018-Sep-19    | 2019-Oct-2     | 2019-Oct-1         |
|        | o-3: Sedi<br>Metals             |          |                          |                                   |             |             |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2018          | 2019       | 2018           | 2018            | 2018            | 2018            | 2015       | 2018          | 2018          | 2018          | 2018          | 2018          | 2018          | 2018             | 2018            | 2018            | 2018            | 2019             | 2018           | 2015           | 2015               |
|        | TABLE D-3: SEDIMENT -<br>METALS |          |                          |                                   |             |             |                                | Sample<br>Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190111        | 0-0.15     | 0-0.15         | 0-0.15          | 0-0.15          | 0-0.15          |            | 0-0.15        | 9.15          | 0-0.15        | 7.15          | 0-0.15        | 0-0.15        | 7.1              | 1.1             | 7.1             | 7.1             | 0-0.15           | 7.1            | 0-0.15         | 0-0.15             |
|        | ₹                               |          |                          | rations                           |             |             | pu.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ŀ             | 3          | 0-0            | 0-0             | П               | 0-0             | -          |               |               | 9-0           | 18            |               | 0-0           | 0-0.1            | П               | 0-0.1           | 0-0.1           |                  | 0-0.1          |                | П                  |
|        |                                 |          | ایِ                      | ON PSQG Background Concentrations |             |             | ON Sediment Table 1 Background | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | C-1 West   | C-2 West       | C-3 East        | C-3 Centre      | C-3 West        |            | C-4 East      | C-4 Centre    | C-4 West      | C-5 East      | C-5 Centre    | C-5 West      | G-1 Comp         | G-2 Comp        | G-3 Comp        | 7 7 0 0 0       |                  | u mou          |                | G-6 Comp           |
|        |                                 |          | ion Lim                  | ound C                            |             |             | le 1 Bë                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -             | ٺ          | ڻ              | ک               | ن               | ے ا             | -          | ैं            | ان            | J             | 13            | اٰتٰ          | ک             | 6                | Ġ               | 6               | ۲               | 5                | ٩              | -              | ی                  |
|        |                                 |          | Reported Detection Limit | Backgr                            | LEL         | SEL         | ent Tak                        | o v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |            |                |                 |                 |                 |            |               |               |               |               |               |               |                  |                 |                 |                 |                  |                |                |                    |
|        |                                 |          | orted                    | PSQG                              | ON PSQG LEL | ON PSQG SEL | Sedim                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |            |                |                 |                 |                 |            |               |               |               |               |               |               |                  |                 |                 |                 |                  |                |                |                    |
|        |                                 |          | æ                        | ŏ                                 | O           | O           | ő                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5             | ,          | C-2            | ပ္              | _               | _               |            | ٥<br>4        | _             | _             | ?<br>5        | _             |               | 9                | <u>G-</u> 5     | 6-3             | 9-4             |                  | 9-5            |                | 9-9                |

Standards / Guidelines Descriptions:

• On PSGG Background Concentrations of Concentrations

• On PSGG Background Concentrations of Concentrations of Concentrations

• On PSGG Background Concentrations of Concentrations of Concentrations of Concentrations

• On PSGG EL: Ontario Provincial Sediment Quality Guideline - Lowest Effect Level

• ON PSGG EL: Ontario Provincial Sediment Quality Guideline - Severe Effect Level

• ON PSGG EL: Ontario Provincial Sediment Quality Guideline - Severe Effect Level

• ON PSGG EL: Ontario Provincial Sediment Quality Guideline - Severe Effect Level

• ON PSGG EL: Ontario Provincial Sediment Quality Guideline - Severe Effect Level

• Notes:

• Notes:

• Lest bar reported detection limit

• Lest bar reported de

SLR Project No.: 209.40666.00000 January 2020

|                                           |                             |              | Inor                    | ganics           |                    |                  |          | Ecological      |                 |
|-------------------------------------------|-----------------------------|--------------|-------------------------|------------------|--------------------|------------------|----------|-----------------|-----------------|
| TABLE D-4: SEDIMENT -NUTRIENTS & BACTERIA | ammonia and ammonium (as N) | ammonia as N | kjeldahl nitrogen total | nitrogen (total) | organic phosphorus | total phosphorus | E. coli  | Fecal Coliforms | Total Coliforms |
|                                           | μg/g                        | μg/g         | μg/g                    | μg/g             | μg/g               | μg/g             | MPN/100g | MPN/100g        | MPN/100g        |
| Reported Detection Limit                  |                             | 2            | 5                       | 2000             | 1                  | 10               | 20       | 20              | 20              |
| ON PSQG LEL                               |                             |              | 550                     |                  |                    | 600              |          |                 |                 |
| ON PSOG SEL                               |                             |              | 4800                    |                  |                    | 2000             |          |                 |                 |

|           |            | Sample |             |                  |             |      |     |      |       |     |      |      |        |        |
|-----------|------------|--------|-------------|------------------|-------------|------|-----|------|-------|-----|------|------|--------|--------|
|           | Sample     | Depth  |             |                  | Matrix      |      |     |      |       |     |      |      |        |        |
| Site Area | Location   | (mbg)  | Sample Date | Sample ID        | Description |      |     |      |       |     |      |      |        |        |
| C-1       | C-1 West   | 0-0.15 | 2018-Sep-18 | C-1<15 (10:40)   | Core        | <100 |     | 500  | -     | -   | 598  | -    | 12,000 | -      |
|           | C-1 West   | 0-0.15 | 2019-Oct-2  | C1 WEST          | Grab        | -    | 3.6 | 5.8  | <2000 | <1  | 715  | 3500 | 3500   | 160000 |
| C-2       | C-2 West   | 0-0.15 | 2018-Sep-18 | C-2<15 (11:10)   | Core        | 200  | -   | 1000 | -     | -   | 837  | -    | 21,000 | -      |
| C-3       | C-3 East   | 0-0.15 | 2018-Sep-18 | C-3A<15 (16:50)  | Core        | <100 | -   | 800  | -     | -   | 642  | -    | 19,000 | -      |
|           | C-3 Centre | 0-0.15 | 2018-Sep-18 | C-3B<15 (16:35)  | Core        | <100 | -   | 600  | -     | -   | 660  | -    | 43,000 | -      |
|           | C 2 West   | 0-0.15 | 2018-Sep-18 | C-3C<15 (16:20)  | Core        | 400  | -   | 1900 | -     | -   | 1622 | -    | 45,000 | -      |
|           | C-3 West   | 0-0.15 | 2019-Oct-2  | C3 WEST          | Grab        | -    | 26  | 95   | 3000  | 3.1 | 1170 | 5400 | 5400   | 92000  |
| C-4       | C-4 East   | 0-0.15 | 2018-Sep-19 | C-4A<15 14:35    | Core        | 100  | -   | 1000 | -     | -   | 861  | -    | 10,000 | -      |
|           | C-4 Centre | 0-0.15 | 2018-Sep-19 | C-4B<15 15:15    | Core        | <100 | -   | 600  | -     | -   | 718  | -    | 17,000 | -      |
|           | C-4 West   | 0-0.15 | 2018-Sep-19 | C-4C<15 15:35    | Core        | 300  | -   | 1600 | -     | -   | 1260 | -    | 11,000 | -      |
|           | C-4 West   | 0-0.13 | 2019-Oct-1  | C4 WEST          | Grab        | -    | 190 | 330  | 4000  | 4.6 | 1560 | 2800 | 2800   | 92000  |
| C-5       | C-5 East   | 0-0.15 | 2018-Sep-19 | C-5A<15 14:10    | Core        | 200  | -   | 900  | -     | -   | 978  | -    | 3000   | -      |
|           | C-5 Centre | 0-0.15 | 2018-Sep-19 | C-5B<15 13:15    | Core        | <100 | -   | 500  | -     | -   | 781  | -    | 10,000 | -      |
|           | C-5 West   | 0-0.15 | 2018-Sep-19 | C-5C<15 14:20    | Core        | 200  | -   | 1200 | -     | -   | 1120 | -    | <1000  | -      |
| G-1       | G-1 Comp   | 0-0.1  | 2018-Sep-18 | G-1 Comp (10:30) | Grab        | <100 | -   | 900  | -     | -   | 690  | -    | 8000   | -      |
| G-2       | G-2 Comp   | 0-0.1  | 2018-Sep-18 | G2-Comp (12:00)  | Grab        | <100 | -   | 400  | -     | -   | 628  | -    | 16,000 | -      |
| G-3       | G-3 Comp   | 0-0.1  | 2018-Sep-18 | G3-Comp (13:40)  | Grab        | <100 | -   | 600  | -     | -   | 795  | -    | 37,000 | -      |
| G-4       | G-4 Comp   | 0-0.1  | 2018-Sep-18 | G4-Comp (15:20)  | Grab        | <100 | -   | 400  | -     | -   | 737  | -    | 38,000 | -      |
|           | G-4 Comp   | 0-0.15 | 2019-Oct-2  | G4               | Grab        | -    | 27  | 47   | <2000 | 2.4 | 993  | 2400 | 2400   | 160000 |
| G-5       |            | 0-0.1  | 2018-Sep-18 | G-5 Comp (17:10) | Grab        | -    | -   | -    | -     | -   | -    | -    | 24,000 | -      |
|           | G-5 Comp   | 0-0.1  | 2018-Sep-19 | G-5 Comp 15:55   | Grab        | <100 | -   | 800  | -     | -   | 756  | -    | 30,000 | -      |
|           |            | 0-0.15 | 2019-Oct-2  | C3 CENTRE / G5   | Grab        | -    | 13  | 35   | <2000 | 1.1 | 871  | 5400 | 5400   | 92000  |
| G-6       | G-6 Comp   | 0-0.15 | 2019-Oct-1  | C5 EAST / G6     | Grab        | -    | 130 | 180  | 3000  | 1.7 | 904  | 5400 | 5400   | 13000  |

### Standards / Guidelines Descriptions:

- ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
- ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level

### Notes:

m - metres

μg/g - micrograms per gram

MPN - most probable number

- < less than reported detection limit
- '-' sample not analyzed for parameter indicated
- formatting of cells indicates exceedances of like-formatted standards
- where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

| ilton        | Risk Assessment |
|--------------|-----------------|
| City of Hami | Ecological R    |

|      | sHA9 lstoT                                                     | mg/g | 4           | 200         |                                |                              |                 | 10.87             | 21.11          | 0.86            | 1.53            | 47.46           | 98.0          | 14.87         | 7.7.7         | 13.58         | 10.04         | 40.7          | 13.05         | 11.08       | 20.46         | 6.64          | 8.21          | 7.59          | 32.77         | 8.88          | 12.33         |
|------|----------------------------------------------------------------|------|-------------|-------------|--------------------------------|------------------------------|-----------------|-------------------|----------------|-----------------|-----------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|      | bkıene                                                         | B/BH | 0.49        | 17          | 0.49                           |                              |                 | 2.09              | 3.69           | <0.05           | 0.25            | 7.83            | <0.05         | 2.31          | 1.24          | 2.24          | 1.64          | T. 24         | 77.75         | 1 89        | 3.4           | 1.25          | 1.51          | 1.4           | 5.35          | 1.53          | 5.09          |
|      | phenanthrene                                                   | B/8H | 95.0        | 19          | 0.56                           | П                            |                 | 1.2               | 4.39           | <0.05           | 90.0            | 10              | <0.05         | 2.92          | 1.31          | 5.9           | 1.95          | 70.0          | 14.7          | 202         | 3.81          | 0.52          | 1.16          | 0.85          | 88.9          | 1.25          | 1.96          |
|      | euəleyiydeu                                                    | mg/g |             |             |                                | 0.0346                       |                 | <0.1              | 0.45           | <0.05           | <0.05           | 1.2             |               | <0.1          | 90.0          | 0.14          | 0.07          | 0.10          | 0.13          | - CO - T    | 0.17          | <0.1          | <0.1          | <0.1          | 0.44          | <0.1          | 0.1           |
|      | -Z ʻəuəleyyyəu                                                 | B/BH |             |             |                                | 0.0202                       |                 | <0.1              | 0.17           | <0.05           | <0.05           | 0.37            | <0.05         | 1.92          | 0.73          | 1.57          | 1.21          | 0.10          | 2T.U>         | 92.0        | 1.94          | <0.1          | 0.24          | <0.1          | 1.16          | 0.43          | 0.55          |
|      | methylnaphthalene, 1-                                          | B/8n |             |             |                                |                              |                 | <0.1              | 0.11           | <0.05           | <0.05           | 0.28            | <0.05         | 0.85          | 0.29          | 0.73          | 0.47          | 1.0           | <0.17         | 0.42        | 0.89          | <0.1          | 0.11          | <0.1          | 0.65          | 0.22          | 0.27          |
|      | enenyq(bɔ-ɛ,2,1)onebni                                         | B/8H | 0.2         | 6.4         | 0.2                            | П                            |                 | 0.5               | 89.0           | <0.1            | <0.1            | 1.25            | <0.1          | 0.41          | 0.31          | 98.0          | 0.34          | 1,10          | 0.10          | 0 35        | 0.71          | 0.33          | 0.32          | 0.31          | 1.04          | 0.4           | 0.49          |
|      | fluorene                                                       | B/BH | 0.19        | 3.2         | 0.19                           | П                            |                 | <0.1              | 0.29           | <0.05           | <0.05           | 1.04            | <0.05         | 9.0           | 0.25          | 0.54          | 0.36          | 1.0           | 0.16          | 0.44        | 0.67          | <0.1          | 0.17          | 0.11          | 1.06          | 0.23          | 0.33          |
|      | fluoranthene                                                   | B/BH | 0.75        | 20.4        | 0.75                           | П                            |                 | 2.6               | 4.85           | <0.05           | 0.3             | 10.3            | <0.05         | 2.95          | 1.51          | 5.76          | 1.98          | T.5           | 2.74          | 2 39        | 4.37          | 1.44          | 1.67          | 1.66          | 6.15          | 1.83          | 2.5           |
|      | dibenz(a,h)anthracene                                          | mg/g | 90.0        | 5.6         | 90.0                           | П                            |                 | 0.12              | 0.18           | <0.06           | >0.06           | 0.35            | <0.06         | 0.13          | 60.0          | 0.11          | 0.1           | † C           | 0.13          | 100         | _             | <0.1          | <0.1          | <0.1          | 0.27          | 0.1           | 0.14          |
| PAHs | сукдзеие                                                       | .60  | H           | 9.5         | 0.34                           | Н                            |                 | 1.08              | Н              | <0.05           | 0.11            | 4.04            | <0.05         |               | 0.7           | -             | 0.88          | +             | T.U6          | H           |               | 0.71          | 0.77          | 0.76          | $\dashv$      | 8.0           | 1.1           |
|      | penzo(a)pyrene                                                 | ь в  | H           | 28.8        | 0.37                           | Н                            |                 | 0.87              | 1.36           | <0.05           | 0.12            | 3.11            | < 0.05        |               | 0.59          |               | 0.7           | +             | 0.37          | +           | +             | 95.0          |               | 0.62          | -             | 0.64          | 68.0          |
|      | penzo(k)fluoranthene                                           | .60  | Н           | 26.8        | 0.24                           | Н                            |                 | 0.47              | 0.77           | <0.05           | 90.0            | 1.48            | <0.05         |               | 0.31          | -             | 0.32          | +             | 0.45          | +           | +             | 0.28          | 0.32          | 0.3           | $\dashv$      | 0.34          | 0.52          |
|      | ənəlγາəq(i,d,8)oznəd                                           | _    | Н           | 6.4         | 0.17                           | Н                            |                 | 0.56              | 0.72           | < 0.1           | <0.1            | 1.23            | <0.1          |               | 0.37          | $\dashv$      | 0.41          | +             | 65.0          | H           | +             | 0.39          | 0.37          | 0.36          | -             | 0.52          | 99.0          |
|      | benzo(b)fluoranthene                                           | .60  |             |             |                                | Н                            |                 | 1.37              | 2.35           | <0.05           | 0.21            | 4.96            | <0.05         |               | 96.0          | -             | 1.18          | +             | 1.28          | +           |               | 0.93          | 86.0          | 1             |               | 96.0          | 1.3           |
|      | penz(a)anthracene                                              | 50   | 0.32        | 9.62        | 0.32                           | Н                            |                 | 0.85              | 1.27           | <0.05           | 0.12            | 3.54            | <0.05         |               | 9.0           |               | 0.75          | +             | 86.0          |             |               | 95.0          | 0.71          | 0.68          |               | 0.71          | 66.0          |
|      | enesenthrace                                                   | .00  | Н           | 7.77        | 0.22                           | Н                            |                 | 0.13              | 0.21           | <0.05           | <0.0>           | 1.08            | <0.05         |               | 0.21          | $\dashv$      | 0.26          | +             | 0.31          | +           | +             | <0.1          | 0.18          | 0.14          |               | 0.2           | 0.3           |
|      | arenaphthene                                                   | B/BH |             |             |                                | 0.00671                      |                 | <0.1              | 0.28           | <0.05           | <0.0>           | 0.91            | <0.05         | 0.92          | 0.17          | 0.29          | 0.23          | T.0.          | 0.23          | 810         | 0.33          | <0.1          | 0.11          | <0.1          | 0.97          | 0.13          | 0.16          |
|      | acenaphthylene                                                 | g/gm |             |             |                                | 0.00587                      |                 | <0.1              | <0.1           | <0.05           | <0.0>           | <0.1            | <0.05         | <0.1          | <0.05         | <0.1          | <0.05         | 7.0°          | V0.1          | 1.0         | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          | <0.1          |
|      |                                                                |      |             |             | -                              |                              | × 4             | uon l             |                |                 |                 |                 |               |               |               |               | $\dagger$     | +             |               |             |               |               |               |               | +             |               |               |
|      |                                                                |      |             |             |                                |                              | Matrix          | Core              | Core           | Core            | 200             | Core            | Core          | Core          | ,             | Core          | 3             | υ<br>0000     | Core          |             | Core          | 3             | 200           | 9,00          | 5             | or o          | 5             |
|      | SNC                                                            |      |             |             |                                |                              | <u> </u>        |                   |                | (16:50)         | (16:50)         |                 |               | 15:15         | 15:15         | 15:35         | 15:35         | 14.10         | 13:15         | 14.20       | 14:20         | 10:15         | 10:15         | 10:35         | 10:35         | 11:20         | 11:20         |
|      | ENT -<br>OCARBC                                                |      |             |             |                                |                              | 3               | C-1>15 (10:40)    | C-2>15 (11:10) | C-3A>30 (16:50) | C-3A>15 (16:50) | C-3C>15 (16:20) | C-4A>15 14:35 | C-4B>15 15:15 | C-4B>30 15:15 | C-4C>15 15:35 | C-4C>30 15:35 | C-3A/13 14.10 | C-58>15 13:15 | C-5C>15.120 | C-5C>30 14:20 | C-6A>15 10:15 | C-6A>30 10:15 | C-6B>15 10:35 | C-6B>30 10:35 | C-6C>15 11:20 | C-6C>30 11:20 |
|      | TABLE D-5: DEEP SEDIMENT -<br>POLYCYCLIC AROMATIC HYDROCARBONS |      |             |             |                                |                              | 200             | 2018-Sep-18       | 2018-Sep-18    | 2018-Sen-18     | 01-050-0107     | 2018-Sep-18     | 2018-Sep-19   | 2018-Sen-19   |               | 2018-Sep-19   | 0700          | GT-dac-otoz   | 2018-Sep-19   |             | 2018-Sep-19   | 00000         | 6T-dac-ot02   | 2018-Cop-10   | 01 dac-0107   | 2018-Sep-19   | OT-decoros    |
|      | NBLE D-5:                                                      |      |             |             |                                |                              | Sample<br>Depth | (mbg)<br>0.15-0.3 | 0.15-0.3       | >0.3            | 0.15-0.3        | 0.15-0.3        | 0.15-0.3      | 0.15-0.3      | >0.3          | 0.15-0.3      | >0.3          | 0.13-0.3      | 0.15-0.3      | 0.15-0.3    | >0.3          | 0.15-0.3      | >0.3          | 0.15-0.3      | 0.3           | 0.15-0.3      | >0.3          |
|      | T/<br>POLYCY(                                                  |      |             |             | ackground                      | ter (ISQG)                   | Sample          | C-1 West          | C-2 West       | C-3 Fact        |                 | C-3 West        | C-4 East      | C-4 Centre    |               | C-4 West      |               | C-3 Edst      | C-5 Centre    |             | C-5 West      | +1 2 2        |               | Centro        |               | -6 West       |               |
|      |                                                                |      | ON PSQG LEL | ON PSQG SEL | ON Sediment Table 1 Background | CCME SedQG Freshwater (ISQG) | 910             | C-1 C-            |                | C-3             |                 | Ċ               | C-4           |               | <b>)</b>      | _ <u>`</u>    |               | 5             | Ċ             | _           | <u>`</u>      | C-6           | ر             |               |               | ٢             |               |

### Standards / Guidelines Descriptions:

- ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
   ON Sediment Table 1 Background:Ontario Sediment Table 1: Full Depth Background Site Condition Standards
   CCME SedQG Freshwater (ISQG):CCME Sediment Quality Guidelines for the Protection of Aquatic Life, Freshwater (Interim sediment quality guidelines)
   ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level

m - metres

< - less than reported detection limit μg/g - micrograms per gram

'.' - sample not analyzed for parameter indicated
• formatting of cells indicates exceedances of like-formatted standards

where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

• Total PAHS include Acenaphthlene, Acenaphthylene, Anthracene, Benzolg/fluoranthene, Benzolgalptiunine, Benzolgalptracene, Ben PAH - polycyclic aromatic hydrocarbons

|                                      |          |         |          |            |                  |                   |         | _      | Metals |            |        |          |        |          |         |            |
|--------------------------------------|----------|---------|----------|------------|------------------|-------------------|---------|--------|--------|------------|--------|----------|--------|----------|---------|------------|
| TABLE D-6: DEEP SEDIMENT -<br>METALS | ynomiżns | arsenic | muired   | peryllium  | boron<br>cadmium | chromium (III+VI) | cobalt  | cobber | peəl   | шпиәрqʎloш | nickel | muinələs | silver | muilledt | muineru | muibenev   |
|                                      | mg/g     | mg/g    | µg/g   µ | ng/g   ng/ | /g   ng/         | /g   µg           | /g µg/g | µg/g   | µg/g   | g/gn       | mg/g   | l 8/8H   | mg/g   | mg/g     | 1 8/8H  | /Br   B/Br |
| ON PSQG Background Concentrations    |          | 4       | _        | _          | _                | 31                | L       | 25     | 23     |            | 31     |          |        |          |         | 65         |
| ON PSQG LEL                          |          | 9       |          |            | 9.0              | 6 26              | _       | 16     | 31     |            | 16     |          |        |          |         | 120        |
| ON PSQG SEL                          |          | 33      |          |            | 10               | 0 110             | 0       | 110    | 250    |            | 75     |          |        |          |         | 820        |
| ON Sediment Table 1 Background       |          | 9       | _        | L          | 9.0              | 6 26              | 20      | 16     | 31     |            | 16     |          | 0.5    |          |         | 120        |

|              |             | 250            | 339            | 30              | 98             | 305             | 31            | 437           | 300           | 412           | 275           | 546           | 258           | 364           | 818                                    | 922           | 245           | 324           | 253           | 540           | 368           | 489           |
|--------------|-------------|----------------|----------------|-----------------|----------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|              |             | 19             | 18             | 11              | 13             | 15              | 11            | 22            | 22            | 18            | 19            | 30            | 14            | 16            | 25                                     | 26            | 14            | 15            | 14            | 20            | 17            | 18            |
|              |             | 0.64           | 0.48           | 0.32            | 0.43           | 0.53            | 0.3           | 0.67          | 9.0           | 0.55          | 0.58          | 0.81          | 0.46          | 0.51          | 0.73                                   | 0.78          | 0.42          | 0.46          | 0.43          | 0.58          | 0.52          | 0.53          |
|              |             | 0.13           | 0.11           | 90.0            | 0.08           | 0.13            | 0.04          | 0.15          | 0.14          | 0.11          | 0.11          | 0.25          | 0.1           | 0.11          | 0.17                                   | 0.18          | 0.1           | 0.1           | 0.1           | 0.15          | 0.12          | 0.12          |
|              |             | Н              | Н              | ⊢               |                | Н               | H             | H             | _             | H             | Н             | H             | _             | _             |                                        |               | H             |               | L             | _             | _             | Н             |
|              |             | 7 0.37         | 7 1.2          | 7 <0.05         | 7 0.46         | 0.47            | 90.0          | 4.4           | 4.3           | 7.7           | 4.5           | 2.4           | 7 2.4         | 3.3           | 17                                     | 27            | 7 1.5         | 3.8           | 7 0.87        | 8.3           | 3.2           | 29 2          |
|              |             | <0.7           | <0.7           | <0.7            | <0.7           | <0.7            | <0.7          | <0.7          | <0.7          | <0.7          | <0.7          | 1.5           | <0.7          | <0.7          | 0.7                                    | 0.7           | <0.7          | <0.7          | <0.7          | <0.7          | <0.7          | <0.7          |
|              |             | 23             | 21             | 10              | 15             | 18              | 7.5           | 21            | 37            | 25            | 35            | 37            | 47            | 22            | 93                                     | 89            | 19            | 34            | 18            | 29            | 32            | 65            |
|              |             | 1.1            | 2.4            | 0.2             | 0.3            | 1               | 0.1           | 1.1           | 0.9           | 1             | 0.8           | 3.3           | 9.0           | 0.7           | 1.3                                    | 1.5           | 9.0           | 9.0           | 9.0           | 1.2           | 0.8           | 0.9           |
|              |             | 29             | 29             | 6.1             | 20             | 100             | 6.2           | 141           | 94            | 116           | 89            | 181           | 134           | 140           | 241                                    | 228           | 67            | 115           | 80            | 194           | 138           | 173           |
|              |             | 71             | 73             | 20              | 29             | 61              | 18            | 124           | 85            | 129           | 98            | 127           | 82            | 111           | 265                                    | 358           | 65            | 69            | 76            | 126           | 81            | 175           |
|              |             | 9.3            | 8.5            | 5.1             | 6.2            | 6.9             | 3.5           | 14            | 13            | 13            | 11            | 12            | 11            | 15            | 22                                     | 21            | 6.9           | 9.8           | 6.7           | 15            | 11            | 16            |
|              |             | 24             | 23             | 7.3             | 12             | . 26            | 6.3           | 22            | 31            | 45            | 32            | 45            | 78            | 32            | 87                                     | 97            | 21            | 32            | 18            | 52            | 33            | 49            |
|              |             | 0.4            | 1.1            | 0.07            | 3.8            | 0.81            | 0.09          | 22            | 11            | 29            | 14            | 7.6           | 8.9           | 12            | 49                                     | 68            | 1.2           | 7.6           | 1.6           | 20            | 4.9           | 19            |
|              |             | 16             | 13             | 4               | 2              | 11              | 4             | 23            | 21            | 19            | 20            | 24            | 15            | 21            | 39                                     | 45            | 23            | 32            | 17            | 40            | 32            | 40            |
|              |             | 0.44           | 0.38           | 0.21            | 0.24           | 0.31            | 0.16          | 0.52          | 0.48          | 0.39          | 0.41          | 0.85          | 0.34          | 0.39          | 0.51                                   | 0.51          | 0.29          | 0.34          | 0.3           | 0.45          | 0.4           | 0.43          |
|              |             | 120            | 88             | 34              | 40             | 8               | 16            | 217           | 145           | 201           | 143           | 265           | 143           | 209           | 398                                    | 397           | 8             | 127           | 2             | 228           | 136           | 237           |
|              |             | 4.7            | 9              | 2.7             | 3.1            | 4.2             | 1.7           | 6.8           | 7.1           | 5.9           | 5.4           | 16            | 4.9           | 6.2           | 6                                      | 9.1           | 3.5           | 4.4           | 3.7           | 6.9           | 5.3           | 9.9           |
|              |             | <0.8           | <0.8           | <0.8            | <0.8           | <0.8            | <0.8          | 0.8           | 1             | 7             | <0.8          | 1.1           | 0.9           | 1.3           | 1.9                                    | 1.7           | <0.8          | <0.8          | <0.8          | 1.4           | 0.8           | 1.5           |
| ×            | tion        |                |                |                 |                |                 |               |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
| Matrix       | Description |                |                |                 |                |                 |               |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
|              | _           | Core           | Core           | 2000            | 5              | Core            | Core          | 2000          | 5             | 0,0           |               | Core          | 2,0           | 5             | 2,00                                   |               | 200           | 5             | Š             | 5             | 200           |               |
|              | e ID        | 0:40)          | 1:10)          | 16:50)          | 16:50)         | 16:20)          | 4:35          | 5:15          | 5:15          | 5:35          | 5:35          | 4:10          | 3:15          | 3:15          | 4:20                                   | 4:20          | 0:15          | 0:15          | 0:35          | 0:35          | 1:20          | 1:20          |
|              | Sample ID   | C-1>15 (10:40) | C-2>15 (11:10) | C-3A>30 (16:50) | C-3A>15 (16:50 | C-3C>15 (16:20) | C-4A>15 14:35 | C-4B>15 15:15 | C-4B>30 15:15 | C-4C>15 15:35 | C-4C>30 15:35 | C-5A>15 14:10 | C-5B>15 13:15 | C-5B>30 13:15 | C-5C>15 14:20                          | C-5C>30 14:20 | C-6A>15 10:15 | C-6A>30 10:15 | C-6B>15 10:35 | C-6B>30 10:35 | C-6C>15 11:20 | C-6C>30 11:20 |
|              | ė           |                |                | П               |                |                 | Г             |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
|              | Sample Date | 2018-Sep-18    | 2018-Sep-18    | 2010 500 10     | or -dac        | 2018-Sep-18     | 2018-Sep-19   | 01 65 700     | ach-ra        | 01 00 0100    | er-dac        | 2018-Sep-19   | 701 8 50 0 10 | 757           | 201 8 50 2 10                          | ach-T         | 201 8 Sap 10  | ach-Ta        | 201 9 Con 10  | 7             | 201 9 Cop 10  | 3617.1        |
|              | Sam         | 2018           | 2018           | 0 100           | - 2010         | 2018            | 2018          | 0 100         | 2010          | 0 100         | 2010          | 2018          | 2010          | 2010          | 2010                                   | 2010          | 2010          | .0107         | 2010          | 2010          | 2010          | 2010          |
| Depth        | (S)         |                |                |                 |                |                 |               |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
| Sample Depth | (mbg)       | 0.15-0.3       | 0.15-0.3       | 3               | 0.15-0.3       | 0.15-0.3        | 0.15-0.3      | 0.15-0.3      | 3             | 0.15-0.3      | 3             | 0.15-0.3      | 0.15-0.3      | 3             | 0.15-0.3                               | 3             | 0.15-0.3      | 3             | 0.15-0.3      |               | 0.15-0.3      | 3             |
| Ş            |             | 0.1            | 0.1            | >0.3            | 0.1            | 0.1             | 0.1           | 0.1           | >0.3          | 0.1           | >0.3          | 0.1           | 0.1           | >0.3          | 0.1                                    | >0.3          | 0.1           | >0.3          | 0.1           | 0.3           | 0.1           | >0.3          |
| Sample       | Location    | Vest           | Vest           | į               | dor            | C-3 West        | ast           | 7 000400      | ב<br>ב<br>ב   | +20/          | 100           | ast           | C E Contro    | ב<br>ב<br>ב   | ************************************** | 100           | +             | dol           | ontro         | ט<br>בו       | 1,007         | 1627          |
| Š            | 2           | C-1 West       | C-2 West       | 2 520           | כר             | C-3             | C-4 East      | ,             | ,<br>,<br>,   | 10/0/4        | <u></u>       | C-5 East      | Ü             |               | +10/4/                                 | 5_            | 6 520         |               | 9             |               | - Wort        |               |
|              | ea          |                |                |                 |                |                 |               |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
|              | Site Area   |                |                |                 |                |                 |               |               |               |               |               |               |               |               |                                        |               |               |               |               |               |               |               |
|              |             | C-1            | C-2            | C-3             |                |                 | C-4           |               |               |               |               | C-5           |               |               |                                        |               | G-6           |               |               |               |               |               |

- Standards / Guidelines Descriptions:
  ON PSQG Background Concentrations:Ontario Provincial Sediment Quality Guideline Table 3 and Table 4 Background Sediment Concentrations
  ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
  ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level
  ON Sediment Table 1 Background:Ontario Sediment Table 1: Full Depth Background Site Condition Standards

m - metres Notes:

μg/g - micrograms per gram

< - less than reported detection limit

'-' - sample not analyzed for parameter indicated

formatting of cells indicates exceedances of like-formatted standards

where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

SLR Project No.: 209.40666.00000 January 2020

|                                                | lı                          | norgani                 | cs         | Ecological      | Physical<br>Parameters |
|------------------------------------------------|-----------------------------|-------------------------|------------|-----------------|------------------------|
| TABLE D-7: DEEP SEDIMENT -NUTRIENTS & BACTERIA | ammonia and ammonium (as N) | kjeldahl nitrogen total | phosphorus | Fecal Coliforms | moisture               |
|                                                | μg/g                        | μg/g                    | μg/g       | MPN/100g        | %                      |
| ON PSQG LEL                                    |                             | 550                     | 600        |                 |                        |
| ON PSOG SEL                                    |                             | 4800                    | 2000       |                 |                        |

|           | Sample     | Sample      |               |                 |                           |      |      |      |       |      |
|-----------|------------|-------------|---------------|-----------------|---------------------------|------|------|------|-------|------|
| Site Area | Location   | Depth (mbg) | Sample Date   | Sample ID       | <b>Matrix Description</b> |      |      |      |       |      |
| C-1       | C-1 West   | 0.15-0.3    | 2018-Sep-18   | C-1>15 (10:40)  | Core                      | 200  | 600  | 934  | <1000 | 37.8 |
| C-2       | C-2 West   | 0.15-0.3    | 2018-Sep-18   | C-2>15 (11:10)  | Core                      | 200  | 800  | 937  | <1000 | 28   |
| C-3       | C-3 East   | >0.3        | 2018-Sep-18   | C-3A>30 (16:50) | Core                      | <100 | <100 | 563  | <1000 | 55.5 |
|           | C-3 EdSt   | 0.15-0.3    | 2010-36h-10   | C-3A>15 (16:50) | Core                      | <100 | 300  | 637  | <1000 | 25.7 |
|           | C-3 West   | 0.15-0.3    | 2018-Sep-18   | C-3C>15 (16:20) | Core                      | 200  | 600  | 929  | 9000  | 35.4 |
| C-4       | C-4 East   | 0.15-0.3    | 2018-Sep-19   | C-4A>15 14:35   | Core                      | <100 | 200  | 636  | <1000 | 20.8 |
|           | C 4 Contro | 0.15-0.3    | - 2018-Sep-19 | C-4B>15 15:15   | Core                      | 100  | 700  | 1140 | <1000 | 36   |
|           | C-4 Centre | >0.3        | 2018-3eb-19   | C-4B>30 15:15   | Core                      | 100  | 600  | 909  | <1000 | 35.8 |
|           | C-4 West   | 0.15-0.3    | - 2018-Sep-19 | C-4C>15 15:35   | Coro                      | 200  | 900  | 1090 | <1000 | 33   |
|           | C-4 West   | >0.3        | 2018-3eb-19   | C-4C>30 15:35   | Core                      | 100  | 800  | 881  | <1000 | 32.4 |
| C-5       | C-5 East   | 0.15-0.3    | 2018-Sep-19   | C-5A>15 14:10   | Core                      | 100  | 1400 | 1021 | 1000  | 51.1 |
|           | C-5 Centre | 0.15-0.3    | - 2018-Sep-19 | C-5B>15 13:15   | Core                      | <100 | 200  | 882  | <1000 | 21.3 |
|           | C-5 Centre | >0.3        | 2018-3eb-19   | C-5B>30 13:15   | Core                      | 100  | 600  | 995  | <1000 | 26.6 |
|           | C F West   | 0.15-0.3    | 2010 Con 10   | C-5C>15 14:20   | Coro                      | 200  | 1200 | 1760 | <1000 | 35.3 |
|           | C-5 West   | >0.3        | 2018-Sep-19   | C-5C>30 14:20   | Core                      | 200  | 1500 | 1820 | 1000  | 44.7 |
| C-6       | C-6 East   | 0.15-0.3    | 2018-Sep-19   | C-6A>15 10:15   | Core                      | 100  | 700  | 827  | <1000 | 26.1 |
|           | C-0 EdSt   | >0.3        | 2018-3eb-19   | C-6A>30 10:15   | Core                      | 200  | 1000 | 1084 | <1000 | 28.4 |
|           | C-6 Centre | 0.15-0.3    | - 2018-Sep-19 | C-6B>15 10:35   | Core                      | <100 | 500  | 768  | <1000 | 26   |
|           | C-6 Centre | 0.3         | 2010-36b-13   | C-6B>30 10:35   | Core                      | 100  | 1300 | 1444 | <1000 | 28.3 |
|           | C C Mart   | 0.15-0.3    | 2010 5 10     | C-6C>15 11:20   | C                         | 100  | 800  | 1059 | <1000 | 24.4 |
|           | C-6 West   | >0.3        | 2018-Sep-19   | C-6C>30 11:20   | Core                      | 200  | 1200 | 1370 | <1000 | 29.7 |

### Standards / Guidelines Descriptions:

- ON PSQG LEL:Ontario Provincial Sediment Quality Guideline Lowest Effect Level
- ON PSQG SEL:Ontario Provincial Sediment Quality Guideline Severe Effect Level

### Notes:

m - metres

 $\mu g/g$  - micrograms per gram

MPN - most probable number

- < less than reported detection limit
- $\mbox{'-'}$  sample not analyzed for parameter indicated
- formatting of cells indicates exceedances of like-formatted standards
- where many exceedance formats are used, highlighted results reflect the least stringent standard/guideline exceeded

SLR Project No.: 209.40666.00000

January 2020

### TABLE D-8: SURFACE WATER - FIELD MEASUREMENTS

|              | Fie        | ld         |             |
|--------------|------------|------------|-------------|
| temp (field) | pH (field) | EC (field) | DO (field)  |
| οС           | pH_Units   | μS/cm      | mg/L        |
|              |            |            | <b>_</b> #1 |

### ON PWQO

|           | Sample     | Canada Data | County ID          |      |      |      |       |
|-----------|------------|-------------|--------------------|------|------|------|-------|
| Site Area | Location   | Sample Date | Sample ID          |      |      |      |       |
| C-1       | C-1 West   | 2019-Sep-30 | C-1 West           | 15.7 | 8.25 | 733  | 10.23 |
|           | C-1 West   | 2013-3ер-30 | C-1 West Duplicate | 15.7 | 8.25 | 733  | 10.23 |
| C-3       | C-3 Centre | 2019-Sep-30 | C-3 Centre - G5    | 16.1 | 7.61 | 760  | 5.99  |
|           | C-3 West   | 2019-Sep-30 | C-3 West           | 15.9 | 7.65 | 771  | 6.38  |
| C-4       | C-4 West   | 2019-Sep-30 | C-4 West           | 16.3 | 7.52 | 739  | 4.85  |
| C-5       | C-5 East   | 2019-Sep-30 | C-5 East - G6      | 16.3 | 7.43 | 700  | 2.96  |
| G-1       | G-1 Comp   | 2019-Sep-30 | G-1 Comp           | 15.7 | 8.36 | 729  | 10.4  |
| G-4       | G-4 Comp   | 2019-Sep-30 | G-4 Comp           | 15.7 | 7.67 | 780  | 7.01  |
| Reference | R-1        | 2019-Sep-30 | R-1                | 18.1 | 7.76 | 1200 | 8.67  |
|           | R-2        | 2019-Sep-30 | R-2                | 18.4 | 8.02 | 1205 | 9.75  |

mg/L - milligram per litre  $\mu$ S/cm -microseimens per centimeter oC - degrees centigrade

### **Standard/Guideline Descriptions**

• ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and updates)

### **Standard/Guideline Comments**

#1:Dependent upon temperature, cold water biota, and warm water biota. Objective represents minimum DO concentration for warm water biota at 15 degrees.

SLR Project No.: 209.40666.00000

January 2020

TABLE D-9: SURFACE WATER - PHYSICAL PARAMETERS

| ı | Physica                | l Paran              | neters                              | Misc                                   | ellanous                   |
|---|------------------------|----------------------|-------------------------------------|----------------------------------------|----------------------------|
|   | Total Suspended Solids | Total Organic Carbon | Dissolved Organic Carbon (Filtered) | Biochemical Oxygen Demand (5-day test) | B<br>  Dibenz(a.j)acridine |
| J | IIIg/L                 | IIIg/L               | IIIg/L                              | mg/L                                   | IIIg/L                     |

|           |            |             |                    | 6/ = | 8/ - | 6/ = | 6/ = | 6/ =    |
|-----------|------------|-------------|--------------------|------|------|------|------|---------|
|           | Sample     |             |                    |      |      |      |      |         |
| Site Area | Location   | Sample Date | Sample ID          |      |      |      |      |         |
| C-1       | C-1 West   | 2019-Sep-30 | C-1 West           | 4.5  | 2.6  | 2.5  | <2   | <0.0001 |
|           | C-1 West   | 2019-3ep-30 | C-1 West Duplicate | 13.8 | 3    | 2.6  | <2   | <0.0001 |
| C-3       | C-3 Centre | 2019-Sep-30 | C-3 Centre - G5    | 19.8 | 4    | 3.4  | 2    | <0.0001 |
|           | C-3 West   | 2019-Sep-30 | C-3 West           | 20.8 | 3.7  | 2.9  | <2   | <0.0001 |
| C-4       | C-4 West   | 2019-Sep-30 | C-4 West           | 21.2 | 4.4  | 3.9  | 2    | <0.0001 |
| C-5       | C-5 East   | 2019-Sep-30 | C-5 East - G6      | 26.8 | 4.5  | 4.1  | 3    | <0.0001 |
| G-1       | G-1 Comp   | 2019-Sep-30 | G-1 Comp           | 5.3  | 2.4  | 2.5  | <2   | <0.0001 |
| G-4       | G-4 Comp   | 2019-Sep-30 | G-4 Comp           | 10.3 | 2.8  | 2.6  | <2   | <0.0001 |
| Reference | R-1        | 2019-Sep-30 | R-1                | 3.4  | 2.9  | 2.4  | <2   | <0.0001 |
|           | R-2        | 2019-Sep-30 | R-2                | <2   | 3.4  | 2.4  | <2   | <0.0001 |

mg/L - milligram per litre

SLR Project No.: 209.40666.00000 January 2020

City of Hamilton Ecological Risk Assessment

|                                              |                |                                                          |                                                                 |                |              |            |                   |                               |                                        |         |                      |          | PAHS               | s                       |                    |              |          |                        |                       |                                      |                  |              |          |                    |  |
|----------------------------------------------|----------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------|--------------|------------|-------------------|-------------------------------|----------------------------------------|---------|----------------------|----------|--------------------|-------------------------|--------------------|--------------|----------|------------------------|-----------------------|--------------------------------------|------------------|--------------|----------|--------------------|--|
| TA                                           | (BLE D-10:     | TABLE D-10: SURFACE WATER -<br>CYCLIC AROMATIC HYDROCARE | TABLE D-10: SURFACE WATER -<br>POLYCYCLIC AROMATIC HYDROCARBONS | эсеизрhthylene | scensphthene | anthracene | penz(a)anthracene | benzo(b+j)fluoranthene (SPLP) | benzo(e)pyrene<br>benzo(g,h,i)perylene |         | peuzo(k)tluoranthene | сулдаеце | ens(a,h)anthracene | Ploibenzo[c,g]carbazole | dibenzo(a,i)pyrene | fluoranthene | fluorene | eneγγq(bɔ-ε,Σ,Σ)onebni | methylnaphthalene, 1- | methylnaphthalene, 2-<br>naphthalene | <b>Б</b> егујеле | ррепаптъгеле | pyrene   | (stot fo mus) sHA9 |  |
|                                              |                |                                                          |                                                                 | hg/L           | mg/L         | mg/L       |                   | _                             | <u></u>                                | _       | <br>                 | <u>п</u> | - µg/L             | J/BH .                  | hg/L               | mg/L         | mg/L     | _                      | _                     | <u>п</u>                             | <u></u>          | l/gh         | <u> </u> | l µg/L             |  |
| ON PWQO                                      |                |                                                          |                                                                 |                |              | #1         | 4#1               |                               |                                        | 2#1     | 2#1                  | 0.       | 0                  |                         |                    | 0.0008#1     | 0.2#1    |                        |                       |                                      | 0.0              | ٦            | L        |                    |  |
| CCME WQG Freshwater Aquatic Life (long term) | hwater Aquatic | Life (long term)                                         |                                                                 |                | 5.8          |            | 0.018             |                               |                                        |         | 0.015                |          |                    |                         |                    | 0.04         | က        |                        |                       | 1.1                                  |                  | 0.4          | 0.025    |                    |  |
|                                              |                |                                                          |                                                                 |                |              |            |                   |                               |                                        |         |                      |          |                    |                         |                    |              |          |                        |                       |                                      |                  |              |          |                    |  |
|                                              | Sample         |                                                          |                                                                 | _              |              |            |                   |                               |                                        |         |                      |          |                    |                         |                    |              |          |                        |                       |                                      |                  |              |          |                    |  |
| Site Area                                    | Location       | Sample Date                                              | e Sample ID                                                     |                |              |            |                   |                               |                                        |         |                      |          |                    |                         |                    |              |          |                        |                       |                                      |                  |              |          |                    |  |
| C-1                                          | to,W. C        | 00 000                                                   | C-1 West                                                        | <0.1           | <0.1         | <0.1       | <0.1              | <0.1 <0.                      | 0.1 <0                                 | .2 <0.  | 0.0> 1.0             | 0.1      | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | <0.5                  | <0.5 <0.                             | .5 <0.5          | <0.1         | . <0.1   | <2                 |  |
|                                              | C-I West       | 0c-dac-cT07                                              | C-1 West Duplicate                                              | <0.1           | <0.1         | <0.1       | <0.1              | <0.1 <0                       | 0.1 <0.2                               | .2 <0.  | 0.1 <0.01            | 0.1      | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.                             | .5 <0.5          | <0.1         | . 0>1    | <2                 |  |
| C-3                                          | C-3 Centre     | 2019-Sep-30                                              | C-3 Centre - G5                                                 | <0.1           | <0.1         | <0.1       | _                 | <0.1                          | <0.1 <0.                               | 2       | <0.1 <0.01           | 0.1      | . <0.1             | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | 3.0> 2.0         | <0.1         | . <0.1   | <2                 |  |
|                                              | C-3 West       | 2019-Sep-30  C-3 West                                    | C-3 West                                                        | <0.1           | <0.1         | <0.1       | <0.1              | <0.1                          | <0.1 <0.2                              | H       | <0.1 <0.01           | 0.1      | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | 3.5 <0.5         | <0.1         | . <0.1   | <2                 |  |
| C-4                                          | C-4 West       | 2019-Sep-30  C-4 West                                    | C-4 West                                                        | <0.1           | <0.1         | <0.1       | _                 | <0.1                          | <0.1 <0                                | H       | <0.1 <0.01           | L.       | <0.1               | П                       |                    | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | 3.5 <0.5         | <0.1         | . <0.1   | <2                 |  |
| C-5                                          | C-5 East       | 2019-Sep-30                                              | C-5 East - G6                                                   | <0.1           | <0.1         | <0.1       |                   | <0.1                          | <0.1 <0                                | H       | <0.1 <0.01           | H        | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | .5 <0.5          | <0.1         | . <0.1   | <2                 |  |
| G-1                                          | G-1 Comp       | 2019-Sep-30  G-1 Comp                                    | G-1 Comp                                                        | <0.1           | <0.1         | <0.1       | <0.1              | <0.1                          | <0.1 <0.2                              | H       | <0.1 <0.01           | 01 <0.1  | . <0.1             | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | 3.0> <0.5        | <0.1         | . <0.1   | <2                 |  |
| G-4                                          | G-4 Comp       | 2019-Sep-30                                              | G-4 Comp                                                        | <0.1           | <0.1         | <0.1       | H                 | <0.1                          | <0.1 <0                                | Н       | <0.1 <0.01           | Н        | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | .5 <0.5          | <0.1         | <0.1     | <2                 |  |
| Reference                                    | R-1            | 2019-Sep-30                                              | R-1                                                             | <0.1           | <0.1         | <0.1       | H.                | <0.1                          | <0.1 <0.                               |         | <0.1 <0.01           | 0.1      | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0                              | <0.5 <0.5        | <0.1         | <0.1     | <2                 |  |
|                                              | R-2            | 2019-Sep-30                                              | R-2                                                             | <0.1           | <0.1         | <0.1       | <0.1              | <0.1                          | <0.1 <0                                | <0.2 <0 | <0.1 <0.01           | 01 <0.1  | <0.1               | <0.1                    | <0.1               | <0.1         | <0.1     | <0.2                   | < 0.5                 | <0.5 <0.5                            | 3.5 <0.5         | <0.1         | <0.1     | <2                 |  |
|                                              |                |                                                          |                                                                 |                |              |            | 1                 | 1                             | l                                      | l       | 1                    | l        | l                  | ı                       | 1                  |              |          |                        | 1                     | 1                                    |                  |              | ł        |                    |  |

µg/L - microgram per litre

Standard/Guideline Descriptions

ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and Updates)

CCME WQG Freshwater Aquatic Life (long term):CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

Standard/Guideline Comments #1:Interim PWQO

(Filtered)

copper (Filtered)

(Filtered)

جَّ دhromium (III+VI) (Filtered)

| bərivin (Filtered)<br>Peryllium<br>Filtered) | _                  | 1100#3 ** 1100#3 ** |        |                                | 42.9 <0.1 <0.1 | 41.6 <0.1 <0.1         | 45.9 <0.1 <0.1 | 46.6 <0.1 <0.1 | 48.6 <0.1 <0.1 | 47.2 <0.1 <0.1 | 38.5 <0.1 <0.1   | 43.4 <0.1 <0.1 | 61.1 <0.1 <0.1 | 62.4 <0.1 <0.1 |
|----------------------------------------------|--------------------|---------------------|--------|--------------------------------|----------------|------------------------|----------------|----------------|----------------|----------------|------------------|----------------|----------------|----------------|
| orsenic (Filtered)<br>multed                 | 1/8rl 1/8rl 1/8rl  | 5*2 5*2             |        |                                | 1.3 1.2 39.4   | 1.3 1.3 40.4           | 1.5 1.2 48.4   | 1.5 1.2 48     | 1.6 1.2 49.2   | 1.5 1.2 49.5   | 1.3   1.2   38.6 | 1.4 1.3 46     | 0.6 0.5 62.6   | 0.5 0.5 59.2   |
| (Filtered) winniming                         | 1/8r   1/8r   1/8r | 75*1 * 20*1 20*1    |        |                                | 13 0.2 0.2     | 14 0.2 0.2             | 3 0.3 0.3      | 4 0.3 0.3      | 2 0.3 0.3      | <2 0.4 0.4     | 13 0.2 0.2       | 4 0.2 0.2      | <2 0.2 0.2     | <2 0.2 0.2     |
| munimule                                     | =                  | 75*1 *              |        |                                | 8.32 145       | 8.32 299               | 7.99 467       | 8.03 468       | 7.94 489       | 7 598          | 8.42 160         | 8.06 307       | 8.11 24        | 8.14 1.2       |
| (dsi) Hq                                     | L'Unit             |                     |        |                                | ∞              | ∞                      | 7              | œ              | 7.5            | 7.87           | ooi              |                |                |                |
| hardness as CaCO3                            | mg/L pH_Units      |                     |        |                                | 253 8.3        | 252 8                  | 244 7.         | 248 8.         | 233 7.9        | 223 7.8        | 249 8.           | 257            | 414            | 457            |
|                                              |                    |                     | Sample | Location Sample Date Sample ID | H              | C-1 West Duplicate 252 | H              | Ц              | Ц              | 56 223         | 249              | Н              | 414            | L              |

mg/L - milligram per litre μg/L - microgram per litre

Standard/Guideline Descriptions

• ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and updates)

Standard/Guideline Comments

Littlerine Myo.

#2.Interine Myo.

#2.Interine Myo.

#3.Interine Myo.

#3.Cre is a five Gasoble mercus.

#3.Cre is a five Gasoble mercus on waterbook hardness.

#5.Guideline is dee pendent on waterbook hardness.

Most conservative valied listed.

Most conservative valied listed.

\*pH dependent

(Filtered) (Filtered)

|              | zirconium (Filtered)  | HB/L                                    | 4*1                               |   |        |                       | <0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.4               | <0.4                                       | <0.4                              | <0.4                              | <0.4                                   | <0.4                   | <0.4                              | <0.4              | 400                     |
|--------------|-----------------------|-----------------------------------------|-----------------------------------|---|--------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|------------------------|-----------------------------------|-------------------|-------------------------|
|              | zirconium             | ng/L                                    | 4*1                               |   |        |                       | 4.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.4               | <0.4                                       | <0.4                              | <0.4                              | <0.4                                   | <0.4                   | <0.4                              | <0.4              | <0.4                    |
| l            | zinc (Filtered)       |                                         | 20#1                              |   |        |                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н                  | 9                                          | Н                                 | П                                 | П                                      | 6                      | 6                                 | 4                 | m                       |
|              | (besettia) sair       | -                                       |                                   |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                 | Ľ                                          | 5                                 | 4                                 | 4                                      | -                      |                                   | _                 | Ë                       |
| l            | zinc                  | l/8rl                                   | 20*1                              |   |        |                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                 | 20                                         | 21                                | 20                                | 21                                     | 17                     | 21                                | 2                 | 4                       |
|              | (Filtered)            | ng/L                                    | 6*1                               |   |        |                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.0                | 1.1                                        | 1.1                               | 1.2                               | 1.2                                    | 0.7                    | 6.0                               | 0.1               | 0.1                     |
| l            | muibenev              |                                         |                                   |   |        |                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | Н                                          | Н                                 | Н                                 | Н                                      | Н                      | Н                                 | Н                 | Н                       |
|              | unipeach              | /Bri                                    | 6*1                               |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2                | 1.9                                        | 1.9                               | 2.1                               | 2.3                                    | -                      | 1.4                               | 0.2               | 0.2                     |
|              | (Filtered)            | 1/gr                                    | 2#1                               |   |        |                       | 0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.777              | 0.675                                      | 0.702                             | 0.601                             | 0.577                                  | 0.75                   | 0.741                             | 1.47              | 1.45                    |
|              |                       |                                         |                                   |   |        |                       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | Н                                          | Н                                 | Н                                 | Ш                                      | Н                      | Н                                 | Н                 | H                       |
|              | muineru               | l/8rl                                   | 5#1                               |   |        |                       | 0.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.73               | 0.666                                      | 0.69                              | 0.602                             | 0.556                                  | 0.741                  | 0.73                              | 1.46              | 1.45                    |
|              | titanium (Filtered)   | 7                                       |                                   |   |        |                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3                | 0.2                                        | 0.2                               | 0.1                               | 1.0                                    | 0.2                    | 0.2                               | 0.1               | <0.1                    |
|              | (1412)                | /Br                                     |                                   |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ц                  | L                                          | _                                 | L                                 | <0.                                    | L                      | _                                 | Ů                 | H                       |
|              | titanium              | hg/L                                    |                                   |   |        |                       | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.8                | 8.6                                        | 8.9                               | 9.5                               | 11.2                                   | 3.7                    | 9                                 | 9.0               | 0.3                     |
|              | tin (Filtered)        | ng/L                                    |                                   |   |        |                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1               | <0.1                                       | <0.1                              | <0.1                              | <0.1                                   | <0.1                   | <0.1                              | <0.1              | <0.1                    |
|              |                       | _                                       |                                   |   |        |                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  | Н                                          | _                                 | _                                 | Н                                      | Н                      | Н                                 | Н                 | Н                       |
|              | nit                   | /gm                                     |                                   |   |        |                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,                 | <0.0                                       | <0>                               | 0,                                | <0.1                                   | <0.1                   | <0.1                              | <0.1              | <0.1                    |
|              | thallium (Filtered)   | μg/                                     | 0.3                               |   |        |                       | <0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | < 0.3              | <0.3                                       | <0.3                              | < 0.3                             | <0.3                                   | <0.3                   | <0.3                              | <0.3              | <0.3                    |
|              | muilledt              | ng/L                                    | 0.3*1                             |   |        |                       | <0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.3               | <0.3                                       | <0.3                              | <0.3                              | <0.3                                   | <0.3                   | <0.3                              | <0.3              | <0.3                    |
|              | (22,123,11)           | ے                                       | Ĭ                                 |   |        |                       | 1070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ш                  | Н                                          | Н                                 | Н                                 | Н                                      | ш                      | 1020                              | ш                 | _                       |
|              | (Filtered)            | /Bri                                    |                                   |   |        |                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1130               | 940                                        | 952                               | 869                               | 869                                    | 1090                   | ш                                 | 2580              | 2570                    |
|              | muitnorts             | hg/L                                    |                                   |   |        |                       | 1090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1070               | 947                                        | 926                               | 881                               | 820                                    | 1100                   | 1020                              | 2610              | 2520                    |
|              | (Filtered)            | mg/L                                    |                                   |   |        |                       | 81.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.3               | 88.3                                       | 89.8                              | 82.1                              | 77.6                                   | 81.9                   | 93.4                              | 124               | 123                     |
|              |                       | _                                       |                                   |   |        |                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | -                                          | 8                                 | Н                                 | Н                                      | Н                      | Н                                 | Н                 | H                       |
|              | unipos                | /gu                                     |                                   |   |        |                       | 80.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80.8               | 82.1                                       | 84.2                              | 79.8                              | 72.8                                   | 78                     | 87.9                              | 121               | 118                     |
| <sub>s</sub> | silver (Filtered)     | ng/L                                    | 0.1                               |   |        |                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1               | <0.1                                       | <0.1                              | <0.1                              | <0.1                                   | <0.1                   | <0.1                              | <0.1              | <0.1                    |
| Metals       |                       |                                         |                                   |   |        |                       | ⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | Н                                          | Н                                 | Н                                 | Н                                      | Н                      | Н                                 | Н                 | Н                       |
|              | silver                | - µg/                                   | 0.1                               |   |        |                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1               | <0.1                                       | <0.1                              | <0.1                              | <0.1                                   | <0.1                   | <0.1                              | <0.1              | <0.1                    |
|              | (Filtered)            | μg/L                                    | 100                               |   |        |                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                | 0.2                                        | 0.2                               | 0.2                               | 0.2                                    | 0.2                    | 0.2                               | 0.2               | 0.2                     |
|              | uninalas              | ng/L                                    | 100                               |   |        |                       | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                | 0.3                                        | 0.2                               | 0.3                               | 0.3                                    | 0.2                    | 0.3                               | 0.2               | 0.2                     |
|              |                       |                                         | Π                                 |   |        |                       | ╙                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ш                  | Ш                                          | Щ                                 | Щ                                 | Ш                                      | Ш                      | Щ                                 | Ш                 | L                       |
|              | (Filtered)            | /8m                                     |                                   |   |        |                       | 3350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3550               | 3770                                       | 3740                              | 3750                              | 3950                                   | 3320                   | 3750                              | 4870              | 4960                    |
|              | muissetoq             | µg/L                                    |                                   |   |        |                       | 3400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3470               | 3880                                       | 3870                              | 3890                              | 3920                                   | 3350                   | 3840                              | 5010              | 4780                    |
|              | (naiani i) iavaii     | _                                       | 25                                |   |        |                       | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                  | 1.2                                        | П                                 | Н                                 | П                                      | H                      | Н                                 | Н                 | 0.7                     |
|              | nickel (Filtered)     | /Bri                                    | 2                                 |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  | Н                                          | 1.3                               | 1.8                               | 1.2                                    | Ë                      | 1.2                               | 0.7               | 0                       |
|              | nickel                | hg/L                                    | 25                                |   |        |                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.4                | 1.9                                        | 1.8                               | 1.9                               | 2                                      | 1.2                    | 1.7                               | 0.7               | 0.7                     |
|              | molybdenum (Filtered) | ng/L                                    | 40#1                              |   |        |                       | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.1                | 2.2                                        | 2.1                               | 2                                 | 2                                      | 2.1                    | 2.2                               | 2.1               | 2                       |
|              |                       | =                                       |                                   |   |        |                       | Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | Ë                                          | _                                 | H                                 | H                                      | Ë                      | -                                 | Ĥ                 | H                       |
|              | wojApqeunw            | hg/L                                    | 40,11                             |   |        |                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                  | 2.1                                        | 2.1                               | 7                                 | 2                                      | 7                      | 2.1                               | 7                 | 7                       |
|              | (naianii) (riiceicu)  | 3                                       | 0.2                               |   |        |                       | 50.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .05                | .05                                        | <0.05                             | <0.0>                             | .05                                    | .05                    | .05                               | <0.05             | 90                      |
|              | mercury (Filtered)    | H H                                     | 0.                                |   |        |                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.05              | <0.05                                      | 0>                                | 0>                                | <0.05                                  | <0.05                  | <0.05                             | Н                 | 0                       |
|              | метсигу               | mg/L                                    | 0.5                               |   |        |                       | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <0.05              | <0.05                                      | <0.05                             | <0.05                             | <0.05                                  | <0.05                  | <0.05                             | <0.05             | <0.05                   |
|              |                       |                                         | ı                                 |   |        |                       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | H                                          |                                   | H                                 | Н                                      | Н                      | Н                                 | Н                 | Н                       |
|              | manganese (Filtered)  | /gri                                    |                                   |   |        |                       | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.8               | 56.3                                       | 54.2                              | 63                                | 76.2                                   | 11.8                   | 39.8                              | 101               | 106                     |
|              | əsəueBuew             | g/L                                     |                                   |   |        |                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30                 | 73                                         | 1.3                               | 8.2                               | 8.9                                    | 8.1                    | 50.4                              | 136               | 125                     |
|              |                       | ======================================= |                                   |   |        |                       | 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н                  | Щ                                          | 7.                                | 88.2                              | 98.6                                   | 18.                    | Н                                 | Н                 | ⊢                       |
|              | (Filtered)            | mg/L                                    |                                   |   |        |                       | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.3               | 17.5                                       | 17.6                              | 16.7                              | 16.7                                   | 17.5                   | 18.1                              | 28.9              | 28.6                    |
|              | magnesium             | Н                                       |                                   |   |        |                       | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                  | Н                                          | Н                                 | Н                                 | Н                                      | Н                      | Н                                 | 6.                | ⊢                       |
|              | muisəngem             | mg/L                                    |                                   |   |        |                       | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.8               | 17.5                                       | 17.9                              | 17                                | 16.5                                   | 17.5                   | 18.4                              | 28.9              | 27.9                    |
|              | lead (Filtered)       | µg/L                                    | 5*1 **                            |   |        |                       | <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.1               | <0.1                                       | <0.1                              | <0.1                              | <0.1                                   | <0.1                   | <0.1                              | <0.1              | <0.1                    |
|              | (i -1.0) P 1          | ==                                      | 1,111.                            |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                  | ľ                                          | ~                                 | ľ                                 | Ľ                                      | Ű                      | V                                 | Ý                 | Ĭ                       |
|              |                       |                                         | -                                 |   |        |                       | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | 1.9                                        | 2.1                               | 2.1                               | 2.3                                    | 0.5                    | 1.2                               | 0.1               | <0.1                    |
|              | peəq                  | 1/8                                     | 5#1                               |   |        |                       | Ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ц                  | Ĺ                                          |                                   | Ľ                                 | Ľ                                      | ĭ                      | Ľ                                 | Ц                 | ľ                       |
|              | peəļ                  |                                         | 1#1 - 5#1 ** 1#1 - 5#1 **         | _ |        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                            |                                   |                                   |                                        |                        |                                   | П                 |                         |
|              | peəj                  | 1/8H                                    | 1*1 - 5*1                         |   | Γ      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ate                |                                            |                                   |                                   |                                        | Ш                      |                                   | '                 |                         |
|              | beal                  | T/BM                                    | 1*1 - 5*1                         |   |        | Je ID                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uplicate           | -65                                        |                                   |                                   | 36                                     |                        |                                   |                   |                         |
|              |                       | Hg/L                                    | 1*1 - 5*1                         |   |        | Sample ID             | /est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /est Duplicate     | entre - G5                                 | /est                              | /est                              | 3st - G6                               | dwo                    | dwo                               |                   |                         |
|              |                       | hg/L                                    | 1*1 - 5*1                         |   |        | Sample ID             | C-1 West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-1 West Duplicate | C-3 Centre - G5                            | C-3 West                          | C-4 West                          | C-5 East - G6                          | 3-1 Comp               | 5-4 Comp                          | 9-1               | 3-2                     |
|              |                       | 1/8H                                    | 1*1 - 5*1                         |   |        |                       | C-1 West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-1 West Duplicate | 30 C-3 Centre - G5                         | 30 C-3 West                       | 30  C-4 West                      | 30   C-5 East - G6                     | 30  G-1 Comp           | 30 G-4 Comp                       | 30 R-1            | 30 R-2                  |
|              |                       | 1/8rl                                   | 1*1 - 5*1                         |   |        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | -Sep-30   C-3 Centre - G5                  | -Sep-30   C-3 West                | -Sep-30  C-4 West                 | -Sep-30   C-5 East - G6                | -Sep-30   G-1 Comp     | -Sep-30   G-4 Comp                |                   | -Sep-30 R-2             |
|              |                       | 1/8H                                    | 141 - 541                         |   |        | Sample Date Sample ID | 2010 5.2. 30  C-1 West                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 2019-Sep-30   C-3 Centre - G5              | 2019-Sep-30   C-3 West            | 2019-Sep-30   C-4 West            | 2019-Sep-30   C-5 East - G6            | 2019-Sep-30  G-1 Comp  | 2019-Sep-30   G-4 Comp            | 2019-Sep-30 R-1   | 2019-Sep-30 R-2         |
|              |                       | 7/8H                                    | 1 <sup>#1</sup> - 5 <sup>#1</sup> |   | e e    | Sample Date           | 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oc-dac-croz        | 2019-Sep-30                                |                                   | П                                 | 2019-Sep-30  C-5 East - G6             | 2019-Sep-30            | П                                 |                   | 2019-Sep-30 R-2         |
|              |                       | 1/8rl                                   | 1*1 - 5*1                         |   | ample  | Sample Date           | 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oc-dac-croz        | 2019-Sep-30                                |                                   | П                                 | 2019-Sep-30                            | 2019-Sep-30            | П                                 | 2019-Sep-30       |                         |
|              |                       | 1/8rl                                   | 1*1_5*1                           |   | Sample |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oc-dac-croz        | C-3 Centre   2019-Sep-30   C-3 Centre - G5 | C-3 West   2019-Sep-30   C-3 West | C-4 West   2019-Sep-30   C-4 West | C-5 East   2019-Sep-30   C-5 East - G6 | p  2019-Sep-30         | G-4 Comp   2019-Sep-30   G-4 Comp |                   | R-2   2019-Sep-30   R-2 |
|              | CE WATER -            | 1/8rl                                   | 1 <sup>41</sup> . 5 <sup>41</sup> |   | Sample | Location Sample Date  | 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oc-dac-croz        | 2019-Sep-30                                |                                   | П                                 | 2019-Sep-30                            | 2019-Sep-30            | П                                 | 2019-Sep-30       |                         |
|              |                       | 1/8h                                    |                                   |   | Sample | Location Sample Date  | 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oc-dac-croz        | 2019-Sep-30                                |                                   | П                                 | 2019-Sep-30                            | 2019-Sep-30            | П                                 | R-1   2019-Sep-30 |                         |
|              |                       | 7/811                                   |                                   |   | Sample | Sample Date           | 0 1 West 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C 2010 C | oc-dac-croz        | C-3 Centre   2019-Sep-30                   |                                   | C-4 West                          | C-5 East   2019-Sep-30                 | G-1 Comp   2019-Sep-30 | G-4 Comp                          | R-1   2019-Sep-30 |                         |
|              |                       | 7/811                                   | ON PWQO 1*1 - 5*1                 |   | Sample | Location Sample Date  | 00 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oc-dac-croz        | 2019-Sep-30                                |                                   | П                                 | 2019-Sep-30                            | 2019-Sep-30            | П                                 | 2019-Sep-30       |                         |

mg/L - milligram per litre µg/L - microgram per litre

Standard/Guideline Descriptions

• ON PWQO:Ontario Provincial Water Quality Objectives, July 1994 (and updates)

Standard/Guideline Comments
#1:Interim PwQO
#2:Interim PwQO
#2:Interim PwQO
#2:Interim PwQO
#3:Criteria writh hardness.
#4:Criteria is for dissolved meruny.
#5:Guideline is pependent on waterbody hardness.
#6:Guideline is pependent on waterbody hardness.
#7:Suideline applies to dissolved concentration
\* Phi dependent
\* \* hardness de pendent

SLR Project No.: 209.40666.00000 January 2020

City of Hamilton Ecological Risk Assessment

| Ecological | phosphorus (Filtered) silicon silicon (Filtered)               | -   mg/L   mg/L   mg/L   CFL | 0.01 <sup>#2</sup> |                                              |
|------------|----------------------------------------------------------------|------------------------------|--------------------|----------------------------------------------|
| Inorganics | (N 28) estirtin bns estertin (N 24) (PO4-P) (PO4-P) surondsond | L   mg/L                     |                    |                                              |
| Inc        | kjeldahl nitrogen total<br>nitrate (as V)<br>nitrite (as V)    | L mg/L mg/L                  |                    | 90.0                                         |
|            | sinomms (N zs) muinomms bns sinomms                            | L   mg/L   n                 | 1                  | 0.019                                        |
|            | TABLE D-12: SURFACE WATER -NUTRIENTS & BACTERIA                |                              | ON PWQO            | CCME WQG Freshwater Aquatic Life (long term) |

|           | Sample     |                             |                               |         |       |      |      |       |      |       |       |       |      |      |     |
|-----------|------------|-----------------------------|-------------------------------|---------|-------|------|------|-------|------|-------|-------|-------|------|------|-----|
| Site Area | Location   | Sample Date                 | Sample ID                     |         |       |      |      |       |      |       |       |       |      |      |     |
| C-1       | 1 18/05    | 2010 508 20                 | C-1 West                      | 0.003   | 0.05  | 9.0  | 1.95 | 0.22  | 2.17 | 0.44  | 0.415 | 0.401 | 3.05 | 2.77 | 410 |
|           | ר-ד אתפאר  | 06-dac-6102                 | C-1 West Duplicate            | 0.0041  | 0.07  | 9.0  | 1.91 | 0.22  | 2.13 | 0.44  | 0.45  | 0.41  | 3.16 | 2.75 | 310 |
| C-3       | C-3 Centre | 2019-Sep-30                 | 2019-Sep-30   C-3 Centre - G5 | 0.009   | 0.62  | 1.1  | 1.77 | 0.11  | 1.88 | 0.37  | 0.371 | 0.26  | 3.52 | 2.78 | 170 |
|           | C-3 West   | 2019-Sep-30   C-3 West      | C-3 West                      | 0.0092  | 0.59  | 1.1  | 1.8  | 0.13  | 1.93 | 0.38  | 0.388 | 0.271 | 3.62 | 2.8  | 120 |
| C-4       | C-4 West   | 2019-Sep-30  C-4 West       | C-4 West                      | 0.0101  | 0.84  | 1.4  | 1.64 | 0.00  | 1.73 | 0.33  | 0.363 | 0.217 | 3.55 | 2.75 | 800 |
| C-5       | C-5 East   | 2019-Sep-30   C-5 East - G6 | C-5 East - G6                 | 0.0103  | 1.05  | 1.5  | 1.44 | 0.07  | 1.51 | 0.3   | 0.314 | 0.166 | 3.71 | 2.69 | 39( |
| G-1       | G-1 Comp   | 2019-Sep-30   G-1 Comp      | G-1 Comp                      | 0.0053  | 0.07  | 0.5  | 1.94 | 0.2   | 2.14 | 0.44  | 0.428 | 0.42  | 3.04 | 2.68 | 280 |
| 6-4       | G-4 Comp   | 2019-Sep-30  G-4 Comp       | G-4 Comp                      | 0.0065  | 0.4   | 1.2  | 2.07 | 0.28  | 2.35 | 0.43  | 0.425 | 0.343 | 3.26 | 2.79 | 190 |
| Reference | R-1        | 2019-Sep-30                 | R-1                           | 0.0007  | 0.03  | 0.3  | 0.33 | <0.05 | 0.33 | <0.05 | <0.01 | <0.01 | 3.97 | 3.8  | 10  |
|           | R-2        | 2019-Sep-30                 | R-2                           | <0.0004 | <0.01 | <0.2 | 0.31 | <0.05 | 0.31 | <0.05 | <0.01 | <0.01 | 3.79 | 4.41 | 30  |

88888888

CFU - colony-forming unit

mg/L - milligram per litre

# Standard/Guideline Descriptions

- ON PWQO: Ontario Provincial Water Quality Objectives, July 1994 (and updates)
- CCME WQG Freshwater Aquatic Life (long term): CCME Water Quality Guidelines for the Protection of Aquatic Life, Freshwater (Long-term)

## Standard/Guideline Comments

#1:The percentage of un-ionized ammonia in aqueous ammonia solution varies with temperature and pH.

#2:Interim PWQO. Criteria changes with site, most conservative value given

#3:100 E. coli per 100 mL. (based on a geometric mean of at least 5 samples)

SLR

SLR Project No.: 209.40666.00000

January 2020

|                                    |      | Inorgani         | cs       |
|------------------------------------|------|------------------|----------|
| TABLE D-13: POREWATER - INORGANICS | вор  | hydrogen sulfide | sulphide |
|                                    | mg/L | mg/L             | mg/L     |
| Reported Detection Limit           | 2    | 0.0019           | 0.0018   |
| ON PWQO                            |      | 0.002            |          |

| 011. 4    | Sample   | Well Screen | Commis Data | Compute ID        |     |       |       |
|-----------|----------|-------------|-------------|-------------------|-----|-------|-------|
| Site Area | Location | Depth (mbg) | Sample Date | Sample ID         |     |       |       |
| C-1       | C-1 West | -           | 2019-Oct-1  | C1 WEST-PW        | 8.5 | 0.028 | 0.027 |
| C-3       | C-3 West | -           | 2019-Oct-1  | C3 WEST-PW        | 9.5 | 0.069 | 0.065 |
| C-4       | C-4 West | -           | 2019-Oct-1  | C4 WEST-PW        | 31  | 0.22  | 0.21  |
| G-4       | G-4 Comp | -           | 2019-Oct-1  | G4-PW             | 14  | 0.089 | 0.084 |
| G-5       | G-5 Comp | -           | 2019-Oct-1  | C3 CENTRE / G5-PW | 6.4 | 0.027 | 0.025 |

### **Statistical Summary**

| 9   | 9                           | 9                                                                       |
|-----|-----------------------------|-------------------------------------------------------------------------|
| 7   | 9                           | 9                                                                       |
| <2  | 0.027                       | 0.025                                                                   |
| 6.4 | 0.027                       | 0.025                                                                   |
| 31  | 0.22                        | 0.21                                                                    |
| 31  | 0.22                        | 0.21                                                                    |
| 11  | 0.079                       | 0.075                                                                   |
| 8.5 | 0.069                       | 0.065                                                                   |
| 9.3 | 0.062                       | 0.059                                                                   |
| 0   | 9                           | 0                                                                       |
| 0   | 9                           | 0                                                                       |
|     | 7 <2 6.4 31 31 11 8.5 9.3 0 | 7 9 <2 0.027 6.4 0.027 31 0.22 31 0.22 11 0.079 8.5 0.069 9.3 0.062 0 9 |

### **Standard/Guideline Descriptions**

• ON PWQO:Ontario Provincial Water Quality Objectives, July 1994

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 204 of 406

### APPENDIX E BV Toxicity Report

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000



### SLR Consulting (Canada) Ltd.

### Statistical Analysis Benthic ID Contract 2019



### Prepared by:



• 140 Welland Avenue, Unit 9 • tel 905-641-3468

St. Catharines, ON Canada fax 905-641-5413

L2R 2N6 www.entomogen.ca

info@entomogen.ca



### TABLE OF CONTENTS

| INTRODUCTION                | 3  |
|-----------------------------|----|
| Definitions                 | 3  |
| Objectives                  | 4  |
| MATERIALS AND METHODS       |    |
| SOFTWARE                    | 4  |
| DATA ANALYSIS               |    |
| RESULTS AND INTERPRETATIONS | 7  |
| REFERENCES                  | 15 |
|                             |    |



### INTRODUCTION

### **DEFINITIONS**

**Morisita Horn Similarity Index:** A measure of how similar two communities are. The index ranges from 0 (no similarity) to 1 (perfect similarity). The index is calculated as follows:

$$C_D = rac{2\sum_{i=1}^S x_i y_i}{(D_x + D_y)XY}$$

where, xi is the number of times a taxa is represented in the total X of sample 1, yi is the number of times a taxa is represented in the total Y of sample 2, Dx and Dy are the Simpson's Diversity index for samples 1 and 2 respectively, and S is the number of unique taxa.

**Principal Components Analysis (PCA):** A method to summarize the variance in a data set. PCA provides an overview of linear relationships between the sites, taxa, and explanatory variables (Buttigieg and Ramette 2014).

**Rarefaction Curve:** A plot of the number of taxa as a function of the number of individual samples.

**Redundancy Analysis (RDA):** A statistical method to extract and summarise variation in a data set of variables that can be explained by another set of explanatory variables (Gotelli and Colwell, Ch. 4). In this report, the explanatory variables are the data from the sediment analysis.



RDA first involves multiple linear regression on the response variables on multiple variables and the fitted values are then subjected to a principal components analysis (PCA) (Buttigieg and Ramette 2014).

### **OBJECTIVES**

Entomogen Inc. was contracted by SLR Consulting (Canada) Ltd. to analyze benthic identification data. The objectives of this analysis are to (1) calculate the species richness, Shannon diversity, and Simpson diversity, (2) calculate the similarity between all possible pairwise combinations of sites, and (3) identify whether data from the sediment sampling have a strong influence on the explained variance in the data set.

### MATERIALS AND METHODS

### **SOFTWARE**

Data were recorded and input into Microsoft Excel 2010 and imported into the statistical computing program R version 6.1 (R Core Team 2019). Various analyses were performed with the following packages all downloaded directly form R: *iNEXT*, *vegan*, *stats*, and *SpadeR*. Microsoft PowerPoint was utilized to prepare the figures.

### DATA ANALYSIS

We calculated the Hilsenhoff biotic index (HBI), Simpons Diversity Index (1-D), Shannon-Weiner Diversity Index (H), Pielou's eveness (J'), % Chironomidae, and % Ephemeroptera, Plecoptera, Trichoptera (EPT). These equations are found in the Appendix.



We plotted the number of taxa as a function of the number of individuals for each site using the *iNEXT* package (Chao et al. 2016, Hsieh and Chao 2019). We calculated the abundance-based Hill numbers according to Chao et al. (2016) using the combined raw abundance data for all samples (A, B, C).

We calculated the Morisita-Horn indices using the *SpadeR* package using Hellinger-transformed abundance data (Chao et al. 2016). Hellinger transformation was computed with the *vegan* package (Oksanen et al. 2019). We further classified similarity indices as either very low (0.00 - 0.24), low (0.25 - 0.49), moderate (0.50 - 0.74), and high (0.75 - 1.00). These classifications determined the colour of the heat map.

Entomogen Inc. was provided sediment data from SLR Consulting (Canada) Ltd. A summary of these data are observed in Table 1.

Table 1. Summary of sediment grain size data.

| Explanatory Variables           | Units | Code       |
|---------------------------------|-------|------------|
| Misc. Inorganics                |       |            |
| Available (KCl) Total Kjeldahl  | mg/kg | Nitrogen   |
| Nitrogen                        | mg/kg |            |
| Nutrients                       |       |            |
| Available (KCl) Ammonia (N)     | mg/kg | Ammonia    |
| Available (NH4F) Phosphorus (P) | mg/kg | Phosphorus |
| Physical Properties             |       |            |
| % sand by hydrometer            | %     | Sand       |
| % silt by hydrometer            | %     | Silt       |
| Clay Content                    | %     | Clay       |
| Gravel                          | %     | Gravel     |





We set out to test the hypothesis that the explanatory variables had a significant effect on the variance of the data set. We performed a redundancy analyses with the explanatory variables serving as the constrained variables. Raw abundance data were first Hellinger-transformed using the *vegan* package in R (Oksanen et al. 2019). Sites G1 and R1 were omitted from this analysis because sediment data was not recorded. Gravel was removed from the analysis since it was less than 2% for each site. Available (NH4F) Phosphorus (P) for site C1 West was reported as less than 1%. For the statistical analysis we set this value to zero.



### RESULTS AND INTERPRETATIONS

We summarize the abundance-based hill numbers species richness (q = 0), Shannon diversity (q = 1) and Simpson diversity (q = 2) in Table 2. Site G4 was observed to have the highest species richness and site C5 the lowest (Table 2). Additional diversity measures and indices are presented in Table 3 (attached excel file).

Table 2. Summary of Abundance-Based Hill Numbers calculated using the *iNEXT* package.

| Site         | <b>Species Richness</b> | <b>Shannon Diversity</b> | Simpson Diversity |
|--------------|-------------------------|--------------------------|-------------------|
|              | $(\mathbf{q} = 0)$      | $(\mathbf{q}=1)$         | $(\mathbf{q}=2)$  |
| G1           | 8                       | $4.832 \pm 1.802$        | $3.206 \pm 1.237$ |
| C6 East/G7   | 14                      | $5.058 \pm 0.545$        | $3.437 \pm 0.372$ |
| C3 West      | 11                      | $3.859 \pm 0.612$        | $2.668 \pm 0.323$ |
| C4 West      | 13                      | $3.410 \pm 0.352$        | $2.327 \pm 0.186$ |
| G4           | 22                      | $5.526 \pm 0.821$        | $3.093 \pm 0.349$ |
| C5 East/G6   | 6                       | $2.522 \pm 0.193$        | $1.990 \pm 0.134$ |
| C1 West      | 12                      | $2.600 \pm 0.104$        | $2.183 \pm 0.043$ |
| R1           | 10                      | $3.718 \pm 0.393$        | $2.601 \pm 0.225$ |
| C3 Centre/G5 | 12                      | $4.828 \pm 0.594$        | $3.294 \pm 0.364$ |

Table 3. Classical diversity measures, indices, % Chironomidae, and % EPT for each sample.



The sample-based rarefaction curves are observed below in Figure 1. The *iNEXT* package interpolates the estimated species diversity given the number of sampled individuals. For example, if we sampled 250 taxa we would expect to identify ~ 20 taxa from site G4 but only 10 taxa from site C1 West. Site C1 West and C5 East/G6 are approaching their asymptote (Figure 1). Therefore, we would not expect to identify more than 6 taxa at site C5 East/G6 and 12 for C1 West. The other sites require more sampling to fully describe the diversity of the aquatic communities. This is noted by the upward trend in the extrapolation curves.

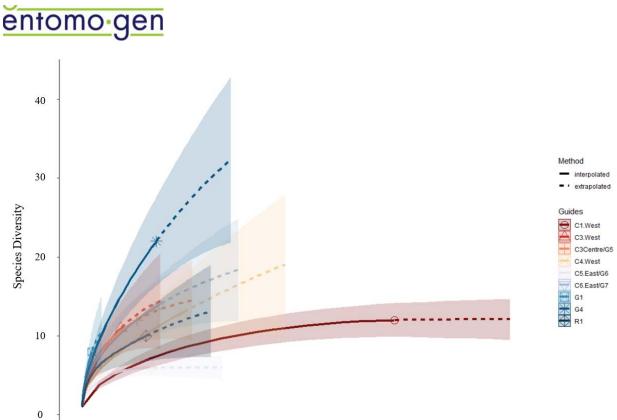



Figure 1. Sample based rarefaction curve. The shade regions represent the 95% CI.

500

Number of Individuals

750

1000

250



The Morisita Horn similarity indices and number of shared taxa for each pair of sites is presented in Figure 2. The top 3 similar site-pairs were (1) R1 & C6 East/G7, (2) R1 & C4 West, and (3) C4 West & C3 West. The top 3 dis-similar site-pairs were (1) C5 East/G6 & G1, (2) C4 West & G1, (3) and C6 East/G7 & G1 (Figure 2). G1 & C6 East/G7 and G1 and C5 East/G6 shared the least number of taxa (n=2) while C4 West & G4 shared the greatest (n=11) (Figure 2).

|        |              |    |               |         | Morisita I | Horn Simil | arity Indices |         |       |                 |
|--------|--------------|----|---------------|---------|------------|------------|---------------|---------|-------|-----------------|
|        |              | G1 | C6<br>East/G7 | C3 West | C4 West    | G4         | C5 East/G6    | C1 West | R1    | C3<br>Centre/G5 |
|        | G1           | X  | 0.113         | 0.137   | 0.104      | 0.288      | 0.071         | 0.205   | 0.124 | 0.697           |
| В      | C6 East/G7   | 2  | X             | 0.941   | 0.958      | 0.641      | 0.907         | 0.769   | 0.951 | 0.445           |
| Таха   | C3 West      | 3  | 6             | X       | 0.964      | 0.788      | 0.835         | 0.926   | 0.999 | 0.601           |
| pa.    | C4 West      | 4  | 8             | 6       | X          | 0.620      | 0.957         | 0.799   | 0.988 | 0.427           |
| Shared | G4           | 4  | 9             | 8       | 11         | X          | 0.422         | 0.942   | 0.714 | 0.895           |
| of S   | C5 East/G6   | 2  | 4             | 5       | 3          | 5          | X             | 0.611   | 0.891 | 0.235           |
|        | C1 West      | 5  | 4             | 6       | 6          | 9          | 4             | X       | 0.873 | 0.790           |
| Number | R1           | 3  | 6             | 5       | 7          | 8          | 3             | 5       | X     | 0.530           |
| ź      | C3 Centre/G5 | 5  | 5             | 5       | 8          | 8          | 3             | 6       | 7     | X               |

Number of Shared Taxa

10+

0.75 – 1.00

High

7 - 9

0.50 – 0.74

Moderate

3 - 6

0.25 – 0.49

Low

2

0.00 – 0.24

Very Low

Figure 2. Morisita Horn Similarity Indices and number of shared taxa among the sites.



We performed a redundancy analysis in R using the following model:

 $Model: rda(formula = Hellinger\_abundance\_data \sim Nitrogen + Ammonia + Phosphorus + Sand + Silt + Clay, data = data.slr)$ 

We performed a permutation test with 999 permutations. We observed that a significant proportion of the variance was explained by the model (F(6, 14) = 2.657, p < 0.001). We performed additional permutation tests on the explanatory variables and axes. A summary of all permutational tests conducted is observed in Table 4. 53.2% of the variance was described by the explanatory variables and 46.8% of the variance was not explained.



Table 4. Summary of permutational tests.

| Variable   | Variance | F statistic | P value  |
|------------|----------|-------------|----------|
| Model      | 0.136    | 2.657       | < 0.001* |
| Nitrogen   | 0.041    | 4.850       | 0.004*   |
| Ammonia    | 0.032    | 3.776       | 0.009*   |
| Phosphorus | 0.011    | 1.304       | 0.223    |
| Sand       | 0.028    | 3.270       | 0.017    |
| Silt       | 0.012    | 1.501       | 0.171    |
| Clay       | 0.011    | 1.241       | 0.244    |
| RDA1       | 0.081    | 9.6026      | 0.002*   |
| RDA2       | 0.018    | 2.098       | 0.560    |
| RDA3       | 0.014    | 1.623       | 0.694    |
| RDA4       | 0.011    | 1.363       | 0.704    |

<sup>\*</sup> Indicates significant results at the p = 0.05 level.

Trends in the variance of the data set are visualized in an ordination plot (Figure 3). The x-axis (RDA1) explained 60.2% of the total explained variance and the y-axis (RDA2) explained 13.2% of the total explained variance. The large cluster of taxa in the center of the plot means that these taxa are evenly dispersed among the sites. *Caecidotae* are strongly associated with sites G4, C4 West, and C3 Centre/G5. *Limnodrilus* are strongly associated with sites C5 East/G6 and C4 West. *Chironomus* are strongly associated with sites C3 West and C1 West. *Cryptochironomus* and Naididae: Tubificinae (immature without hairs) are associated with sites C6 East/G7 and C1 West.



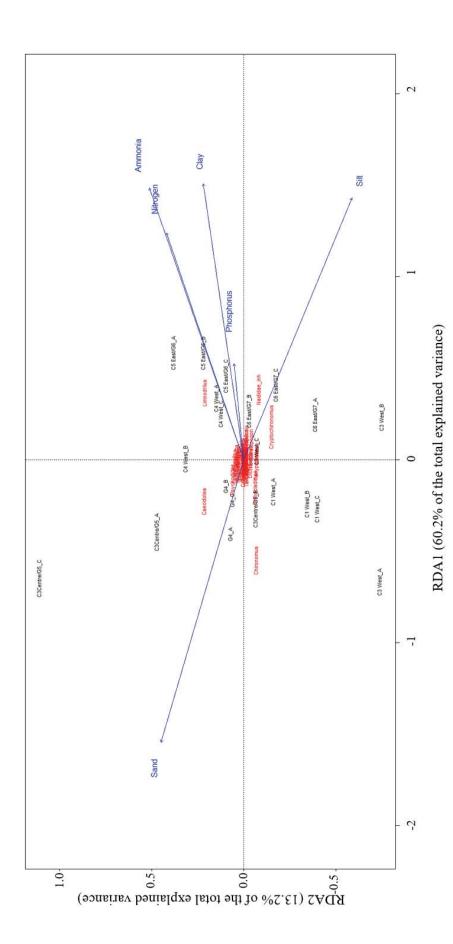



Figure 3. Ordination plot resulting from redundancy analysis (RDA).



Overall the model did not perform well. No single explanatory variable explained more than 5% of the variance (Table 4). Nitrogen, Ammonia, and the first axis were found to contribute to a significant proportion of the variance whereas all other variables were not significant (Table 4). We did not observe strong clustering among the sampling replicates (the A, B and C of each site). This indicates variation in the replicates (A, B, C) regarding both species diversity and abundance. We also observed a high proportion of variation not explained by the explanatory variables in our model (46.8%). These data together suggest that the sediment grain size data are not sufficient to describe variation in taxa at the sites and that other variables may be driving the system.

We performed an additional set of analyses where the A, B, C replicates were combined to yield the total abundance of each taxa. However, this data set did not yield a significant overall global permutation test result (p > 0.05).



### REFERENCES

Buttigieg PL, Ramette A (2014) A Guide to Statistical Analysis in Microbial Ecology: a community-focused, living review of multivariate data analyses. FEMS Microbiol Ecol. 90: 543–550.

Chao, A., K. H. Ma, T. C. Hsieh and Chun-Huo Chiu (2016). SpadeR: Species-Richness Prediction and Diversity Estimation with R. R package version 0.1.1.

Chao, A., Nicholas J. Gotelli, T. C. Hsieh, Elizabeth L. Sander, K. H. Ma, Robert K. Colwell, and Aaron M. Ellison 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:45-67.

Gotelli and Colwell, Ch. 4. Estimating Species Richness.

http://www.uvm.edu/~ngotelli/manuscriptpdfs/Chapter%204.pdf

Hsieh, T.C., K. H. Ma and Anne Chao. 2019 iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.19 URL: http://chao.stat.nthu.edu.tw/blog/software-download/.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, C. McGlinn, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs and H. Wagner (2019). vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan



R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria. URL <a href="https://www.R-project.org/">https://www.R-project.org/</a>

## **APPENDIX**

## Equations and Formulas

HBI= ∑(ni\*ai)/N
 n= number of specimens in taxa i
 a= tolerance value of taxa i
 N= total number of specimens in sample

Simpson's 1-D= 1-  $[\sum n(n-1)/N(N-1)]$ n= total number of individuals in each taxa N= total number of individuals in all taxa

Shannon's H= -∑ [(pi)\*ln(pi)] pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max
H'= Shannon's index value
H'max= the maximum value for H' if species
were perfectly distributed across the population
= In(S)
S= total richness

| Waterbody                              | G1         |          | 1      | C6 East/G7 | 1      | l      | C3 West  | 1      |        | C4 West  | l      | 1      | G4       | 1      |        |
|----------------------------------------|------------|----------|--------|------------|--------|--------|----------|--------|--------|----------|--------|--------|----------|--------|--------|
| Station                                |            | В        | С      | A A        | В      | С      | A A      | В      | С      | A A      | В      | С      | A A      | В      | С      |
| DATE                                   | 19.10.     | 19.10.   | 19.10. | 19.10.     | 19.10. | 19.10. | 19.10.   | 19.10. | 19.10. | 19.10.   | 19.10. | 19.10. | 19.10.   | 19.10. | 19.10. |
| % Subsampled                           | 100        | 100      | 100    | 100        | 100    | 100    | 100      | 100    | 100    | 100      | 100    | 100    | 100      | 100    | 100    |
| TAXA LIST                              |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
|                                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| ACARIFORMES:<br>HYDRYPHANTIDAE         |            |          |        |            |        | 1      |          |        |        |          |        |        |          |        |        |
| LIMNESIIDAE:                           |            |          |        | -          |        | ı      |          |        |        |          |        |        |          |        |        |
| Limnesia                               |            |          |        |            |        |        | 2        | 1      |        |          |        |        |          |        | 1      |
| Zamicate                               |            |          |        |            |        |        | _        |        |        |          |        |        |          |        |        |
| ANNELIDA:HIRUDINIDA                    |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| ERPOBDELLIDAE                          |            | 1        |        |            |        |        |          |        |        |          |        |        |          |        |        |
|                                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| ANNELIDA:OLIGOCHAETA                   |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| ENCHYTRAEIDAE:<br>Lumbricillus         |            |          | 1      |            |        |        |          |        |        |          |        |        |          |        |        |
| Lumbriciiius                           |            |          | ı      | -          |        |        |          |        |        |          |        |        |          |        |        |
| NAIDIDAE:NAIDINAE                      |            |          |        |            |        | 1      |          |        |        |          |        |        |          |        |        |
| Nais                                   |            |          |        |            |        | 1      |          |        |        |          |        | 2      | 1        |        |        |
|                                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| NAIDIDAE:TUBIFICINAE                   |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| Immature with hairs                    |            |          |        |            | 1      |        |          |        |        | 1        |        |        |          |        |        |
| Immature without hairs                 | <b> </b>   | _        |        | 10         | 27     | 48     | <b> </b> | 34     | 13     | 47       | 9      | 86     | 11       | 16     | 8      |
| Limnodrilus                            | -          | 2        |        | 6          | 8      | 9      | -        |        | 2      | 10       | 8      | 11     | 2        | 9      | 2      |
| CRUSTACEA:ISOPODA:                     | -          |          |        |            |        |        | -        |        |        |          |        |        | -        |        |        |
| ASELLIDAE:                             |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| Caecidotea                             | 6          | 2        | 4      |            |        |        |          |        |        |          |        | 1      | 1        |        | 2      |
|                                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| INSECTA:                               |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| DIPTERA:                               |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| CERATOPOGONIDAE:                       |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| Ceratopogon                            |            |          |        | 2          | 1      | 2      |          | 1      |        | 1        | 1      | 2      | 1        |        |        |
| Culicoides CHIRONOMIDAE: CHIRONOMINAE: |            |          |        | -          | 3      |        |          | 1      |        |          | 1      |        | 2        |        |        |
| Chironomus                             |            |          | 3      | 9          | 11     | 8      | 14       | 4      | 9      | 9        | 15     | 17     | 42       | 31     | 15     |
| Cladopelma                             |            |          | - 3    | 9          | 1      | 1      | 14       | -      |        | 1        | 2      | 2      | 2        | 2      | 2      |
| Cladotanytarsus                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        | 1      |
| Cryptochironomus                       |            |          |        | 15         | 3      | 5      | 1        | 1      |        |          |        |        |          |        | 2      |
| Dicrotendipes                          |            |          |        |            |        |        |          | 1      |        |          |        |        |          |        |        |
| Glyptotendipes                         |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| Microtendipes pedellus                 |            |          |        |            | 1      |        |          |        |        |          |        |        |          |        |        |
| Phaenopsectra<br>Polypedilum           |            |          |        |            |        |        |          |        |        |          |        |        | 1        |        | 1      |
| Tanytarsus                             |            |          |        | 1          |        |        |          |        |        |          |        |        | '        |        |        |
| Tribelos                               |            |          |        |            |        |        |          | 1      |        |          |        |        |          |        |        |
| CHIRONOMIDAE: ORTHOCLADIINAE:          |            |          | 2      |            |        |        | 2        | 1      |        |          |        | 1      | 1        | 2      | 2      |
| Cricotopus bicinctus                   |            |          |        |            |        |        |          |        |        |          |        |        | 1        |        |        |
| Eukiefferiella                         |            |          |        |            |        |        |          |        |        |          |        | 1      |          |        | 1      |
| Orthocladius                           |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| CHIRONOMIDAE: TANYPODINAE:             |            |          |        | -          |        |        | 1        |        |        |          |        |        |          |        |        |
| Procladius<br>Tanypus neopunctipennis  | -          |          | -      | 1          |        |        | <b> </b> |        |        | -        |        |        | 1        |        |        |
| Tanypus neopuncupennis Tanypus         | 1          |          |        |            |        | 2      | 1        |        |        |          |        |        | 1        | 1      |        |
| CULICIDAE:                             | 1          |          |        |            |        | _      | 1        |        |        |          |        |        | 1        | · ·    |        |
| Culex pipiens                          | l          |          |        |            |        |        | l        |        |        |          |        | 1      | l        |        |        |
| PSYCHODIDAE:                           |            |          |        |            |        |        |          |        |        |          |        |        | 1        |        |        |
| Psychoda                               |            |          |        |            |        |        |          |        |        |          |        |        | 1        | 1      |        |
| TIPULIDAE:                             | <b> </b>   |          |        |            |        |        | <b> </b> |        |        |          |        |        | <b> </b> |        | 1      |
| Limonia                                | -          |          | -      | 1          | -      |        | -        | -      |        |          |        | -      | -        | -      | 1      |
| MOLLUSCA: BIVALVIA:                    | -          |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| PISIDIIDAE:                            | l          | 1        |        | 1          |        |        | l        |        |        |          |        |        | l        |        |        |
|                                        | <b>i</b>   | <u> </u> |        |            |        |        | l        |        |        |          |        |        | l        |        |        |
| MOLLUSCA:GASTROPODA:                   | İ          |          |        |            |        |        | l        |        |        |          |        |        | l        |        |        |
| PHYSIDAE:                              |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
| Physella                               | 1          |          |        |            |        |        |          |        |        |          |        |        |          |        |        |
|                                        |            |          |        |            |        |        |          |        |        | <b>.</b> |        |        | <b>.</b> |        |        |
| NEMATODA:                              | -          |          |        |            |        |        | <b> </b> |        |        | 1        |        |        | 1        |        |        |
| Total Taxa                             | 2          | 4        | 4      | 6          | 9      | 10     | 5        | 9      | 3      | 7        | 6      | 10     | 15       | 7      | 12     |
| Total Specimens                        | 7          | 6        | 10     | 43         | 56     | 78     | 20       | 45     | 24     | 70       | 36     | 124    | 69       | 62     | 38     |
| Total opcomions                        | _ <i>'</i> | 0        | 10     | 70         | 50     | , 0    |          | 40     | 2-7    | ,,,      | - 50   | 124    | 33       | UZ     | - 50   |
|                                        |            |          |        |            |        |        |          |        |        |          |        |        |          |        |        |

| Station DATE  BACARIFORMES: HYDRYPHANTIDAE LIMNESIIDAE: Limnesia  ANNELIDA:HIRUDINIDA ERPOBDELLIDAE  ANNELIDA:CLIGOCHAETA ENCHYTRAEIDAE: Lumbricillas  NAIDIDAE:NAIDINAE  NAIDIDAE:NAIDINAE  NAIDIDAE:TUBIFICINAE Immature with hairs Immature with hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE:  CREATOPOGONIDAE: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Chironomus Chironomus Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 East/G6<br>A<br>19.10.<br>100 | B<br>19.10.<br>100 | C<br>19.10.<br>100 | C1 West<br>A<br>19.10.<br>100                    | B<br>19.10.<br>100 | C<br>19.10.<br>100 | A<br>19.10.<br>100 | B<br>19.10.<br>100 | C<br>19.10.<br>100 | A<br>19.10.<br>100                               | B<br>19.10.<br>100 | C<br>19.10.<br>100 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|--------------------|--------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------|--------------------|--------------------|
| % Subsampled TAXA LIST  ACARIFORMES: HYDRYPHANTIDAE LIMNESIIDAE: Limnesia  ANNELIDA:HIRUDINIDA ERPOBDELLIDAE  ANNELIDA:OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Chironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33                               | 100                | 100                | 19.10.                                           | 19.10.             | 19.10.             |                    |                    |                    | 19.10.                                           |                    |                    |
| TAXA LIST  ACARIFORMES: HYDRYPHANTIDAE LIMNESIDAE: Limnesia  ANNELIDA:HIRUDINIDA ERPOBDELLIDAE  ANNELIDA:OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                               |                    |                    | 100                                              | 100                | 100                | 100                | 100                | 100                | 100                                              | 100                | 100                |
| ACARIFORMES: HYDRYPHANTIDAE LIMNESIIDAE: Limnesia  ANNELIDA:HIRUDINIDA ERPOBDELLIDAE  ANNELIDA:CIGOCHAETA ENCHYPAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE Nais  NAIDIDAE:NAIDINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: INSECTA: CERATOPOGONIDAE: Ceratopogon Cultronomus CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Chironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 1                  | 1                  |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| HYDRYPHANTIDAE LIMNESIIDAE: LIMNESIIDAE: LIMNESIIDAE: LIMNESIIDAE ANNELIDA:HIRUDINIDA ERPOBDELLIDAE ANNELIDA:OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus NAIDIDAE:NAIDINAE Nais NAIDIDAE:TUBIFICINAE Immature with uthairs Immature without hairs Immature without hairs Limnodrilus CRUSTAGEA:ISOPODA: ASELLIDAE: Caecidotea INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | 1                  | 1                  |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| LIMNESIDAE: Limnesia  ANNELIDA: HIRUDINIDA  ERPOBDELLIDAE  ANNELIDA: OLIGOCHAETA  ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE: NAIDINAE  Nais  NAIDIDAE: NAIDINAE  Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA: ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: INSECTA: CERATOPOGONIDAE: Ceratopogon Cultronomus CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Chironomus Chironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 1                  | 1                  |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Limnesia  ANNELIDA: HIRUDINIDA ERPOBDELLIDAE  ANNELIDA: OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  Lambricillus  NAIDIDAE: NAIDINAE NAIS  NAIDIDAE: TUBIFICINAE Immature without hairs Limnodrilus  CRUSTACEA: ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogen Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 1                  | 1                  |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| ANNELIDA: HIRUDINIDA ERPOBDELLIDAE  ANNELIDA: OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE: NAIDINAE Nais  NAIDIDAE: TUBIFICINAE Immature with hairs Immature with hairs Limnodrilus  CRUSTACEA: ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 1                  | 1                  |                                                  |                    |                    |                    |                    | l i                |                                                  |                    |                    |
| ERPOBDELLIDAE  ANNELIDA: OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| ERPOBDELLIDAE  ANNELIDA: OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| ANNELIDA: OLIGOCHAETA ENCHYTRAEIDAE: Lumbricillus NAIDIDAE: NAIDINAE Nais NAIDIDAE: TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus CRUSTACEA: ISOPODA: ASELLIDAE: Caecidotea INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogen Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                    |                    |                                                  |                    |                    |                    |                    | <b></b>            |                                                  |                    | 1                  |
| ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE  Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    | -                  |
| ENCHYTRAEIDAE: Lumbricillus  NAIDIDAE:NAIDINAE  Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Limmodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| NAIDIDAE:NAIDINAE NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Immature without hairs Immodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopagen Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Immodritus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chadopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                    |                    | 2                                                |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Nais  NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Immodritus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Chadopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| NAIDIDAE:TUBIFICINAE Immature with hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Immature without hairs Imma |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Immature with hairs Immature without hairs Limnodrilus CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogen Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                    |                    |                                                  |                    |                    |                    | 1                  | <b>—</b>           |                                                  |                    |                    |
| Immature with hairs Immature without hairs Limnodrilus CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea INSECTA: INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogen Cultcoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | 1                  |                    | <del>                                     </del> |                    |                    |                    |                    |                    | <del>                                     </del> |                    |                    |
| Immature without hairs Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                    |                    |                                                  |                    |                    |                    | 5                  | 2                  |                                                  | 1                  |                    |
| Limnodrilus  CRUSTACEA:ISOPODA: ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogen Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | 60                 | 11                 | 164                                              | 82                 | 47                 | 1                  | 56                 | 25                 | 6                                                | 6                  | 1                  |
| ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 15                 | 6                  | 3                                                | 5                  | 3                  |                    | 7                  | 2                  | 3                                                | 1                  | 1                  |
| ASELLIDAE: Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Caecidotea  INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  | $\vdash$           | <b></b>            |
| INSECTA: DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 1                  |                    | -                                                |                    |                    |                    |                    | <b>—</b>           | _                                                |                    |                    |
| DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    | 5                                                |                    |                    | 1                  |                    | <b>—</b>           | 3                                                |                    | 29                 |
| DIPTERA: CERATOPOGONIDAE: Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| CERATOPOGONIDAE: Ceratopogon Culticoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Ceratopogon Culicoides CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| CHIRONOMIDAE: CHIRONOMINAE: Chironomus Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Chironomus<br>Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Cladopelma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    |                    |                    | 1                  | 1                  |                                                  | 1                  |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                | 1                  | 2                  | 156                                              | 134                | 88                 | 14                 | 11                 | 11                 | 24                                               | 15                 | 20                 |
| Cladatametamen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                    |                    |                                                  |                    |                    |                    |                    | <b>—</b>           |                                                  |                    |                    |
| Cladotanytarsus<br>Cryptochironomus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                |                    | 1                  |                                                  | 1                  | 1                  |                    |                    | <b>—</b>           |                                                  |                    |                    |
| Dicrotendipes Dicrotendipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                    | '                  |                                                  |                    |                    | 1                  | 2                  | 3                  |                                                  |                    |                    |
| Glyptotendipes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    | 1                  |
| Microtendipes pedellus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Phaenopsectra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Polypedilum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                    |                    |                                                  |                    |                    |                    | 1                  |                    |                                                  |                    |                    |
| Tanytarsus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    | 1                  |                    |                    |                    |                                                  |                    |                    |
| Tribelos CHIRONOMIDAE: ORTHOCLADIINAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                    |                    |                                                  | 4                  | 2                  |                    |                    | <b>—</b>           |                                                  |                    | 4                  |
| Cricotopus bicinctus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                    |                    |                                                  | 4                  |                    |                    |                    |                    |                                                  |                    | 4                  |
| Eukiefferiella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    | 2                  |
| Orthocladius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    | 2                  |
| CHIRONOMIDAE: TANYPODINAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    | 2                  |                    |                    |                    |                                                  |                    |                    |
| Procladius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Tanypus neopunctipennis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                    |                    | <b> </b>                                         |                    |                    |                    |                    | <b></b>            |                                                  |                    |                    |
| Tanypus CULICIDAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    | <b> </b>                                         |                    |                    |                    |                    | <b></b>            |                                                  |                    | -                  |
| Culex pipiens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |                    |                    | <b> </b>                                         |                    |                    |                    |                    | <b>—</b>           | <b> </b>                                         |                    | -                  |
| PSYCHODIDAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                    |                    | 1                                                | 1                  | 1                  | 1                  |                    |                    | 1                                                |                    | 3                  |
| Psychoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                    |                    | <del>-</del> -                                   | 1                  | 1                  |                    |                    |                    | <u> </u>                                         |                    | _ Ŭ                |
| TIPULIDAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Limonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| MOLLUSCA:BIVALVIA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                    |                    | <b> </b>                                         |                    |                    |                    |                    | <b></b>            |                                                  |                    |                    |
| PISIDIIDAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  | 1                  |                    | -                                                |                    |                    |                    |                    | <b>—</b>           |                                                  |                    |                    |
| MOLLUSCA:GASTROPODA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                    |                    | <b> </b>                                         |                    |                    |                    |                    | <b>—</b>           | <b> </b>                                         |                    | -                  |
| PHYSIDAE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| Physella                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |                    |                    | 1                                                |                    |                    |                    |                    |                    |                                                  |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                    |                    |                                                  |                    |                    |                    |                    |                    |                                                  |                    |                    |
| NEMATODA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                    |                    | 1                                                | 1                  |                    |                    |                    |                    |                                                  |                    |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                    |                    | ı                                                |                    |                    |                    |                    |                    | 1 '                                              |                    | 1                  |
| Total Taxa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  | -                  | -                  |                                                  | -                  |                    | _                  |                    |                    | <u> </u>                                         |                    |                    |
| Total Specimens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>61                          | 4<br>77            | 5<br>21            | 7<br>332                                         | 8<br>229           | 9<br>146           | 5<br>18            | 8<br>84            | 6<br>44            | 5<br>37                                          | 5<br>24            | 10<br>64           |

|                                                     | Tolerance           |
|-----------------------------------------------------|---------------------|
|                                                     | Values<br>(for HBI) |
| TAXA LIST                                           |                     |
| ACARIFORMES:                                        |                     |
| HYDRYPHANTIDAE                                      | 6                   |
| LIMNESIIDAE:  Limnesia                              | 6                   |
| Limnesia                                            | 0                   |
| ANNELIDA:HIRUDINIDA                                 |                     |
| ERPOBDELLIDAE                                       | 8                   |
| ANNELIDA:OLIGOCHAETA                                |                     |
| ENCHYTRAEIDAE:                                      |                     |
| Lumbricillus                                        | 10                  |
| NAIDIDAE:NAIDINAE                                   | 8                   |
| Nais                                                | 8                   |
| NAIDIDAE TUBIEIOINAE                                |                     |
| NAIDIDAE:TUBIFICINAE<br>Immature with hairs         | 10                  |
| Immature without hairs                              | 10                  |
| Limnodrilus                                         | 10                  |
| CRUSTACEA:ISOPODA:                                  |                     |
| ASELLIDAE:                                          |                     |
| Caecidotea                                          | 8                   |
| INSECTA:                                            |                     |
| DIPTERA:                                            |                     |
| CERATOPOGONIDAE:                                    |                     |
| Ceratopogon                                         | 6                   |
| Culicoides CHIRONOMIDAE: CHIRONOMINAE               | 10<br>6             |
| Chironomus                                          | 10                  |
| Cladopelma                                          | 9                   |
| Cladotanytarsus<br>Cryptochironomus                 | 5<br>8              |
| Dicrotendipes                                       | 8                   |
| Glyptotendipes                                      | 10                  |
| Microtendipes pedellus                              | 6<br>7              |
| Phaenopsectra<br>Polypedilum                        | 6                   |
| Tanytarsus                                          | 6                   |
| Tribelos                                            | 7                   |
| CHIRONOMIDAE: ORTHOCLADIINA<br>Cricotopus bicinctus | 5<br>7              |
| Eukiefferiella                                      | 4                   |
| Orthocladius                                        | 6                   |
| CHIRONOMIDAE: TANYPODINAE:  Procladius              | 7<br>9              |
| Tanypus neopunctipennis                             | 10                  |
| Tanypus                                             | 10                  |
| CULICIDAE:  Culex pipiens                           | 8                   |
| PSYCHODIDAE:                                        | 10                  |
| Psychoda                                            | 10                  |
| TIPULIDAE: Limonia                                  | 6                   |
| Limonia                                             | U                   |
| MOLLUSCA:BIVALVIA:                                  |                     |
| PISIDIIDAE:                                         | 6                   |
| MOLLUSCA:GASTROPODA:                                |                     |
| PHYSIDAE:                                           |                     |
| Physella                                            | 8                   |
| NEMATODA:                                           | 8                   |
|                                                     |                     |

| Summary Statistics                 | 61    |       | •      | C6 East/G7 |        |        | C3 West |        |        |
|------------------------------------|-------|-------|--------|------------|--------|--------|---------|--------|--------|
| Index                              | <     | В     | O      | ∢          | В      | S      | <       | В      | S      |
| Hilsenhoff biotic index (HBI)      | 8.000 | 8.333 | 8.200  | 9.116      | 9.518  | 9.654  | 8.850   | 9.467  | 10.000 |
| Species Richness (S)               | 2     | 4     | 4      | 9          | 6      | 10     | 2       | 6      | 3      |
| Simpson's Diversity Index (1-D)    | 0.286 | 0.867 | 0.778  | 0.776      | 0.714  | 0.599  | 0.511   | 0.427  | 0.583  |
| Shannon-Wiener Diversity index (H) | 0.410 | 1.330 | 1.280  | 1.539      | 1.551  | 1.369  | 1.010   | 1.019  | 0.907  |
| Pielou's evenness (J')             | 0.592 | 0.959 | 0.923  | 0.859      | 0.706  | 0.595  | 0.628   | 0.464  | 0.826  |
| % Chironomidae                     | 0.000 | 0.000 | 50.000 | 58.140     | 33.929 | 20.513 | 90.000  | 20.000 | 37.500 |
| % EPT                              | 0.000 | 0.000 | 0.000  | 0.000      | 0.000  | 0.000  | 0.000   | 0.000  | 0.000  |

**HBI**= ∑(ni\*ai)/N

n= number of specimens in taxa i

a= tolerance value of taxa i

N= total number of specimens in sample

Simpson's 1-D= 1-  $[\sum n(n-1)/N(N-1)]$ 

n= total number of individuals in each taxa N= total number of individuals in all taxa

Shannon's H= -∑ [(pi)\*ln(pi)]

pi= number of individuals of taxon i/ total # of organisms

**J'**= H'/H'max

H'= Shannon's index value

H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

| Summary Statistics                 | C4 West |        | J      | <b>G</b> 4 |        | O      | C5 East/G6 |       |        |
|------------------------------------|---------|--------|--------|------------|--------|--------|------------|-------|--------|
| Index                              | ∢       | В      | O      | ∢          | В      | O      | <          | В     | O      |
| Hilsenhoff biotic index (HBI)      | 006.6   | 9.722  | 99.766 | 9.522      | 9.806  | 8.895  | 9.934      | 9.948 | 9.714  |
| Species Richness (S)               | 7       | 9      | 10     | 15         | 7      | 12     | 2          | 4     | 2      |
| Simpson's Diversity Index (1-D)    | 0.519   | 0.730  | 0.495  | 0.608      | 0.671  | 0.804  | 0.584      | 0.359 | 0.662  |
| Shannon-Wiener Diversity index (H) | 1.052   | 1.405  | 1.096  | 1.516      | 1.331  | 1.948  | 1.036      | 0.626 | 1.211  |
| Pielou's evenness (J')             | 0.541   | 0.784  | 0.476  | 0.560      | 0.684  | 0.784  | 0.644      | 0.451 | 0.752  |
| % Chironomidae                     | 14.286  | 50.000 | 16.935 | 72.464     | 58.065 | 63.158 | 6.557      | 1.299 | 14.286 |
| % EPT                              | 0.000   | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000      | 0.000 | 0.000  |

**HBI**= ∑(ni\*ai)/N

n= number of specimens in taxa i

a= tolerance value of taxa i

N= total number of specimens in sample

Simpson's 1-D= 1-  $[\sum n(n-1)/N(N-1)]$ 

n= total number of individuals in each taxa N= total number of individuals in all taxa

Shannon's H= -\(\Sigma\)[(pi)\*ln(pi)]

pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max

H'= Shannon's index value

H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

| Summary Statistics                 | C1 West |       |        | ፳      |        | O      | C3 Centre/G5 |        |        |
|------------------------------------|---------|-------|--------|--------|--------|--------|--------------|--------|--------|
| преж                               | A       | В     | O      | 4      | В      | O      | <            | В      | S      |
| Hilsenhoff biotic index (HBI)      | 9.964   | 9.895 | 9.849  | 9.778  | 9.833  | 9.773  | 9.838        | 9.833  | 8.438  |
| Species Richness (S)               | 7       | 80    | 6      | 2      | 8      | 9      | 2            | 2      | 10     |
| Simpson's Diversity Index (1-D)    | 0.537   | 0.531 | 0.536  | 0.405  | 0.533  | 0.620  | 0.554        | 0.565  | 0.699  |
| Shannon-Wiener Diversity index (H) | 0.875   | 0.930 | 1.004  | 0.838  | 1.159  | 1.218  | 1.081        | 1.038  | 1.515  |
| Pielou's evenness (J')             | 0.450   | 0.447 | 0.457  | 0.521  | 0.557  | 0.680  | 0.672        | 0.645  | 0.658  |
| % Chironomidae                     | 46.988  | 60.09 | 64.384 | 83.333 | 17.857 | 34.091 | 64.865       | 66.667 | 45.313 |
| % EPT                              | 0.000   | 0.000 | 0.000  | 0.000  | 0.000  | 0.000  | 0.000        | 0.000  | 0.000  |

**HBI**= ∑(ni\*ai)/N

n= number of specimens in taxa i

a= tolerance value of taxa i

N= total number of specimens in sample

Simpson's 1-D= 1-  $[\sum n(n-1)/N(N-1)]$ 

n= total number of individuals in each taxa N= total number of individuals in all taxa

Shannon's H= -\(\Sigma\) [(pi)\*ln(pi)]

pi= number of individuals of taxon i/ total # of organisms

J'= H'/H'max

H'= Shannon's index value

H'max= the maximum value for H' if species were perfectly distributed across the population = ln(S) S= total richness

| က             |
|---------------|
| Ψ_            |
| 0             |
| $\overline{}$ |
| Φ             |
| D             |
| g             |
|               |

| Site                               |       | <u>G1</u> |        | Ö      | C6 East/G7 |        |        | C3 West |        |
|------------------------------------|-------|-----------|--------|--------|------------|--------|--------|---------|--------|
| Index                              | А     | В         | C      | A      | В          | C      | A      | В       | C      |
| Hilsenhoff biotic index (HBI)      | 8.000 | 8.333     | 8.200  | 9.116  | 9.518      | 9.654  | 8.850  | 9.467   | 10.000 |
| Species Richness (S)               | 2     | 4         | 4      | 9      | 6          | 10     | 5      | 6       | 3      |
| Simpson's Diversity Index (1-D)    | 0.286 | 0.867     | 0.778  | 0.776  | 0.714      | 0.599  | 0.511  | 0.427   | 0.583  |
| Shannon-Wiener Diversity index (H) | 0.410 | 1.330     | 1.280  | 1.539  | 1.551      | 1.369  | 1.010  | 1.019   | 0.907  |
| Pielou's evenness (J')             | 0.592 | 0.959     | 0.923  | 0.859  | 0.706      | 0.595  | 0.628  | 0.464   | 0.826  |
| % Chironomidae                     | 0.000 | 0.000     | 50.000 | 58.140 | 33.929     | 20.513 | 90.000 | 20.000  | 37.500 |
| % EPT                              | 0.000 | 0.000     | 0.000  | 0.000  | 0.000      | 0.000  | 0.000  | 0.000   | 0.000  |

| c | ว |
|---|---|
| ÷ |   |
| ç |   |
|   | ט |
|   | 2 |

| Site                               | )      | C4 West |        |        | G4     |        | C     | CS East/G6 |        |
|------------------------------------|--------|---------|--------|--------|--------|--------|-------|------------|--------|
| Index                              | A      | В       | С      | А      | В      | С      | A     | В          | С      |
| Hilsenhoff biotic index (HBI)      | 006.6  | 9.722   | 992.6  | 9.522  | 908.6  | 8.895  | 9.934 | 9.948      | 9.714  |
| Species Richness (S)               | 7      | 9       | 10     | 15     | 7      | 12     | 2     | 4          | 5      |
| Simpson's Diversity Index (1-D)    | 0.519  | 0.730   | 0.495  | 0.608  | 0.671  | 0.804  | 0.584 | 0.359      | 0.662  |
| Shannon-Wiener Diversity index (H) | 1.052  | 1.405   | 1.096  | 1.516  | 1.331  | 1.948  | 1.036 | 0.626      | 1.211  |
| Pielou's evenness (J')             | 0.541  | 0.784   | 0.476  | 0.560  | 0.684  | 0.784  | 0.644 | 0.451      | 0.752  |
| % Chironomidae                     | 14.286 | 50.000  | 16.935 | 72.464 | 58.065 | 63.158 | 6.557 | 1.299      | 14.286 |
| % EPT                              | 0.000  | 0.000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000 | 0.000      | 0.000  |

| ď  | ) |
|----|---|
| ÷  |   |
| ζ, | ٦ |
| 1  |   |
| ζ  | 7 |
| 2  | Ū |

| Site                               | •      | C1 West |        |        | R1     |        | C3     | C3 Centre/G5 |        |
|------------------------------------|--------|---------|--------|--------|--------|--------|--------|--------------|--------|
| Index                              | A      | В       | С      | A      | В      | С      | A      | В            | С      |
| Hilsenhoff biotic index (HBI)      | 9.964  | 9.895   | 9.849  | 8.778  | 9.833  | 9.773  | 9.838  | 9.833        | 8.438  |
| Species Richness (S)               | _      | ∞       | 6      | S      | ~      | 9      | 5      | 5            | 10     |
| Simpson's Diversity Index (1-D)    | 0.537  | 0.531   | 0.536  | 0.405  | 0.533  | 0.620  | 0.554  | 0.565        | 0.699  |
| Shannon-Wiener Diversity index (H) | 0.875  | 0.930   | 1.004  | 0.838  | 1.159  | 1.218  | 1.081  | 1.038        | 1.515  |
| Pielou's evenness (J')             | 0.450  | 0.447   | 0.457  | 0.521  | 0.557  | 0.680  | 0.672  | 0.645        | 0.658  |
| % Chironomidae                     | 46.988 | 669.09  | 64.384 | 83.333 | 17.857 | 34.091 | 64.865 | 299.99       | 45.313 |
| % EPT                              | 0.000  | 0.000   | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000        | 0.000  |



www.bvlabs.com

BUREAU VERITAS LABORATORIES 4606 Canada Way Burnaby, BC, V5G 1K5 Office 604 734 7276 Toll Free 800 665 8566 Fax 604 731 2386

# FRESHWATER SEDIMENT TOXICITY TESTING USING CHIRONOMUS DILUTUS AND HYALELLA AZTECA

Prepared for: SLR Consulting Ltd # 200 – 1620 West 8<sup>th</sup> Ave

Vancouver, BC Canada, V6J 1V4

Prepared by:

Ecotoxicology Group Bureau Veritas Laboratories

Job #: B985653 November 2019

## **EXECUTIVE SUMMARY**

Freshwater sediment samples were collected between October 1<sup>st</sup>, 2019 and October 2<sup>nd</sup>, 2019 for testing. The samples arrived at Bureau Veritas Laboratories, in good condition, on October 3<sup>rd</sup>, 2019.

The following freshwater sediment toxicity tests were conducted on the samples; a 10 day survival and growth test with the freshwater midge, *Chironomus dilutus*, and a 14 day survival and growth test with the freshwater amphipod, *Hyalella azteca*.

All samples were initiated within their respective hold times with the *Chironomus* test ending on October 28, 2019 and the *Hyalella* test ending on October 31, 2019. The sample results were statistically assessed against the laboratory negative control for both the *Chironomus* test and the *Hyalella* test.

Details regarding the test results, methods, test conditions, organism acclimation, and quality control measures are summarised within the report. All tabulated data, raw data, and associated supporting documents are located within the report appendices.

Each test was considered valid as survival and growth in the negative control(s) met the validity criteria outlined in the associated reference methods.

BUREAU VERITAS LABORATORIES

i

# TABLE OF CONTENTS

| 1 | SEDI | MENT DESCRIPTION                                   | 1   |
|---|------|----------------------------------------------------|-----|
|   | 1.1  | Sample Information                                 | 1   |
|   | 1.2  | Negative Control Sediment                          | 1   |
|   | 1.3  | Porewater Characterization                         | . 2 |
| 2 | 10 D | AY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST     | 3   |
|   | 2.1  | Test Methods                                       | .3  |
|   | 2.2  | Organism Information                               | .4  |
|   |      | 2.2.1 Organism Acclimation and Holding Information |     |
|   |      | 2.2.2 Organism Health                              | . 4 |
|   |      | 2.2.3 Organism Age                                 |     |
|   | 2.3  | Test Conditions                                    | .4  |
|   | 2.4  | Quality Assurance/Quality Control                  | .6  |
|   |      | 2.4.1 Reference Toxicant Results                   | (   |
|   |      | 2.4.2 Test Validity Criteria                       | 6   |
|   | 2.5  | Results                                            | .6  |
|   |      | 2.5.1 Data Analysis                                | . 7 |
|   | 2.6  | Deviations and Observations                        | . 7 |
| 3 | 14 D | AY <i>HYALELLA AZTECA</i> SURVIVAL AND GROWTH TEST | 8   |
|   | 3.1  | Test Methods                                       | 8   |
|   | 3.2  | Organism Information                               |     |
|   |      | 3.2.1 Acclimation and Holding Information          | ί   |
|   |      | 3.2.2 Organism Health                              | . ( |
|   |      | 3.2.3 Organism Age                                 | . ( |
|   | 3.3  | Test Conditions                                    |     |
|   | 3.4  | Quality Assurance/Quality Control                  | 10  |
|   |      | 3.4.1 Reference Toxicant Results                   | 1(  |
|   |      | 3.4.2 Test Validity Criteria                       | 1 1 |

**BUREAU VERITAS** LABORATORIES

|   | 3.5  | Results                                            | 11    |
|---|------|----------------------------------------------------|-------|
|   |      | 3.5.1 Data Analysis                                | 12    |
|   | 3.6  | Deviations and Observations                        | 12    |
| 4 | REFE | RENCES                                             | 13    |
| Α |      | SAMPLE INFORMATION                                 | ••••• |
| В |      | 10-DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST |       |
| С |      | 14-DAY HYALELLA AZTECA SURVIVAL AND GROWTH TEST    |       |

# LIST OF TABLES

| Table 1-1 | Physiochemical Characterization of Yaquina Bay Beach Sand   | 1    |
|-----------|-------------------------------------------------------------|------|
| Table 2-1 | Test Conditions for the 10-day Chironomus dilutus Test      | 5    |
| Table 2-2 | Reference Toxicant Test Result for Chironomus dilutus       | 6    |
| Table 2-3 | Results for Mean Chironomus dilutus Survival and Growth     | 7    |
| Table 3-1 | Test Conditions for the 14-day Hyalella azteca Test         | . 10 |
| Table 3-2 | Reference Toxicant Test Results for Hyalella azteca         | . 11 |
| Table 3-3 | Results for Mean <i>Hvalella azteca</i> Survival and Growth | . 12 |

## **SECTION**

#### 1 SEDIMENT DESCRIPTION

#### 1.1 Sample Information

Freshwater sediment samples were collected between October 1st, 2019 and October 2nd, 2019 for testing. The samples arrived at Bureau Veritas Laboratories, in good condition, on October 3<sup>rd</sup>, 2019.

Samples were collected separately for grain size, total organic carbon content, and moisture content. The data for these analyses were sent to the client directly and are not part of this report.

All tests were initiated within their respective hold times. Sample information, including sample descriptions, porewater ammonia analyses, and water quality data are located in Appendix A. Upon opening the sample containers, a description of each sample was recorded ("Sediment Sample Descriptions" in Appendix A).

Prior to testing, each sample was homogenized, using a stainless steel spoon. Any headspace in the sample container was purged with nitrogen gas prior to re-sealing it in order to prevent oxidation of the sediment during storage. When not in use, the sediments were stored in the dark at 4 ± 2°C.

#### 1.2 **Negative Control Sediment**

The control sediment (negative control) for the toxicity tests was collected from Yaquina Bay, Newport, Oregon, by staff of Northwestern Aquatic Sciences. This beach sand has been used as a negative control in previous studies within our laboratory, and has been found to be non-toxic to a variety of organisms. It was wet sieved through 500 µm stainless steel mesh and thoroughly washed with the appropriate control water before use in the tests.

Table 1-1 Physiochemical Characterization of Yaquina Bay Beach Sand

| Total Organic Carbon | Moisture Content (%) | Sand | Silt | Clay |
|----------------------|----------------------|------|------|------|
| (mg/kg)              |                      | (%)  | (%)  | (%)  |
| <500                 | 17                   | 96   | 2.1  | 2.0  |

#### 1.3 Porewater Characterization

On Day -1 of Chironomus testing, a seventh replicate of each sample was prepared, filled with reconstituted control water and aerated overnight, along with the test vessels. The following morning, the overlying water in the seventh replicate of each sample was decanted and aliquots of the sediment were distributed into 500 mL polycarbonate bottles. Nitrogen gas was placed over the sediments prior to centrifuging for 20 minutes at ~5,000 rpm. The resulting porewater was carefully decanted and analysed for ammonia, pH, and temperature.

Analysis of ammonia in porewater was performed at the Bureau Veritas Laboratories Inorganic Water Laboratory. The total ammonia concentrations as N (mg/L) in the samples, was measured under basic conditions using the Berthelot reaction in the presence of EDTA. A sample was treated sequentially until a blue indophenol complex formed, which could then be measured photometrically at 660 nm.

Results of the ammonia, temperature, and pH in porewater analyses for each of the test samples are available in Appendix A.

## **SECTION**

## 2 10 DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST

## 2.1 Test Methods

The survival and growth of *Chironomus dilutus* larvae, when exposed to whole sediment samples for 10 days, was assessed according to the Bureau Veritas Laboratories Standard Operating Procedure: *Chironomus dilutus* 10-Day Survival and Growth Test (BBY2SOP-00010), which is based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment Using the Larvae of Freshwater Midges (*Chironomus tentans* or *Chironomus riparius*) (EPS 1/RM/32).

One day prior to test initiation, the samples were homogenized, and a 100 mL aliquot was distributed into a 375 mL labelled test vessel including 2 additional replicates used for water quality and porewater measurements. Reconstituted moderately hard water was then slowly added to the vessel by pouring a stream of water onto a Plexiglas baffle to minimize disturbing the sediment layer. The test vessels were then randomized on the bench top, and airlines and lids were fitted to each test vessel.

The following day, aliquots of overlying water were removed from the test vessels for initial overlying water chemistry. The sixth replicate test vessel was used for water quality measurements for the duration of the test and the seventh replicate was decanted and centrifuged to extract porewater for ammonia, temperature, and pH measurements (see Section 1.3). To initiate the test, ten larval chironomids were randomly selected from their holding containers and directly seeded into the test vessels.

During the test, daily observations and aeration checks were performed. Temperature and dissolved oxygen measurements were taken three times per week in the test vessels designated for water quality measurements. Test vessels were also fed 3.75 mL Tetramin<sup>TM</sup> flakes, prepared as a 4 g dry solids/L slurry, on the days water quality measurements were taken.

At test termination, the contents of each test vessel were sieved through a 500  $\mu$ m sieve in order to retrieve the live larval midges. The number of larvae found was recorded along with any other observations made. The organisms were then placed into pre-weighed aluminum weigh boats that were subsequently placed into a ~60°C drying oven for >24 hours. Missing chironomids were presumed to have died and decomposed during the test. Any larval midges that had reached the pupal or adult stage of development were excluded from the dry weight analysis, if applicable.

#### 2.2 Organism Information

#### 2.2.1 Organism Acclimation and Holding Information

One batch of laboratory-reared Chironomus dilutus larvae was received from Aquatic Biosystems on October 18, 2019. The midge larvae were shipped in 1L plastic containers filled with unbleached paper towels and overlying moderately hard water. Prior to shipping, the headspace in each container was filled with oxygen gas of a sufficient concentration to maintain adequate saturation levels in the shipping water. They were shipped directly for overnight delivery to Bureau Veritas Laboratories and arrived without incident.

Upon arrival at Bureau Veritas Laboratories, the water quality of the shipping water was measured and compared to the test conditions. Any moribund or deceased larvae were removed and recorded on the acclimation sheet, if applicable (Appendix B).

The chironomid larvae were not fed during the holding period as they were used the same day. Historically at Bureau Veritas Laboratories, it has been determined that little to no acclimation is required as long as the shipping, testing, and supplier laboratory conditions are similar.

#### 2.2.2 Organism Health

The mortality rate during shipping did not exceed 10% overall. Bench sheets with the receiving water quality and observations of the number dead or inactive larvae are available in Appendix B.

#### 2.2.3 Organism Age

At test initiation, 20 representative larvae were euthanized and their head capsule widths were measured to the nearest 0.01 mm, using an inverted microscope outfitted with an ocular micrometer. The average head capsule width of the organism batch was determined to be within the 0.33 - 0.45 mm range (see Table 2-1).

#### 2.3 **Test Conditions**

See Table 2-1 for a detailed list of the test conditions. All bench sheets used to record raw data are available in Appendix B.

Table 2-1 Test Conditions for the 10-day *Chironomus dilutus* Test

| Parameter                                | Conditions and Methods                                                                                                                                                                                                  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Type and Duration                   | 10 Day, Static (non-renewal)                                                                                                                                                                                            |  |  |
| Temperature                              | Average daily temperature 23 $\pm$ 1 °C; instantaneous temperature 23 $\pm$ 3 °C.                                                                                                                                       |  |  |
| Photoperiod and Light<br>Intensity       | 16 hours light: 8 hours dark. Wide spectrum cool white fluorescent lights used to provide 602-818 lux.                                                                                                                  |  |  |
| Aeration                                 | < 100 bubbles/ minute. Clean oil-free air supplied to each test vessel via micro-bore plastic tubing.                                                                                                                   |  |  |
| Test Chamber                             | 375 mL glass jars with plastic lids containing small opening for airline tubing.                                                                                                                                        |  |  |
| Sediment Volume                          | 100 mL of each homogenized field replicate (3-4 cm depth).                                                                                                                                                              |  |  |
| Porewater Water Quality                  | Temperature, pH, and ammonia.                                                                                                                                                                                           |  |  |
| Overlying Water Source and Volume        | 175 mL ( $\sim$ 5-6 cm depth); Reconstituted Moderately Hard Water; warmed to 23 $\pm$ 1°C and aerated >24 hours before use.                                                                                            |  |  |
| Overlying Water Quality                  | Temperature, pH, dissolved oxygen, conductance, hardness, alkalinity, and ammonia measurements on Day 0 and Day 10 of the test. Temperature and dissolved oxygen were also measured three times weekly during the test. |  |  |
| Replicates                               | 5 replicates per sample, plus 2 additional replicates for water quality measurements and porewater analyses.                                                                                                            |  |  |
| Control Sediment (Negative Control)      | Yaquina Bay Beach Sand, rinsed with control water and sieved through a 500 µm stainless steel mesh.                                                                                                                     |  |  |
| Reference Sediment                       | None                                                                                                                                                                                                                    |  |  |
| Feeding                                  | 3.75 mL Tetramin <sup>™</sup> flakes as slurry (4g dry solids/L) per vessel, three times weekly.                                                                                                                        |  |  |
| Organisms/ replicate                     | 10                                                                                                                                                                                                                      |  |  |
| Organism Source                          | Aquatic Biosystems, Fort Collins, Colorado.                                                                                                                                                                             |  |  |
| Mortality during acclimation             | 0.0%                                                                                                                                                                                                                    |  |  |
| Mean Head capsule width and organism age | 0.44 ± 0.10 mm; 3 <sup>rd</sup> instar larval midges                                                                                                                                                                    |  |  |
| Endpoints                                | Mean Survival and Mean Dry Weight                                                                                                                                                                                       |  |  |
| Test Validity Criteria                   | ≥70% mean survival in the negative controls.<br>>0.6 mg mean dry weight in the negative controls.                                                                                                                       |  |  |
| Statistical Software                     | CETIS <sup>™</sup> version 1.9.2.4. Tidepool Scientific Software (Copyright 2009-2016).                                                                                                                                 |  |  |

#### 2.4 Quality Assurance/Quality Control

#### 2.4.1 Reference Toxicant Results

A 96 hour reference toxicant test, or positive control test, was conducted alongside the sediment test. The water-only test, using copper sulphate (CuSO<sub>4</sub>), was initiated to aid in the assessment of organism sensitivity and the precision of the results. The resulting LC50 was then compared in a control chart against the results of previous tests. Table 2-2 summarises the result of the reference toxicant test.

The calculated LC50 for the reference toxicant test was within two standard deviations (95%) range of the historic mean LC50. This supports the assumption that the sensitivity of the organism batch was comparable to batches previously test in this laboratory.

A reference toxicant test is only one of the tools used to assess the health of an organism. Natural variability accounts for the spread in reference toxicant LC50s. The method used in preparing the control charts was based on from "Ecotoxicology Control Charting" (COR2WI-00002).

Table 2-2 Reference Toxicant Test Result for Chironomus dilutus

| Organism<br>Batch | Test<br>Date | LC50 with<br>95% Confidence Limits<br>(mg/L Cu <sup>2+</sup> ) | Previous Mean<br>with 2SD<br>(mg/L Cu <sup>2+</sup> ) |
|-------------------|--------------|----------------------------------------------------------------|-------------------------------------------------------|
| AB191118          | 2019 Oct 18  | 0.71 (0.47, 0.98)                                              | 0.70 (0.38, 1.3)                                      |

#### 2.4.2 **Test Validity Criteria**

The test is considered to be acceptable if the mean percent survival in the negative control is ≥70%, and the mean dry weight is ≥ 0.6 mg. The mean percent survival of the negative controls was 96%, and the mean dry weight was 1.67 mg.

#### 2.5 Results

Total survival and dry weights in each replicate, and mean ± standard deviation (SD) in the control and test sediments are listed in the "Chironomus dilutus Survival and Growth Test -Survival of Larvae" and the "Chironomid Survival and Growth Test - Dry Weights of Larvae" data sheets, respectively. A summary of the test results is presented in Table 2-3.

Total ammonia concentrations, pH, temperature, dissolved oxygen, hardness, conductance, and alkalinity measurements of the overlying water at test initiation (Day 0) and completion (Day 10) are available in Appendix B.

## 2.5.1 Data Analysis

The survival and dry weight data for both the samples and the negative control were entered into the statistical program "Comprehensive Environmental Toxicity Information System" (CETIS™, 2009-2016). When determining the appropriate comparison tests to use, the Environment Canada "Guidance Document on Statistical Methods for Environmental Toxicity Tests" (EPS 1/RM/46, 2005) was followed.

See the CETIS™ Analytical Reports for information on the specific tests used for the mean survival and dry weight comparisons. Analyses between the negative control and samples were conducted as one-tailed comparisons. All analyses were done with the decision level for determining statistical significance set to 0.05 (p value <0.05). No significant difference between the samples versus the negative control was observed.

Table 2-3 Results for Mean Chironomus dilutus Survival and Growth

| Sample ID        | Mean Survival<br>± SD (%) | Mean Dry Weight<br>± SD (mg) |
|------------------|---------------------------|------------------------------|
| Negative Control | 96 ± 5                    | 1.67 ± 0.21                  |
| C6 East / G7     | 94 ± 13                   | $2.45 \pm 0.26$              |
| C5 East / G6     | 90 ± 10                   | $2.34 \pm 0.37$              |
| C4 West          | 78 ± 8                    | 1.94 ± 0.36                  |
| C3 West          | 94 ± 9                    | 2.47 ± 0.29                  |
| C3 Centre / G5   | 86 ± 11                   | 2.53 ± 0.26                  |
| G4               | 84 ± 5                    | $2.49 \pm 0.34$              |
| C1 West          | 80 ± 23                   | 2.47 ± 0.38                  |

SD = Standard Deviation

## 2.6 Deviations and Observations

At test end, one pupated organism was found in replicate C of sample C6 East/G7, replicates A, B & D for sample C3 Centre/G5, and replicate E of sample G4. Pupated organisms were not included in mean dry weight analysis. A strong odour was noted in all replicates of the C4 West sample.

## **SECTION**

## 3 14 DAY HYALELLA AZTECA SURVIVAL AND GROWTH TEST

## 3.1 Test Methods

The survival and growth of the freshwater amphipod, *Hyalella azteca*, when exposed to whole sediment samples for 14 days, were assessed according to the Bureau Veritas Laboratories SOP: *Hyalella azteca* 14-Day Survival and Growth Test (BBY2SOP-00011), which is based on the Environment Canada Biological Test Method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod *Hyalella azteca* (EPS 1/RM/33).

One day prior to test initiation, the samples were homogenised, and a 100 mL aliquot was distributed into a 375 mL labelled test vessel. A 100 mL portion of the sample was distributed into a sixth replicate test vessel used for water quality measurements. Reconstituted moderately hard water was then slowly added to the vessel by pouring a stream of water onto a Plexiglas baffle to minimize disturbing the sediment layer. The test vessels were then randomized on the bench top, and airlines and lids were fitted to each test vessel.

The following day, aliquots of overlying water were removed from the test vessels for initial overlying water chemistry. The sixth replicate test vessel was used for water quality measurements for the duration of the test. To initiate the test, the amphipods were removed from their holding containers and ten *Hyalella* were randomly selected and placed into plastic cups containing control water. Once enough organisms were collected to start the test, they were seeded into the test vessels.

During the test, daily observations and aeration checks were performed. Temperature and dissolved oxygen measurements were taken three times per week in the test vessel designated for water quality measurements. Test vessels were also fed 340 µL per replicate of a ground Tetramin™ flake slurry (4 g dry solids/L) and 0.75 mL YCT (yeast, alfalfa flakes, and digested trout chow) daily.

At test termination, the contents of each test vessel were examined, a small portion at a time, in a glass pan on a light table. The live amphipods were collected and counted. The amphipods were then placed into aluminum foil weigh boats that were subsequently placed into a ~60°C drying oven for >24 hours. Missing amphipods were presumed to have died and decomposed during the test.

## 3.2.1 Acclimation and Holding Information

One batch of *Hyalella azteca* was received from Aquatic Biosystems, Fort Collins, Colorado, USA, on October 15, 2019. Laboratory reared juvenile amphipods were packed into 1L plastic containers, filled with moderately hard water and a few plastic mesh squares. Prior to shipping, the headspace in each container was filled with oxygen gas of a sufficient concentration to maintain adequate saturation levels in the shipping water. They were shipped directly for overnight delivery to Bureau Veritas Laboratories and arrived without incident.

Upon arrival at Bureau Veritas Laboratories, the container contents were carefully poured into glass culture dishes. Gentle aeration was supplied to each culture pan. An aliquot of shipping water from each container was set aside for water quality. It was then ensured that temperature adjustments to the holding water of the amphipods did not exceed 3°C per day.

The organisms were held at Bureau Veritas Laboratories for four days before the test was initiated. The amphipods were fed YCT and Tetramin<sup>™</sup> slurry at organism arrival and daily before test initiation. Datasheets containing the water quality measurements, with observations of number dead or inactive amphipods during the holding period, are available in Appendix C.

## 3.2.2 Organism Health

The average mortality rate in the culture did not exceed 10%.

## 3.2.3 Organism Age

At test initiation, the amphipods were 6-8 days old.

## 3.3 Test Conditions

See Table 3-1 for a detailed list of the test conditions. All bench sheets and raw data are available in Appendix C.

Table 3-1 Test Conditions for the 14-day *Hyalella azteca* Test

| Parameter                          | Conditions and Methods                                                                                                                                                                                                  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Type and Duration             | 14 Day; Static (non-renewal)                                                                                                                                                                                            |  |
| Temperature                        | Average daily temperature 23 ± 1 °C; instantaneous temperature 23 ± 3 °C.                                                                                                                                               |  |
| Photoperiod and Light<br>Intensity | 16 hours light: 8 hours dark. Wide spectrum cool white fluorescent lights used to provide 602-818 lux.                                                                                                                  |  |
| Aeration                           | < 100 bubbles/ minute. Clean oil-free air supplied to each test vessel via micro-bore plastic tubing.                                                                                                                   |  |
| Test Chamber                       | 375 mL glass jars with plastic lids containing small opening for airline tubing.                                                                                                                                        |  |
| Sediment Volume                    | 100 mL of each homogenized field replicate (3-4 cm depth).                                                                                                                                                              |  |
| Overlying Water Volume and Source  | 175 mL (~5-6 cm depth); Reconstituted water; SAM5 recipe (Borgmann, 1996). Temperature adjusted and aerated >24h before use.                                                                                            |  |
| Overlying Water Quality            | Temperature, pH, dissolved oxygen, conductance, hardness, alkalinity, and ammonia measurements on Day 0 and Day 14 of the test. Temperature and dissolved oxygen were also measured three times weekly during the test. |  |
| Feeding                            | 340 µL of a ground Tetramin™ flake slurry (4g dry solids/mL) and 0.75 mL YCT per vessel, daily.                                                                                                                         |  |
| Replicates                         | 5 replicates per sample, plus an additional replicate for water quality measurements.                                                                                                                                   |  |
| Control Sediment                   | Yaquina Bay Beach Sand, rinsed with control water and sieved through a 500 µm stainless steel mesh.                                                                                                                     |  |
| Reference Sediment                 | None                                                                                                                                                                                                                    |  |
| Organisms/ Replicate               | 10                                                                                                                                                                                                                      |  |
| Organism Source and age            | Aquatic Biosystems; amphipods aged 6-8 days at test start.                                                                                                                                                              |  |
| Mortality during acclimation       | 0.0%                                                                                                                                                                                                                    |  |
| Endpoints                          | Mean Survival and Mean Dry weight                                                                                                                                                                                       |  |
| Test Validity Criteria             | ≥ 80% mean survival in the controls.<br>≥0.1 mg/amphipod in the controls.                                                                                                                                               |  |
| Statistical Software               | CETIS™ version 1.9.2.4. Tidepool Scientific Software (Copyright 2009-2016).                                                                                                                                             |  |

# 3.4 Quality Assurance/Quality Control

# 3.4.1 Reference Toxicant Results

A 96 hour reference toxicant test, or positive control test, was conducted alongside the sediment test. The water-only test, using copper sulphate (CuSO<sub>4</sub>) was initiated to aid in the assessment of organism sensitivity and the precision of the results. The reference toxicant test LC50 result was

then compared in a control chart against the results of previous tests. Table 3-2 summarises the result of the reference toxicant test.

The calculated LC50 for the reference toxicant test was within two standard deviations (95%) range of the historic mean LC50. This supports the assumption that the sensitivity of the organism batch was comparable to batches previously test in this laboratory.

A reference toxicant test is only one of the tools used to assess the health of an organism. Natural variability accounts for the spread in reference toxicant LC50s. The method used in preparing the control charts was based on from "Ecotoxicology Control Charting" (COR2WI-00002).

Table 3-2 Reference Toxicant Test Results for Hyalella azteca

| Organism Batch | Test Date   | LC50 with 95%<br>Confidence Limits<br>(µg/L Cu <sup>2+</sup> ) | Previous Mean with<br>2SD<br>(μg/L Cu <sup>2+</sup> ) |
|----------------|-------------|----------------------------------------------------------------|-------------------------------------------------------|
| AB191015       | 2019 Oct 17 | 224 (185, 271)                                                 | 228 (144, 361)                                        |

#### 3.4.2 **Test Validity Criteria**

Survival data in the negative control is considered to be acceptable if the mean percent survival in the negative control is ≥80%, and the mean dry weight in the negative control is ≥0.1 mg/amphipod. The mean percent survival of the negative control was 98% and the mean dry weight was 0.1 mg/amphipod.

#### 3.5 Results

Total survival and dry weights in each replicate, and mean ± standard deviation (SD) in the control and test sediments are listed in the "Hyalella azteca Survival and Growth Test-Survival" and "Hyalella azteca Survival and Growth Test- Dry Weights" data sheets, respectively. A summary of the results is located in Table 3-3.

Total ammonia concentrations, pH, temperature, dissolved oxygen, hardness, conductance, and alkalinity measurements in the overlying water at test initiation (Day 0) and completion (Day 14) are available in Appendix C.

## 3.5.1 Data Analysis

The survival and dry weight data for both the samples and the negative control were entered into the statistical program "Comprehensive Environmental Toxicity Information System" (CETIS™, 2009-2016). When determining the appropriate comparison tests to use, the Environment Canada "Guidance Document on Statistical Methods for Environmental Toxicity Tests" (EPS 1/RM/46, 2005) was followed.

See the CETIS™ Analytical Reports for information on the specific tests used for the mean survival and dry weight comparisons. Analyses between the control and samples were conducted as one-tailed comparisons. All analyses were done with the decision level for determining statistical significance set to 0.05 (p value <0.05).

Table 3-3 Results for Mean Hyalella azteca Survival and Growth

| Sample ID        | Mean Survival<br>± SD (%) | Mean Dry Weight<br>± SD (mg) |
|------------------|---------------------------|------------------------------|
| Negative Control | 98 ± 4                    | 0.14 ± 0.02                  |
| C6 East / G7     | 60 ± 19*                  | 0.04 ± 0.02*                 |
| C5 East / G6     | 38 ± 23*                  | 0.04 ± 0.02*                 |
| C4 West          | 2 ± 4*                    | $0.06 \pm N/A^*$             |
| C3 West          | 48 ± 13*                  | 0.03 ± 0.01*                 |
| C3 Centre / G5   | 86 ± 15                   | 0.08 ± 0.01*                 |
| G4               | 64 ± 17*                  | 0.05 ± 0.03*                 |
| C1 West          | 90 ± 17                   | 0.10 ± 0.02*                 |

SD = Standard Deviation N/A = Not Applicable

## 3.6 Deviations and Observations

Strong hydrocarbon order was noticed in all replicates of sample C4 West at test end.

<sup>\*</sup>Indicates a statistically significant decrease in the sample relative to negative control.

## SECTION

#### 4 **REFERENCES**

- Borgmann, U. 1996. Systematic Analysis of Aqueous Ion Requirements of Hyalella azteca: A Standard Artificial Medium Including the Essential Bromide Ion. Archives of Environmental Contamination and Toxicology. 30: 356-363.
- Bureau Veritas Laboratories SOP for the Chironomus dilutus 10-Day Survival and Growth Test. BBY2SOP-00010.
- Bureau Veritas Laboratories SOP for the Hyalella azteca 14-Day Survival and Growth Test. BBY2SOP-00011.
- Bureau Veritas Laboratories WI for Ecotoxicology Control Charting. COR2 WI-00002.
- Comprehensive Environmental Toxicity Information System (CETIS™). 2009-2016. Tidepool Scientific, LLC, Version 1.9.2.4
- Environment Canada. 1997. Biological Test method: Test for Survival and Growth in Sediment of Freshwater Midges (Chironomus tentans or Chironomus riparius). Environmental Protection Publications, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/32.
- Environment Canada. 2005. Guidance Document on Statistical Methods for Environmental Toxicity Tests. Environmental Protection Publications. Conservation and Protection. Ottawa, Ontario. EPS 1/RM/46.
- Environment Canada. 2013. Biological Test method: Test for Survival and Growth in Sediment and Water Using the Freshwater Amphipod Hyalella azteca. Environmental Protection Publications, Conservation and Protection. Ottawa, Ontario. EPS 1/RM/33.

Appendix "A" to Report PW19008(g)/LS19004(g) Page 248 of 406

Freshwater Sediment Toxicity Testing using Chironomus dilutus and Hyalella azteca

**APPENDICES** 

BUREAU VERITAS LABORATORIES

| Appendix "A" to Report PW19008(g)/LS19004(g | () |
|---------------------------------------------|----|
| Page 249 of 400                             | 6  |

| Freshwater Sediment Toxici | y Testing using Chirol | nomus dilutus and Hyalella azteca |
|----------------------------|------------------------|-----------------------------------|
|----------------------------|------------------------|-----------------------------------|

| _        | _                | _                |   |      | _ |     |
|----------|------------------|------------------|---|------|---|-----|
| Λ        | п                | $\overline{}$    | _ | NI   |   | 1 🗸 |
| $\Delta$ | $\boldsymbol{-}$ | $\boldsymbol{-}$ | _ | IVI. |   | ı x |
|          |                  |                  |   |      |   |     |

A SAMPLE INFORMATION

BUREAU VERITAS LABORATORIES

W Xam. Laber BBY2FCD-00136/3

SEDIMENT SAMPLE DESCRIPTIONS

ECOTOXICOLOGY

|                       |                                                            |                     |            | 7          |            |          | 5           |           | 5         | Ţ               | 3         | یا                 | 2         | Y         | 5       | )              |    |    |      |       |                  |
|-----------------------|------------------------------------------------------------|---------------------|------------|------------|------------|----------|-------------|-----------|-----------|-----------------|-----------|--------------------|-----------|-----------|---------|----------------|----|----|------|-------|------------------|
|                       | Analyst                                                    | R                   |            | MIM        | 2          |          | Z           |           | 15×15     |                 | N.S       |                    | 32        |           | 4       |                |    |    |      |       |                  |
|                       | Additional<br>Comments/Observations                        | 000                 |            | 16         | 30         |          | 44          |           | nla       | Adrecarbon-like |           | Hydrocarban - Like | plu       |           | M       |                | \  |    |      | 2     |                  |
| B985653               | Odour                                                      | Hydrocanbon<br>Like |            | ocaract 6  | 2/2        | Hudon    | CONDON      |           | MOZO      | Hydraco         |           | Hydroca            |           |           | nla     | ,              |    |    |      |       |                  |
| Job #:                | Endemic<br>Animals<br>Removed                              | MA                  |            |            | nla        |          | 44          |           | ηb        |                 | ž         |                    | Ma        |           | d,      | 7              |    | \  | 0    |       |                  |
|                       | Type of Debris<br>Removed (e.g. rock,<br>wood, plant, etc) | NA                  |            | -si        | nla        |          | NA          |           | nla       | ¥               | NON       |                    | nla       |           | Ma      |                |    |    | Novo | , , , |                  |
|                       | Grain Size &<br>Colour                                     | mudd y brown        |            | Muddly     | )<br>}     | muddy    | Umalg       | Muddy     | Brunk     | muddy           | Bark      | muddy              |           | Muddy     | 50,     | Ç              | -+ | \$ | - DE | 3     |                  |
|                       | Date Homogenised<br>/ Subsampled                           | 2019.00.7.16        | 170900t 17 | 2004 ortho | Z01400117  | 20190916 | SOIM DOL 17 | 209 at 16 | 2010ct 17 | 2040tile        | 20ACTI    | 30Ploof 11         | 20 Rod 17 | JOS OCTIL | Magail  |                |    |    |      |       | , p <sup>2</sup> |
| SLR                   | Client Sample<br>Name                                      | (F)                 | C6 EAST/G7 |            | CS EAST/G6 |          | C4 WEST     |           | C3 WEST   | 3               | CENTRE/G5 |                    | 64        |           | C1 WEST |                |    |    |      |       | 4.               |
| me: 1776              | Sample #                                                   |                     | WQ6245     |            | WQ6246     |          | WQ6247      |           | WQ6249    |                 | WQ6250    | 2)                 | WQ6251    |           | WQ6252  | 9)<br>9) #4/ % |    | 11 |      | -\    |                  |
| Client # / Name: 1776 | Maxxam Sample<br>Name                                      |                     | C6 EAST/G7 |            | C5 EAST/G6 |          | C4 WEST     |           | C3 WEST   | 3               | CENTRE/G5 |                    | 64        |           | C1 WEST | 19             |    |    |      | 15    |                  |

# FRESHWATER SEDIMENT TESTS - POREWATER MEASUREMENTS

Page 1 of 1

| Client Name:                 | 1776    | SLR (   | CONSULTIN  | IGT   | Date Measur | ed: | 2019 OCT / | 9   |
|------------------------------|---------|---------|------------|-------|-------------|-----|------------|-----|
| Method for Pore<br>Collected | sedimen | ts from |            | , spi | n in centr  | Fuc | lge bottie | for |
| 20 min on                    | 5000    | rpm.    | 4 °C       |       |             |     |            |     |
| collected                    | porewo  | ter for | - analysis | afte  | rwards      |     |            |     |

| Sample ID     | Temperature (°C) | рН          | Ammonia (mg/L) |
|---------------|------------------|-------------|----------------|
| 1776 Control  | 11.2             | @-717 7.8   | 0.32           |
| C4 West.      | 11.2             | 4.2         | 55             |
| CS EAST/G6    | 11.5             | 7.2         | 29             |
| C3 West       | 12.3             | 7.3         | 14             |
| C3 Centre G+5 | 11.7             | 7.4         | 1.3            |
| CI West . ~   | 12.1             | 7.7         | 0.64           |
| G4 - ~        | 11.5             | 7.3         | 11             |
| C6 EAST /G7   | 11.8             | 7,2         | 21             |
|               |                  |             |                |
|               |                  |             |                |
|               |                  | C           | 26             |
|               |                  | 2019 NOS    |                |
|               |                  |             |                |
| Analyst       | V5               | <i>ys</i>   | DML            |
| Date          | 2019 007 18      | 2019 OCT 18 | 2019 NOOD 5    |

Comments:

(A) WE, VS 2019 007 18

(D) M 2019 Novo6



BV Labs Job #: B989884 Report Date: 2019/10/25

Bureau Veritas Laboratories (TOX Internal)

Client Project #: B985653 Sampler Initials: YS

## **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID    |                 | WS9519                    |     | WS9520                    | WS9521                    |     |
|---------------|-----------------|---------------------------|-----|---------------------------|---------------------------|-----|
| Sampling Date | Date 2019/10/18 |                           |     | 2019/10/18                | 2019/10/18                |     |
| COC Number    |                 | 18218                     |     | 18218                     | 18218                     |     |
|               | UNITS           | 1776 Control PW<br>Chiron | RDL | 1776 C6 East PW<br>Chiron | 1776 C5 East PW<br>Chiron | RDL |
| Nutrients     |                 |                           |     |                           |                           |     |
|               |                 |                           |     |                           |                           |     |

|               | UNITS | 1776 C4 West PW<br>Chiron | RDL | 1776 C3 West PW<br>Chiron | RDL | 1776 C3 Center PW<br>Chiron | RDL |
|---------------|-------|---------------------------|-----|---------------------------|-----|-----------------------------|-----|
| COC Number    |       | 18218                     |     | 18218                     |     | 18218                       |     |
| Sampling Date |       | 2019/10/18                |     | 2019/10/18                |     | 2019/10/18                  |     |
| BV Labs ID    |       | WS9522                    |     | WS9523                    |     | WS9524                      |     |

| Nutrients         |      |        |      |        |      |     |       |
|-------------------|------|--------|------|--------|------|-----|-------|
| Total Ammonia (N) | mg/L | 55 (1) | 0.75 | 14 (1) | 0.15 | 1.3 | 0.015 |

RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to dilution to bring analyte within the calibrated range.



BV Labs Job #: B989884 Report Date: 2019/10/25

Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653

Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WS9525               |      | WS9526                    |       | WS9527                             | WS9528                                |       |
|-----------------------------|-------|----------------------|------|---------------------------|-------|------------------------------------|---------------------------------------|-------|
| Sampling Date               |       | 2019/10/18           |      | 2019/10/18                |       | 2019/10/18                         | 2019/10/18                            |       |
| COC Number                  |       | 18218                |      | 18218                     |       | 18218                              | 18218                                 |       |
|                             | UNITS | 1776 G4 PW<br>Chiron | RDL  | 1776 C1 West PW<br>Chiron | RDL   | 1776 Control Overy<br>Day 0 Chiron | 1776 C6 East<br>Overy Day 0<br>Chiron | RDL   |
| Misc. Inorganics            |       |                      |      |                           |       |                                    |                                       |       |
| рН                          | рН    |                      |      |                           |       | 7.64                               | 7.88                                  | N/A   |
| Anions                      |       |                      |      |                           | -     |                                    | - Marie William -                     |       |
| Alkalinity (PP as CaCO3)    | mg/L  |                      |      |                           |       | <1.0                               | <1.0                                  | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 18-A-2               |      |                           |       | 60                                 | 97                                    | 1.0   |
| Bicarbonate (HCO3)          | mg/L  |                      |      |                           |       | 73                                 | 120                                   | 1.0   |
| Carbonate (CO3)             | mg/L  |                      |      |                           |       | <1.0                               | <1.0                                  | 1.0   |
| Hydroxide (OH)              | mg/L  |                      |      | (NII)                     |       | <1.0                               | <1.0                                  | 1.0   |
| Nutrients                   |       |                      |      |                           |       |                                    |                                       |       |
| Total Ammonia (N)           | mg/L  | 11 (1)               | 0.15 | 0.64                      | 0.015 | 0.074                              | 0.13                                  | 0.015 |
| RDI = Reportable Detection  | Limit |                      |      |                           |       |                                    |                                       |       |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

| BV Labs ID                                         |       | WS9529                                | WS9530                                | WS9531                                | WS9532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
|----------------------------------------------------|-------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sampling Date                                      |       | 2019/10/18                            | 2019/10/18                            | 2019/10/18                            | 2019/10/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| COC Number                                         |       | 18218                                 | 18218                                 | 18218                                 | 18218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                    | UNITS | 1776 C5 East<br>Overy Day 0<br>Chiron | 1776 C4 West<br>Overy Day 0<br>Chiron | 1776 C3 West<br>Overy Day 0<br>Chiron | 1776 C3 Center<br>Overy Day 0<br>Chiron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RDL   |
| Misc. Inorganics                                   |       |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| рН                                                 | рН    | 7.99                                  | 7.99                                  | 8.01                                  | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A   |
| Anions                                             |       |                                       |                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Alkalinity (PP as CaCO3)                           | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0   |
| Alkalinity (Total as CaCO3)                        | mg/L  | 120                                   | 130                                   | 100                                   | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0   |
| Bicarbonate (HCO3)                                 | mg/L  | 150                                   | 160                                   | 120                                   | 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0   |
| Carbonate (CO3)                                    | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0   |
| Hydroxide (OH)                                     | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0   |
| Nutrients                                          |       |                                       |                                       |                                       | - Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont |       |
| Total Ammonia (N)                                  | mg/L  | 0.32                                  | 1.3                                   | 0.48                                  | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.015 |
| RDL = Reportable Detection<br>N/A = Not Applicable | Limit |                                       |                                       |                                       | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |



BV Labs Job #: B989884 Report Date: 2019/10/25 Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653

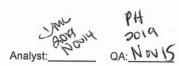
Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WS9533                        | WS9534                            |       |
|-----------------------------|-------|-------------------------------|-----------------------------------|-------|
| Sampling Date               |       | 2019/10/18                    | 2019/10/18                        |       |
| COC Number                  |       | 18218                         | 18218                             |       |
|                             | UNITS | 1776 G4 Overy<br>Day 0 Chiron | 1776 C1 West<br>Overy Day OChiron | RDL   |
| Misc. Inorganics            |       |                               |                                   |       |
| рН                          | рН    | 7.90                          | 7.77                              | N/A   |
| Anions                      |       |                               |                                   |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 100                           | 93                                | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 130                           | 110                               | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Nutrients                   |       |                               | (10.1-10.1                        |       |
| Total Ammonia (N)           | mg/L  | 0.14                          | 0.11                              | 0.015 |

|                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                 |                                |                        |                |                      |                         |                               |                            |                    |                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                  |                                       |                |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pa               | ge 2                                    | 55 of           | 406                                                                                                       | j                                   |                  |                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------|--------------------------------|------------------------|----------------|----------------------|-------------------------|-------------------------------|----------------------------|--------------------|----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------|---------------------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------|------------------|---------------------------|
| G141143                                                                                                      | Turnaround Time (TAT) Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fost analyses)                      | PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS | /III be                        | 2 Days                 | e e            |                      | Regulatory Criteria     | BC CSR                        | ∏ YK CSR                   | CCME               | Drinking Water |               | Seliment Shrumas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Special Instructions                                                                     | 200) is somether |                                       | THE PRINCES IN | Continued a land | THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P | the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the la |                  |                                         | 03-Oct-19 16:09 | Ronklin Gracian                                                                                           | B9R8283                             | WVL ENV-593 O    | to Service                |
| RECORD                                                                                                       | Turnaround                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S - 7 Days Regular (Most analyses)  | PLEASE PROVIDE ADVA                             | Rush TAT (Su                   | Same Day               |                | Rush Confirmation #: |                         | (n                            | W. W. W. W.                |                    | np             | 32x           | יופח ביופח ב | Hydro<br>MUTR<br>NUTR                                                                    | x × × × W        | メメメメメ                                 | XXXXX          | XXXXX            | メメンスメンス                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XXXX             |                                         |                 | 41.00                                                                                                     |                                     |                  |                           |
| REC                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100F-                               | 3,000                                           |                                | 2011 - Toblede access  | Chedoric       | 7                    | Analysis Requested      | 4                             |                            | Daviese<br>Daviese | Field Pre      |               | Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dissolved Dissolved Chloride Cotol Mer Cotol Mer Cotol Mer Cotol Mer Cotol Mer Cotol Mer |                  | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | XXX            | XX XX X          | XXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 272              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | XXXXX           | ndard Terms and Conditions. Signing of this Chain of Custody document is acknowledgetrein and acceptance. | m 2-019/10/03                       | 2019/10/05 12:18 | Shaping a World of Trust® |
| 5 Toff Free [833] .<br>.V8Z 558 Toll Free                                                                    | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | IIIVOICE)                           | B985653                                         |                                | P.C. Project #:        | Site Location: | Sampled By:          |                         |                               | 39.13                      | EX/ET              | VVPH           |               | tanin' j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mark<br>Contains<br>STEXS / VR                                                           | 0 # 4            | Sea                                   | Confined       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         | +               | uritas' sta                                                                                               | TUNN - COLENE                       | The Penso TRCK   | aureau Veritas            |
| umaby, 4606 Canada Way, Burnaby, RC V5G 1K5 Toll<br>Victoria: 460 Tennyson Place, Unit 1, Victoria, BC V8Z 6 | bylabs.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Report Information (if differs from | Company:                                        | Contact Name:                  | Address:               | Phone/Fax:     | INCOME mail:         | COPICS:                 | Laboratory Use Unity          | 2000 ST 1000               | WIND BE LOCA       | 15             | n Acar        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Sampled Time Sampled                                                                | m/dd)            | 1001                                  | 10/0/          | 20011000         | 10/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100              | -                                       | 201/10/02 16:20 | mitted on this Chain of Castody is subject to Bureau Veritas'                                             | <u> </u>                            | 001/p/02 1100    | A                         |
| O M                                                                                                          | byla byla byla byla byla byla byla byla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | voice information                   | mpany: 2 & Consulting                           | antact Name: Collect Office In | LATON SAN NOTICE NO IN | at-38-5294     | S CONTRACT           | Copies: Dimported a Sec | A Laborator A VES NO Coder to | Seal Interest Temp 3 (NO ) | Coaling Media V    |                | Cooling Media | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          | Sample ruenning  | 1 Boot Launch                         | - CLOEPET (67) | CS ERGI/ENCO     | The Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the Court of the C | C3 NOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 C3 Centre / G5 | 4                                       | o o             | 5                                                                                                         | Relinquished by: (Signature/ Print) | Kindowski heller | くをながれているので                |

Appendix "A" to Report PW19008(g)/LS19004(g)


| Δ | Р | P | F | N | IX |
|---|---|---|---|---|----|

B 10-DAY CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST

BUREAU VERITAS LABORATORIES

Report Date: 14 Nov-19 14:24 (p 1 of 2)

| CETIS Alla                                            | nyticai                                       | Report       |                                                |                                                               |                 |            | Test Code: 14 Nov-19 14:24 (p 1 o                                |
|-------------------------------------------------------|-----------------------------------------------|--------------|------------------------------------------------|---------------------------------------------------------------|-----------------|------------|------------------------------------------------------------------|
| Chironomus                                            | 10-d Surv                                     | ival and Gro | wth Sedime                                     | nt Test                                                       | 54 54           |            | Bureau Veritas Laborator                                         |
| Analysis ID:<br>Analyzed:                             | 20-4584<br>14 Nov-                            |              | Endpoint:<br>Analysis:                         | Survival Rate<br>STP 2xK Cor                                  |                 | oles       | CETIS Version: CETISv1.9.2 Official Results: Yes                 |
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 02-9389-9<br>18 Oct-19<br>28 Oct-19<br>9d 19h | 17:00        | Test Type:<br>Protocol:<br>Species:<br>Source: | Survival-AF C<br>EC/EPS 1/RN<br>Chironomus c<br>Aquatic Biosy | M/32<br>dilutus |            | Analyst: Diluent: Reconstituted Water Brine: Not Applicable Age: |
| Fisher Exact/                                         | Bonferron                                     | i-Holm Test  |                                                |                                                               |                 |            |                                                                  |
| Sample I                                              | vs Sa                                         | mple II      | Test                                           | Stat P-Type                                                   | P-Value         | Decision   | n(a:5%)                                                          |
| Control                                               | C6                                            | East / G7    | 0.500                                          |                                                               | 1.0000          |            | nificant Effect                                                  |
|                                                       | C5                                            | East / G6    | 0.218                                          | 0 Exact                                                       | 0.6540          |            | nificant Effect                                                  |
|                                                       | C4                                            | West         | 0.007                                          | 3 Exact                                                       | 0.0514          |            | nificant Effect                                                  |
|                                                       | C3                                            | West         | 0.500                                          | 0 Exact                                                       | 1.0000          | Non-Sigr   | nificant Effect                                                  |
|                                                       |                                               | Centre / G5  | 0.079                                          | 8 Exact                                                       | 0.3190          | Non-Sigr   | nificant Effect                                                  |
|                                                       | . G4                                          |              | 0.045                                          | 8 Exact                                                       | 0.2291          | Non-Sign   | nificant Effect                                                  |
|                                                       | C1                                            | West         | 0.013                                          | 9 Exact                                                       | 0.0832          | Non-Sign   | ificant Effect                                                   |
| Auxiliary Tests                                       | 5                                             |              |                                                |                                                               |                 | 2 10, 11/1 |                                                                  |
| Attribute                                             | Tes                                           | t            |                                                |                                                               | Test Stat       | Critical   | P-Value Decision(α:5%)                                           |
| Extreme Value                                         | Gru                                           | bbs Extreme  | Value Test                                     |                                                               | 3.142           | 3.036      | 0.0313 Outlier Detected                                          |
| Data Summary                                          | ,                                             | 7            |                                                |                                                               |                 |            |                                                                  |
| Sample                                                | Cod                                           | e NR         | R                                              | NR + R                                                        | Prop NR         | Prop R     | %Effect                                                          |
| Control                                               |                                               | 48           | 2                                              | 50                                                            | 0.96            | 0.04       | 0.0%                                                             |
| C6 East / G7                                          |                                               | 47           | 3                                              | 50                                                            | 0.94            | 0.06       | 2.08%                                                            |
| C5 East / G6                                          |                                               | 45           | 5                                              | 50                                                            | 0.9             | 0.1        | 6.25%                                                            |
| C4 West                                               |                                               | 39           | 11                                             | 50                                                            | 0.78            | 0.22       | 18.75%                                                           |
| C3 West                                               |                                               | 47           | 3                                              | 50                                                            | 0.94            | 0.06       | 2.08%                                                            |
| C3 Centre / G5                                        |                                               | 43           | 7                                              | 50                                                            | 0.86            | 0.14       | 10.42%                                                           |
| G4                                                    |                                               | 42           | 8                                              | 50                                                            | 0.84            | 0.16       | 12.5%                                                            |
| C1 West                                               |                                               | 40           | 10                                             | 50                                                            | 8.0             | 0.2        | 16.67%                                                           |
| Survival Rate I                                       | Detail                                        |              |                                                |                                                               |                 |            |                                                                  |
| Sample                                                | Code                                          | Rep 1        | Rep 2                                          | Rep 3                                                         | Rep 4           | Rep 5      |                                                                  |
| Control                                               |                                               | 1.000        | 0 1.0000                                       | 0.9000                                                        | 0.9000          | 1.0000     |                                                                  |
| C6 East / G7                                          |                                               | 1.000        | 0 1.0000                                       | 1.0000                                                        | 0.7000          | 1.0000     |                                                                  |
| C5 East / G6                                          |                                               | 1.000        | 0.8000                                         | 1.0000                                                        | 0.9000          | 0.8000     |                                                                  |
| C4 West                                               |                                               | 0.700        | 0.8000                                         | 0.8000                                                        | 0.7000          | 0.9000     |                                                                  |
| C3 West                                               |                                               | 0.800        | 0.9000                                         | 1.0000                                                        | 1.0000          | 1.0000     |                                                                  |
| C3 Centre / G5                                        |                                               | 0.900        | 0.8000                                         | 1.0000                                                        | 0.9000          | 0.7000     |                                                                  |
| G4                                                    |                                               | 0.800        | 0.8000                                         | 0.8000                                                        | 0.9000          | 0.9000     |                                                                  |
| C1 West                                               |                                               | 0.800        | 0.9000                                         | 0.4000                                                        | 0.9000          | 1.0000     |                                                                  |



Report Date:

14 Nov-19 14:24 (p 2 of 2)

Test Code:

CT-1776-0119 | 16-1846-9023

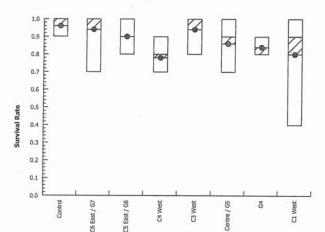
Chironomus 10-d Survival and Growth Sediment Test

**Bureau Veritas Laboratories** 

Analysis ID: Analyzed: 20-4584-5912 14 Nov-19 11:45

E

Endpoint: Survival Rate


Analysis:

STP 2xK Contingency Tables

CETIS Version: Official Results:

CETISv1.9.2 : Yes

Graphics



Report Date:

14 Nov-19 14:24 (p 1 of 2)

|                    |        |                   |                | 1-1           |            |     |          | Test      | Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CT-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76-0119   1 | 6-1846-9023 |
|--------------------|--------|-------------------|----------------|---------------|------------|-----|----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|
| Chironomus         | s 10-c | Survival and Gro  | owth Sedime    | nt Test       |            |     | 0.25     |           | 1,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Burea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | u Veritas L | aboratories |
| Analysis ID:       | : 01   | -3230-7964        | Endpoint:      | Mean Dry W    | eight      |     |          | CET       | IS Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n: CETISv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.9.2       |             |
| Analyzed:          | 14     | Nov-19 11:45      | Analysis:      | Parametric-T  | wo Sample  | •   |          | Offic     | cial Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ts: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
| Batch ID:          | 02-    | 9389-9538         | Test Type:     | Survival-AF   | Growth     |     |          | Ana       | lyst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Start Date:        | 18     | Oct-19 17:00      | Protocol:      | EC/EPS 1/RI   | M/32       |     |          | Dilu      | ent: Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | econstituted \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nater       |             |
| <b>Ending Date</b> | e: 28  | Oct-19 12:00      | Species:       | Chironomus    | dilutus    |     |          | Brin      | e: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ot Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |             |
| Duration:          | 9d     | 19h               | Source:        | Aquatic Bios  | ystems, CC | )   |          | Age       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Data Transfe       | orm    | Alt               | Нур            |               |            |     |          | Comparis  | son Resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | PMSD        |
| Untransform        | ed     | C >               | Т              |               |            |     |          | C6 East / | G7 passe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d mean dry w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eight /     | 21.35%      |
|                    |        |                   |                |               |            |     |          | C5 East / | G6 passe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d mean dry w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eight/      | 21.35%      |
|                    |        |                   |                |               |            |     |          | C4 West   | passed me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ean dry weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt          | 21.35%      |
|                    |        |                   |                |               |            |     |          | C3 West   | passed me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ean dry weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt          | 21.35%      |
|                    |        |                   |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sed mean dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 21.35%      |
|                    |        |                   |                |               |            |     |          |           | d mean dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the | 100000      | 21.35%      |
|                    |        |                   |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ean dry weigh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt          | 21.35%      |
| Equal Varia        | nce t  | Two-Sample Test   | 77.1           | ,             |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Sample I           | vs     | Sample II         | Test S         | Stat Critical | MSD        | DF  | P-Type   | P-Value   | Decisio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n(α:5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
| Control            |        | C6 East / G7      | -5.221         |               | 0.279      |     | CDF      | 0.9996    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t           |             |
|                    |        | C5 East / G6      | -3.559         |               | 0.349      |     | CDF      | 0.9963    | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
|                    |        | C4 West           | -1.476         |               | 0.344      |     | CDF      | 0.9108    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
|                    |        | C3 West           | -5.066         | 1.86          | 0.295      |     | CDF      | 0.9995    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
|                    |        | C3 Centre / G5    | -5.752         | 1.86          | 0.277      | 8   | CDF      | 0.9998    | 100 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
|                    |        | G4                | -4.623         | 1.86          | 0.328      |     | CDF      | 0.9991    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
|                    |        | C1 West           | -4.186         | 1.86          | 0.357      |     | CDF      | 0.9985    | 1612 St. U. W. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 St. 1612 S | nificant Effec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |
| Auxiliary Tes      | sts    |                   |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42          |             |
| Attribute          |        | Test              |                |               | Test St    | at  | Critical | P-Value   | Decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(α:5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
| Extreme Valu       | ie     | Grubbs Extreme    | e Value Test   |               | 1.708      |     | 3.036    | 1.0000    | No Outli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ers Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |
| ANOVA Tabl         | е      |                   |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |
| Source             |        | Sum Squares       | Mean           | Square        | DF         |     | F Stat   | P-Value   | Decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n(α:5%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
| Between            |        | 3.46596           | 0.4951         | 38            | 7          |     | 5.064    | 6.0E-04   | Significa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |             |
| Error              |        | 3.12858           | 0.0977         | 7682          | 32         |     | _        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Total              |        | 6.59455           |                |               | 39         |     | 101      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Distributiona      | al Tes | ts                |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Attribute          |        | Test              |                |               | Test Sta   | at  | Critical | P-Value   | Decision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | η(α:1%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |             |
| Variances          |        | Bartlett Equality | of Variance To | est           | 2.118      |     | 18.48    | 0.9530    | Equal Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ariances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |             |
| Distribution       |        | Shapiro-Wilk W    | Normality Tes  | t             | 0.9594     | 1.5 | 0.9236   | 0.1599    | Normal [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |             |
| Mean Dry We        | eight  | Summary           |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |
| Sample             |        | Code Cour         |                | 95% LCI       | 95% UC     | L   | Median   | Min       | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Std Err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CV%         | %Effect     |
| Control            |        | 5                 | 1.672          | 1.417         | 1.927      |     | 1.633    | 1.399     | 1.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.09186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.29%      | 0.00%       |
| C6 East / G7       |        | 5                 | 2.454          | 2.125         | 2.782      |     | 2.356    | 2.157     | 2.823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.79%      | -46.80%     |
| C5 East / G6       |        | 5                 | 2.34           | 1.885         | 2.794      |     | 2.511    | 1.903     | 2.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.64%      | -39.96%     |
| C4 West            |        | 5                 | 1.945          | 1.498         | 2.391      |     | 2.031    | 1.544     | 2.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.49%      | -16.35%     |
| C3 West            | _      | 5                 | 2.474          | 2.116         | 2.833      |     | 2.603    | 2.007     | 2.735                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.67%      | -48.02%     |
| C3 Centre / G      | 55     | 5                 | 2.527          | 2.202         | 2.852      |     | 2.421    | 2.233     | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.35%      | -51.18%     |
| G4                 |        | 5                 | 2.486          | 2.069         | 2.903      |     | 2.449    | 2.1       | 2.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.52%      | -48.71%     |
| C1 West            |        | 5                 | 2.475          | 2.007         | 2.943      |     | 2.47     | 1.999     | 2.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.22%      | -48.06%     |
|                    |        |                   |                |               |            |     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |             |



Report Date:

14 Nov-19 14:24 (p 2 of 2)

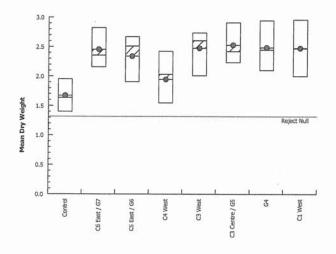
Test Code:

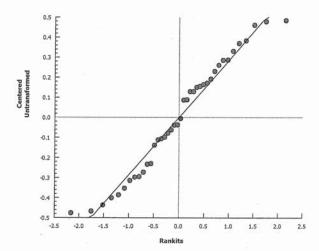
CT-1776-0119 | 16-1846-9023

| Chironomus ' | 10-d Survival | and Growth | Sediment Test |
|--------------|---------------|------------|---------------|

**Bureau Veritas Laboratories** 

Analysis ID: 01-3230-7964 Analyzed: 14 Nov-19 11:45 Endpoint: Mean Dry Weight Analysis: Parametric-Two Sample


CETISv1.9.2 **CETIS Version:** 


Official Results: Yes

| Mean | Dry | Weigl | nt Detail |
|------|-----|-------|-----------|
|------|-----|-------|-----------|

| Sample         | Code | Rep 1 | Rep 2 | Rep 3 | Rep 4 | Rep 5 |  |
|----------------|------|-------|-------|-------|-------|-------|--|
| Control        |      | 1.399 | 1.609 | 1.633 | 1.957 | 1.76  |  |
| C6 East / G7   |      | 2.823 | 2.316 | 2.157 | 2.356 | 2.618 |  |
| C5 East / G6   |      | 1.987 | 2.511 | 1.903 | 2.67  | 2.626 |  |
| C4 West        |      | 2.423 | 2.095 | 2.031 | 1.544 | 1.631 |  |
| C3 West        |      | 2.396 | 2.603 | 2.63  | 2.735 | 2.007 |  |
| C3 Centre / G5 |      | 2.233 | 2.416 | 2.656 | 2.421 | 2.91  |  |
| G4             |      | 2.1   | 2.946 | 2.678 | 2.449 | 2.256 |  |
| C1 West        |      | 2.959 | 1.999 | 2.705 | 2.47  | 2.242 |  |

#### Graphics





Appendix "A" to Report PW19008(g)/LS19004(g) Page 261 of 406

#### **ECOTOXICOLOGY**

# Chironomus dilutus Survival and Growth Test Survival of Larvae



BBY2FCD-00271/3

Client # & Name: SLR

Start Date and Time: 2019 Oct 18

Page 1 of 1

Job # B985653

End Date: 2019 Oct 28

Organism Lot #: AB191018

Analysts: P. Howes, S. Gupta, K. Tamaki, Y. Su

| Sample         | Rep | Initial # | Final # | %        | Surv   | ival |
|----------------|-----|-----------|---------|----------|--------|------|
|                |     | Larvae    | Larvae  | Survived | Mean % | SD % |
| Control        | Α   | 10        | 10      | 100      | 96     | 5    |
|                | В   | 10        | 10      | 100      |        |      |
|                | С   | 10        | 9       | 90       |        |      |
|                | D   | 10        | 9       | 90       |        |      |
|                | E   | 10        | 10      | 100      |        |      |
| C6 East / G7   | Α   | 10        | 10      | 100      | 94     | 13   |
|                | В   | 10        | 10      | 100      |        |      |
| 1              | С   | 10        | 10      | 100      |        |      |
|                | D   | 10        | 7       | 70       |        |      |
|                | Ε   | 10        | 10      | 100      |        |      |
| C5 East / G6   | Α   | 10        | 10      | 100      | 90     | 10   |
|                | В   | 10        | 8       | 80       |        |      |
|                | С   | 10        | 10      | 100      |        |      |
|                | D   | 10        | 9       | 90       |        |      |
|                | Е   | 10        | 8       | 80       |        |      |
| C4 West        | Α   | 10        | 7       | 70       | 78     | 8    |
|                | В   | 10        | 8       | 80       |        |      |
|                | С   | 10        | 8       | 80       |        |      |
|                | D   | 10        | 7       | 70       |        |      |
|                | E   | 10        | 9       | 90       |        |      |
| C3 West        | Α   | 10        | 8       | 80       | 94     | 9    |
|                | В   | 10        | 9       | 90       |        |      |
|                | С   | 10        | 10      | 100      |        |      |
|                | D   | 10        | 10      | 100      |        |      |
|                | E   | 10        | 10      | 100      |        |      |
| C3 Centre / G5 | Α   | 10        | 9       | 90       | 86     | 11   |
|                | В   | 10        | 8       | 80       |        |      |
|                | С   | 10        | 10      | 100      |        |      |
|                | D   | 10        | 9       | 90       |        |      |
|                | E   | 10        | 7       | 70       |        |      |
| G4             | А   | 10        | 8       | 80       | 84     | 5    |
|                | В   | 10        | 8       | 80       |        |      |
|                | С   | 10        | 8       | 80       |        |      |
|                | D   | 10        | 9       | 90       |        |      |
|                | E   | 10        | 9       | 90       |        |      |

Appendix "A" to Report PW19008(g)/LS19004(g)

#### **ECOTOXICOLOGY**

# Chironomus dilutus Survival and Growth Test Survival of Larvae



BBY2FCD-00271/3

Client # & Name: SLR

Start Date and Time: 2019 Oct 18

Page 1 of 1

Job # B985653

End Date: 2019 Oct 28

Organism Lot #: AB191018

Analysts: P. Howes, S. Gupta, K. Tamaki, Y. Su

| Sample  | Rep | Initial # | Final # | %        | Survival |      |  |  |
|---------|-----|-----------|---------|----------|----------|------|--|--|
|         |     | Larvae    | Larvae  | Survived | Mean %   | SD % |  |  |
| C1 West | А   | 10        | 8       | 80       | 80       | 23   |  |  |
|         | В   | 10        | 9       | 90       |          |      |  |  |
|         | С   | 10        | 4       | 40       |          |      |  |  |
|         | D   | 10        | 9       | 90       |          |      |  |  |
|         | Е   | 10        | 10      | 100      |          |      |  |  |

Proofed By: Mares 2019 NOV15

# Chironomid Survival and Growth Test Dry Weights of Larvae

BBY2FCD-00231/3
Page \_\_\_\_ of \_\_\_

Client # & Name: 1776 SLR

Start Date and Time: 2019 OCT 18

Balance ID: BBY2-0260

End Date: 2019 OCT 28

Job # B985653

Weighing Dates: 2019 Oct 31

Drying Temperature (°C): 60

Drying Time (h) >24 h

Analyst(s): L. Nicholls

D. Lai

| Boat 5   | Sample<br>ID | Replicate | #<br>Worms | Boat Wt. | Boat & Worms<br>Wt. (g) | Worm Wt.<br>(mg) | Mean Wt.<br>/Worm (mg) | Mean Wt.<br>/Sample (mg) | SD   |
|----------|--------------|-----------|------------|----------|-------------------------|------------------|------------------------|--------------------------|------|
| 556      |              | А         | 10         | 1.10871  | 1.12270                 | 13.99            | 1.40                   | 1.67                     | 0.21 |
| 557      |              | В         | 10         | 1.09457  | 1.11066                 | 16.09            | 1.61                   |                          | 201  |
| 558 C    | ONTROL       | С         | 9          | 1.09082  | 1.10552                 | 14.70            | 1.63                   |                          |      |
| 559      |              | D         | 9          | 1.09488  | 1.11249                 | 17.61            | 1.96                   |                          |      |
| 560      |              | E         | 10         | 1.12393  | 1.14153                 | 17.60            | 1.76                   |                          |      |
| 561      |              | Α         | 10         | 1.10362  | 1.13185                 | 28.23            | 2.82                   | 2.45                     | 0.26 |
| 562      |              | В         | 10         | 1.12019  | 1.14335                 | 23.16            | 2.32                   |                          |      |
| 563 C6   | EAST/G7      | C*        | 9          | 1.11899  | 1.13840                 | 19.41            | 2.16                   |                          |      |
| 564      |              | D         | 7          | 1.10809  | 1.12458                 | 16.49            | 2.36                   |                          |      |
| 565      |              | Е         | 10         | 1.10258  | 1.12876                 | 26.18            | 2.62                   |                          |      |
| 566      |              | А         | 10         | 1.10960  | 1.12947                 | 19.87            | 1.99                   | 2.34                     | 0.37 |
| 567      |              | В         | 8          | 1.11065  | 1.13074                 | 20.09            | 2.51                   |                          |      |
| 568 C5   | EAST/G6      | С         | 10         | 1.11012  | 1.12915                 | 19.03            | 1.90                   |                          |      |
| 569      |              | D         | 9          | 1.10493  | 1.12896                 | 24.03            | 2.67                   |                          |      |
| 570      |              | Е         | 8          | 1.09153  | 1.11254                 | 21.01            | 2.63                   |                          |      |
| 571      |              | А         | 7          | 1.10617  | 1.12313                 | 16.96            | 2.42                   | 1.94                     | 0.36 |
| 572      |              | В         | 8          | 1.10863  | 1.12539                 | 16.76            | 2.09                   |                          |      |
| 573 C    | 4 WEST       | С         | 8          | 1.10503  | 1.12128                 | 16.25            | 2.03                   |                          |      |
| 574      |              | D         | 7          | 1.11196  | 1.12277                 | 10.81            | 1.54                   |                          |      |
| 575      |              | Е         | 9          | 1.14219  | 1.15687                 | 14.68            | 1.63                   |                          |      |
| 576      |              | А         | 8          | 1.10191  | 1.12108                 | 19.17            | 2.40                   | 2.47                     | 0.29 |
| 577      |              | В         | 9          | 1.09426  | 1.11769                 | 23.43            | 2.60                   |                          |      |
| 578 C    | 3 WEST       | С         | 10         | 1.10439  | 1.13069                 | 26.30            | 2.63                   |                          |      |
| 579      |              | D         | 10         | 1.11424  | 1.14159                 | 27.35            | 2.74                   |                          |      |
| 580      |              | Е         | 10         | 1.11557  | 1.13564                 | 20.07            | 2.01                   |                          |      |
| 581      |              | A*        | 8          | 1.10918  | 1.12704                 | 17.86            | 2.23                   | 2.53                     | 0.26 |
| 582      |              | В*        | 7          | 1.11818  | 1.13509                 | 16.91            | 2.42                   |                          |      |
| 583 C3 C | ENTRE/G5     | С         | 10         | 1.11244  | 1.13900                 | 26.56            | 2.66                   |                          |      |
| 584      |              | D*        | 8          | 1.10760  | 1.12697                 | 19.37            | 2.42                   |                          |      |
| 585      |              | Е         | 7          | 1.10960  | 1.12997                 | 20.37            | 2.91                   |                          |      |
|          |              | Analyst:  |            | LN       | DL                      |                  | ·                      |                          |      |

The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid.

Notes:\*Pupated organism discovered at test end. Pupated organism removed from mean dry weight analysis.

Appendix "A" to Report PW19008(g)/LS19004(g) Page 264 of 406

**ECOTOXICOLOGY** 

# **Chironomid Survival and Growth Test** Dry Weights of Larvae

BBY2FCD-00231/3

Page Q of 2

Maxxam

Client # & Name: 1776 SLR

Start Date and Time: 2019 OCT 18

Balance ID: BBY2-0260

End Date: 2019 OCT 28

Job # B985653

Weighing Dates: 2019 Oct 31

Drying Temperature (°C): 60

Drying Time (h) >24 h

Analyst(s): L. Nicholls

| Boat<br># | Sample<br>ID | Replicate | #<br>Worms | Boat Wt.<br>(g) | Boat & Worms<br>Wt. (g) | Worm Wt.<br>(mg) | Mean Wt.<br>/Worm (mg) | Mean Wt.<br>/Sample (mg) | SD   |
|-----------|--------------|-----------|------------|-----------------|-------------------------|------------------|------------------------|--------------------------|------|
| 586       |              | Α         | 8          | 1.09798         | 1.11478                 | 16.80            | 2.10                   | 2.49                     | 0.34 |
| 587       |              | В         | 8          | 1.09878         | 1.12235                 | 23.57            | 2.95                   |                          | 0.01 |
| 588       | G4           | С         | 8          | 1.10970         | 1.13112                 | 21.42            | 2.68                   |                          |      |
| 589       |              | D         | 9          | 1.11976         | 1.14180                 | 22.04            | 2.45                   |                          |      |
| 590       |              | E*        | 8          | 1.13771         | 1.15576                 | 18.05            | 2.26                   |                          |      |
| 591       |              | Α         | 8          | 1.10993         | 1.13360                 | 23.67            | 2.96                   | 2.47                     | 0.38 |
| 592       |              | В         | 9          | 1.13653         | 1.15452                 | 17.99            | 2.00                   |                          | 0.50 |
| 593       | C1 WEST      | С         | 4          | 1.10844         | 1.11926                 | 10.82            | 2.70                   |                          |      |
| 594       |              | D         | 9          | 1.11702         | 1.13925                 | 22.23            | 2.47                   |                          |      |
| 595       |              | E         | 10         | 1.11038         | 1.13280                 | 22.42            | 2.24                   |                          |      |
| 596       |              | QA/QC     |            | 1.10077         | 1.10079                 | -                | -                      | -                        | -    |
| 597       |              | QA/QC     |            | 1.11999         | 1.11993                 | -                | (4)                    |                          |      |
| 586       |              | 0-A       | 8          | 1.09790         | 1.11458                 | 16.68            | -                      | -                        |      |
|           |              | Analyst:  |            | LN              | DML                     |                  |                        |                          |      |

The average dry weight for the replicate controls must be >0.6 mg, for the test to be valid. Notes: \*Pupated organism discovered at test end. Pupated organism removed from mean dry weight analysis.

Proofed By: PHews 2019 Nov 15

Page 265 of 406

Max A Bureau Veritas Group Company

#### **ECOTOXICOLOGY**

# CHIRONOMUS DILUTUS SURVIVAL AND GROWTH TEST - TEST INFORMATION

BBY2FCD-00138/3

Page 1 of 1

| Client # & Name:                              | 1776 SLR CONSULTING                                     |
|-----------------------------------------------|---------------------------------------------------------|
| Job #:                                        | B985653                                                 |
| Test Initiation Date & Time:                  | October 18, 2019 @ 17:00 Analyst: YuSu                  |
| <b>Test Completion Date:</b>                  | October 28, 2019                                        |
| Analyst(s) - maintenance and test completion: | 5. Gupta. Jamsty, P. Howes                              |
| Control Water Batch:                          | 20191016                                                |
| Control Sediment:                             | yaquina sceliment, 2019 OCTO4                           |
| control Sediment.                             | 9449444                                                 |
|                                               |                                                         |
|                                               | Dime DIG NOVO 6                                         |
|                                               |                                                         |
| Organism Lot:                                 | AB 191018 WEDML DOWN DOWN                               |
| Age at Start of Test:                         | se condistar 3rd instar                                 |
| Feeding Regime:                               | 3.75 mL Tetrafin slurry (4 g/L) per replicate 3x weekly |
| Food Preparation Date:                        | TOLANCHE                                                |
| Balance ID:                                   | 3812 0260                                               |
| Drying Oven ID:                               | 3812-0278                                               |
| WQ Instrument ID:                             | BBY2-0352 , BBY2-0366                                   |
|                                               | 03.00                                                   |
|                                               |                                                         |
|                                               |                                                         |
|                                               |                                                         |
| Additional Comments:                          | NA                                                      |
| Additional Comments.                          | 1411                                                    |
|                                               | · · · · · · · · · · · · · · · · · · ·                   |
|                                               | Dan a da da da da da da da da da da da da d             |
|                                               | 201,000                                                 |
|                                               |                                                         |
|                                               |                                                         |
|                                               |                                                         |
|                                               |                                                         |
|                                               | 2                                                       |

N Xam BBY2FCD-00137/2

CHIRONOMID SURVIVAL AND GROWTH TEST – AERATION CHECKS

ECOTOXICOLOGY

Client # & Name: 1776 SLR CONSULTING

Start Date & Time: 7019 OCT 18

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

| -      | -                       |          | _       |         | 1  |
|--------|-------------------------|----------|---------|---------|----|
| 10     | 2019                    | 25       | NA      | ry.     |    |
| 6      | 20427                   | 58       | 569     | 56      |    |
| ∞      | 2019                    | 7,2      | Z       | Z       |    |
| 7      | 2019                    |          |         | Z       |    |
| 9      | 2019<br>6CT 34          | 2        | 7,5     | 7.5     |    |
| 5      | 2017                    | Z        | Z       | Z       |    |
| 4      | 2019                    | Z        | Z       | R       |    |
| 3      | 12500                   | K        | J.      | 1       | () |
|        | 420                     |          | 53      | 58      |    |
| Н      | 2019<br>00019           | Z        | 7       | h       | >  |
| Day 0  | 20190T                  | Z        | Z       | X       |    |
| Day -1 | 2019 201900 2019 201900 | AN       | NA      | Z       |    |
|        | Date                    | Early AM | Mid-day | Late PM |    |

Comments:

# **ECOTOXICOLOGY** CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: CONTROL

Start Date: 2019 OCT 18

Sample Date:

NA

End Date: 2019 OCT 28

Sample Received:

NA

| Measurements |       |                                       |       |                        |       |                                         | Samples Taken |                   |      |  |
|--------------|-------|---------------------------------------|-------|------------------------|-------|-----------------------------------------|---------------|-------------------|------|--|
| рН           |       | Hardness<br>(mg/L CaCO <sub>3</sub> ) |       | Conductance<br>(μS/cm) |       | Alkalinity<br>(mg/L CaCO <sub>3</sub> ) |               | Ammonia<br>(mg/L) |      |  |
|              |       |                                       |       |                        |       |                                         |               |                   |      |  |
| Initial      | Final | Initial                               | Final | Initial                | Final | Initial                                 | Final         | Initial           | Fina |  |
| 8.1          | 8,3   | 97                                    | 137   | 371                    | 55 b  | 60                                      | 140           | 0.074             | 6.6  |  |

| Initial overlyi | ng WQ measur | ements:          | Final overlying WQ measurements: |    |                 |
|-----------------|--------------|------------------|----------------------------------|----|-----------------|
| Analyst         | ys           | Date 2019 OCT 18 | Analyst                          | 15 | Date 2019007 28 |

| Day         | Friday | Monday | Wednesday | Friday | Monday     |
|-------------|--------|--------|-----------|--------|------------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10     |
| Temp. (ºC)  | 23, 1  | 23.6   | 22.9      | 22,6   | 22.9       |
| D.O. (mg/L) | 8, 8   | 8.6    | 8.8       | 8.3    | 8.6        |
| Feeding     | NA     | 11     |           | ~      |            |
| Analyst     | 45     | 1      | 45        | VS     | <b>Y</b> 5 |
|             |        | 0      |           |        |            |
| Replicate   | Α      | В      | С         | D      | E          |
| # Surviving | Oj     | 10     | q         | 9      | 10         |
| Analyst     | PH     | 611    | 149       | 54     | Ch         |

| Date | Replicate | Comments  | Analyst |
|------|-----------|-----------|---------|
|      |           |           | -       |
|      |           |           |         |
|      |           |           |         |
|      |           |           |         |
|      |           | 1         |         |
|      |           | Du do to. |         |
|      |           | 20.       |         |
|      |           |           |         |
|      | _/_       |           |         |
| /    |           |           |         |
|      |           |           |         |

Page 268 of 406 Maxxam

# **ECOTOXICOLOGY** CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: C6 EAST/G7

Start Date: 2019 OCT 18

Sample Date: \_2019 OCT 01 @ 10:55

End Date: 2019 OCT 28

Sample Received: \_ 2019 OCT 23 @ 18:00

Job/Sample #: B985653

| Measurements |       |                           |       |                        |       |                                         | Sample | es Taken          |       |
|--------------|-------|---------------------------|-------|------------------------|-------|-----------------------------------------|--------|-------------------|-------|
| рН           |       | Hardness                  |       | Conductance<br>(μS/cm) |       | Alkalinity<br>(mg/L CaCO <sub>3</sub> ) |        | Ammonia<br>(mg/L) |       |
|              |       | (mg/L CaCO <sub>3</sub> ) |       |                        |       |                                         |        |                   |       |
| Initial      | Final | Initial                   | Final | Initial                | Final | Initial                                 | Final  | Initial           | Final |
| 8.1          | 8.3   | 176                       | 352   | 598                    | 977   | 97                                      | 130    | 0.13              | 0.11  |

| Initial overly | ing WQ measu | rements: |           |
|----------------|--------------|----------|-----------|
| Analyst        | VS :         | Date     | 201900718 |

| Final over | lying WQ m | easurements:     |
|------------|------------|------------------|
| Analyst    | 95         | Date 2019 OUT 28 |

| Day         | Friday | Monday | Wednesday | Friday | Monday |
|-------------|--------|--------|-----------|--------|--------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10 |
| Temp. (ºC)  | 22.9   | 23.7   | 23,0      | 22.4   | 23.1   |
| D.O. (mg/L) | 8,3    | 8.6    | 8.7       | 8,6    | 8.5    |
| Feeding     | V Kt   | 11     | ~         |        |        |
| Analyst     | Ys     | 7      | ys        | ys.    | ys.    |

| Replicate   | Α   | В  | С    | D  | Е  |
|-------------|-----|----|------|----|----|
| # Surviving | 0)  | 10 | A 10 | 7  | 10 |
| Analyst     | ICA | K  | Kł   | PH | R  |

@wekt25190028

| Date      | Replicate | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst |
|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 201900+28 | C         | I pupated. Notinduded in well-placet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kt      |
|           |           | <b>y</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|           |           | A three states and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |         |
|           |           | the discount of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of  |         |
|           |           | - 1214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|           |           | Dava Davi4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|           | -         | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| /         |           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |

Page 269 of 406 Maxxam

# **ECOTOXICOLOGY**

BBY2FCD-00140/3

Page 1 of 1

CHIRONOMUS DILUTUS TEST DATA SHEET

Sample ID: C5 EAST/G6

Start Date:

2019 OCT 18

Sample Date: 2019 OCT 01 @ 13:35

End Date: 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

| Measurements |       |               |       |         |                |         | Sample              | es Taken |               |
|--------------|-------|---------------|-------|---------|----------------|---------|---------------------|----------|---------------|
| - pi         | Н     | Hard<br>(mg/L |       | -       | ctance<br>'cm) |         | alinity             | Amr      | monia         |
| Initial      | Final | Initial       | Final | Initial | Final          | Initial | CaCO <sub>3</sub> ) | (m       | g/L)<br>Final |
| 7.9          | 8.1   | 199           | J56   | 677     | 913            | 120     | 97                  | 0.32     | 0.10          |

| Initial overlying | WQ measure | ements: |             |
|-------------------|------------|---------|-------------|
| Analyst           | 45         | Date    | 2019 OCT 18 |

| Final overlying WQ measurements: |            |      |          |  |  |  |
|----------------------------------|------------|------|----------|--|--|--|
| Analyst                          | <b>Y</b> 5 | Date | 20190428 |  |  |  |

| Day         | Friday | Monday | Wednesday | Friday | Monday |
|-------------|--------|--------|-----------|--------|--------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10 |
| Temp. (ºC)  | 73.0   | 23.6   | 22.8      | 22,6   | 23.0   |
| D.O. (mg/L) | 8.1    | 8.5    | 8.4       | 8.5    | 8.4    |
| Feeding     | VK     | 17     | ~         | i/     |        |
| Analyst     | VS     | 1      | ys        | V5     | P 45   |

| Replicate   | Α                 | В  | С    | D  | E   |
|-------------|-------------------|----|------|----|-----|
| # Surviving | $\mathcal{O}_{J}$ | 9  | 0)   | 9  | 9   |
| Analyst     | Kt                | 54 | « K4 | NO | 54. |

| Date | Replicate | Comments                              | Analyst |
|------|-----------|---------------------------------------|---------|
|      |           |                                       |         |
| * *  |           |                                       |         |
| ***  |           |                                       |         |
|      |           |                                       |         |
|      |           | Drugord Dovily                        |         |
|      |           | Sh gow !                              |         |
|      |           | · · · · · · · · · · · · · · · · · · · |         |
|      |           |                                       |         |
|      |           |                                       |         |
|      |           |                                       |         |
|      |           |                                       |         |

# **ECOTOXICOLOGY** CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: C4 WEST

Start Date: 2019 OCT 18

Sample Date: 2019 OCT 01 @ 11:45

End Date: 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

| Measurements |       |         |                     |             |       | Samples Taken |                     |         |       |
|--------------|-------|---------|---------------------|-------------|-------|---------------|---------------------|---------|-------|
| рН           |       | Hard    | ness                | Conductance |       | Alkalinity    |                     | Ammonia |       |
|              |       | (mg/L   | CaCO <sub>3</sub> ) | (μS/        | cm)   | (mg/l         | CaCO <sub>3</sub> ) | (m      | ng/L) |
| Initial      | Final | Initial | Final               | Initial     | Final | Initial       | Final               | Initial | Final |
| 8,2          | 8,2   | 197     | 264                 | 662         | 854   | 30            | 110                 | 1.3     | 0.12  |

| Initial overly | ing WQ measi | urements: | 14        |
|----------------|--------------|-----------|-----------|
| Analyst        | Ys           | Date      | 201900718 |

| Final overly | ing WQ me | asurements:     |
|--------------|-----------|-----------------|
| Analyst      | ys        | Date 2019OUT 28 |

| Day         | Friday | Monday | Wednesday | Friday | Monday |
|-------------|--------|--------|-----------|--------|--------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10 |
| Temp. (ºC)  | 22.9   | 23.6   | 23,2      | 22.7   | 22.9   |
| D.O. (mg/L) | 8.2    | 8.4    | 8.6       | 8.6    | 8.4    |
| Feeding     | VK     | 17     | - ~       | 1      |        |
| Analyst     | ys     | 4      | 45        | V5     | igs.   |
|             |        |        |           |        |        |
| Replicate   | · А    | В      | С         | D      | E      |
|             |        |        |           |        |        |

| Replicate   | · А | В  | С  | D  | E  |
|-------------|-----|----|----|----|----|
| # Surviving | 7   | 8  | 8  | 7  | 9  |
| Analyst     | A   | PH | Kt | PH | Kt |

| Date      | Replicate | Comments     | Analyst |
|-----------|-----------|--------------|---------|
| 201900128 | All       | strong odovr | PH      |
|           | 27        |              |         |
|           |           |              |         |
|           |           |              |         |
|           |           | 204          |         |
|           |           | V Novig      |         |
|           |           | Da           |         |
|           | -         |              |         |
|           |           |              |         |
|           |           |              |         |
|           |           |              |         |
|           |           |              |         |

Page 271 of 406 Maxxam

#### **ECOTOXICOLOGY**

### CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: C3 WEST

Start Date: 2019 OCT 18

Sample Date: 2019 OCT 02 @ 11:45

End Date: 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

| Measurements |        |         |                     |         |         |                 | Sample   | es Taken |       |
|--------------|--------|---------|---------------------|---------|---------|-----------------|----------|----------|-------|
| рН           |        | Hard    | Iness               | Condu   | ıctance | Alk             | alinity  | Am       | monia |
|              | - Test | (mg/L   | CaCO <sub>3</sub> ) | (μS     | /cm)    | (mg/            | L CaCO₃) | (m       | ig/L) |
| Initial      | Final  | Initial | Final               | Initial | Final   | Initial         | Final    | Initial  | Final |
| 8,2          | 8.3    | 164     | 370                 | 513     | 792     | $\sqrt{\infty}$ | (50      | 6.48     | 0.090 |

| Initial overlying WQ mea | asurements:    |
|--------------------------|----------------|
| Analyst YS               | Date 20190CT18 |

| Final overl | ying WQ m | easuremer | nts:        |
|-------------|-----------|-----------|-------------|
| Analyst     | 15        | Date      | 2019 OUT 28 |

| Day         | Friday | Monday | Wednesday | Friday | Monday |
|-------------|--------|--------|-----------|--------|--------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10 |
| Temp. (ºC)  | 22.9   | 23.6   | 73,3      | 22.9   | 22.9   |
| D.O. (mg/L) | 8,3    | 8.6    | 8.6       | 8.4    | 8.4    |
| Feeding     | VILL   | 17     |           | ~      |        |
| Analyst     | VS     | 1      | ys        | 15     | ys     |

| Replicate   | Α  | В  | С  | D  | Е  |
|-------------|----|----|----|----|----|
| # Surviving | 8  | 9  | 10 | 10 | 10 |
| Analyst     | 99 | ys | 45 | Kt | PH |

| Date | Replicate | Comments | Analyst |
|------|-----------|----------|---------|
|      |           |          |         |
|      |           |          |         |
| 04   |           |          |         |
|      |           |          |         |
|      | 1         |          |         |
|      |           | Dra gold |         |
|      | w .       | 10010    |         |
|      |           |          |         |
|      |           |          |         |
|      |           |          |         |
|      |           |          |         |

Page 272 of 406 Maxxam

# **ECOTOXICOLOGY** CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: C3 CENTRE/G5

Start Date: 2019 OCT 18

Sample Date: 2019 OCT 02 @ 10:18

End Date: 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

Job/Sample #: B985653

| Measurements |       |          |        |         |                 |         | Sample                | es Taken |       |
|--------------|-------|----------|--------|---------|-----------------|---------|-----------------------|----------|-------|
| рН           |       | Hardness |        | Condu   | Conductance Alk |         | alinity               | y Ammon  |       |
|              |       | (mg/L    | CaCO₃) | (μS/    | cm)             | (mg/L   | . CaCO <sub>3</sub> ) | (m       | ng/L) |
| Initial      | Final | Initial  | Final  | Initial | Final           | Initial | Final                 | Initial  | Final |
| 8,2          | 8.4   | 154      | 276    | 489     | 761             | 93      | 50                    | 0.17     | 0,578 |

Initial overlying WQ measurements: Date 2019 OCT 18 Analyst Analyst

Final overlying WQ measurements: y5 Date 20190008

| Day         | Friday | Monday | Wednesday | Friday | Monday |
|-------------|--------|--------|-----------|--------|--------|
|             | Day 0  | Day 3  | Day 5     | Day 7  | Day 10 |
| Temp. (ºC)  | 22.9   | 23.6   | 23.2      | 22.8   | 22.9   |
| D.O. (mg/L) | 8.3    | 8.6    | 8.7       | 8.5    | 8.4    |
| Feeding     | VKt    | 18     | ~         | ~      |        |
| Analyst     | 45     | 1      | ys.       | V5     | hs     |

| Replicate   | Α    | в * | С  | D   | E  |
|-------------|------|-----|----|-----|----|
| # Surviving | 9. * | 8   | 10 | 9 🟁 | 7  |
| Analyst     | PH   | 45  | Y5 | Kt  | PH |

| Date        | Replicate | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analyst |
|-------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 201900128   | b         | I pupated chironomid - not included in Weighboat I pupated chironomial - not included in the weighboat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kt      |
| 201900728   | В         | I pupared chironomial - not included in the weighboat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45      |
| 2019.0ct 28 | A         | I apated chironomia, not included in weighboat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PH      |
|             | 数         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|             |           | And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |         |
|             |           | Duca Moolit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| -           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|             |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

# ECOTOXICOLOGY CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: G4

Start Date: 2019 OCT 18

Sample Date: 2019 OCT 02 @ 12:50

End Date: 2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

**Job/Sample #:** B985653

| Measurements |       |          |                     |         |       | Samples Taken |                       |         |       |
|--------------|-------|----------|---------------------|---------|-------|---------------|-----------------------|---------|-------|
| рН           |       | Hardness |                     | Conduc  | tance | Alk           | alinity               | Am      | monia |
|              |       | (mg/L    | CaCO <sub>3</sub> ) | (μS/c   | cm)   | (mg/l         | . CaCO <sub>3</sub> ) | (n      | ng/L) |
| Initial      | Final | Initial  | Final               | Initial | Final | Initial       | Final                 | Initial | Fina  |
| 8.1          | 8.3   | 161      | 797                 | 507     | 8104  | 100           | 160                   | 6.14    | 0.10  |

Initial overlying WQ measurements: 2019 OUT 18 15 Date Analyst

Final overlying WQ measurements: 2019000 V5 Date Analyst

| Friday | Monday                   | Wednesday                              | Friday                                                | Monday                                                           |
|--------|--------------------------|----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|
| Day 0  | Day 3                    | Day 5                                  | Day 7                                                 | Day 10                                                           |
| 23.1   | 23.4                     | 23.4                                   | 22.9                                                  | 22.9                                                             |
| 8.1    | 8.5                      | 8.5                                    | 8.6                                                   | 8.4                                                              |
| VK     | 17                       |                                        | V                                                     |                                                                  |
| ys.    | 1                        | <b>y</b> 5                             | 45                                                    | ¥5                                                               |
|        | Day 0  23, 1  8, 1  V VL | Day 0 Day 3  23, 1 23.4  8.1 8.5  V LL | Day 0 Day 3 Day 5  23.1 23.4 23.4  8.1 8.5 8.5  VLL J | Day 0 Day 3 Day 5 Day 7  23.1 23.4 22.9  8.1 8.5 8.5 8.6  VILL J |

| Replicate   | Α  | В   | С  | D  | E  |
|-------------|----|-----|----|----|----|
| # Surviving | 8  | 8   | 8  | 9. | 9  |
| Analyst     | Kt | ys. | Kt | PH | K+ |

| Date      | Replicate | Comments                                      | Analyst |
|-----------|-----------|-----------------------------------------------|---------|
| 201900428 | Ē         | I pupated organism. Not included in weighboat | 14      |
|           |           |                                               |         |
|           |           |                                               |         |
|           |           |                                               |         |
|           |           | OM DIA MONH                                   |         |
|           |           | 90 M 1000 1                                   |         |
|           |           |                                               |         |
|           |           |                                               |         |
| /         |           |                                               |         |

Page 274 of 406 Maxxam

### ECOTOXICOLOGY

CHIRONOMUS DILUTUS TEST DATA SHEET

BBY2FCD-00140/3

Page 1 of 1

Sample ID: C1 WEST

Start Date: 2019 OCT 18

Sample Date: 2019 OCT 02 @ 16:20

**End Date:** 

2019 OCT 28

Sample Received: 2019 OCT 23 @ 18:00

Initial overlying WQ measurements:

Job/Sample #: B985653

Final overlying WQ measurements:

| Measurements |       |         |                     |         |        | Samples Taken |                       |         |       |
|--------------|-------|---------|---------------------|---------|--------|---------------|-----------------------|---------|-------|
| pl           | 1     | Hard    | ness                | Condu   | ctance | Alka          | alinity               | Amı     | monia |
|              |       | (mg/L   | CaCO <sub>3</sub> ) | (μS/    | (cm)   | (mg/L         | . CaCO <sub>3</sub> ) | (m      | g/L)  |
| Initial      | Final | Initial | Final               | Initial | Final  | Initial       | Final                 | Initial | Final |
| 8,0          | 8.4   | 181     | 312                 | 627     | 1175   | 93            | 170                   | 0.11    | 0.1   |

| Analyst    | <b>y</b> s | Date   | 2019 OCT  | 18     | Analyst | <i>y</i> 5 | Date 2019 OCT 28 |
|------------|------------|--------|-----------|--------|---------|------------|------------------|
| Day        | Friday     | Monday | Wednesday | Friday | Monday  |            |                  |
|            | Day 0      | Day 3  | Day 5     | Day 7  | Day 10  |            |                  |
| Temp. (ºC) | 23.1       | 23.7   | ₹3.3      | 23,2   | 22.9    |            |                  |
|            | - 0        | 0 .    | 0 /       |        | 720 SS  |            |                  |

8.6 8.4 D.O. (mg/L) VK Feeding 15 15 y5 15 Analyst

| Replicate   | Α  | В  | С  | D  | E  |
|-------------|----|----|----|----|----|
| # Surviving | Q  | 9  | 4  | 9  | 10 |
| Analyst     | 94 | Kt | 59 | 59 | у5 |

| Date              | Replicate | Comments                                     | Analyst |
|-------------------|-----------|----------------------------------------------|---------|
| 2019at18          | Measure   | No of Chironameds = 10 WB gnitial = 1.103289 | 84      |
|                   |           |                                              |         |
| The second second |           |                                              |         |
|                   |           |                                              |         |
|                   |           |                                              |         |
|                   |           |                                              |         |
|                   |           | 500 214                                      |         |
|                   |           | 2019 100019                                  |         |
|                   |           |                                              |         |
|                   |           |                                              |         |
|                   |           |                                              |         |

# Reconstitued Water Recipe for Chironomus

Maxxam BBY2FCD-00141/2

Page 1 of 1

BATCH ID:

2019 Oct 16

(Date Hardened)

Chironomus dilutus H<sub>2</sub>O Hardness Adjustment (Environment Canada 1997) (For water hardness 90 - 100 mg/L)

| Chemical Weights | CaCl₂X2H₂O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MgSO <sub>4</sub> (g) | CaSO <sub>4</sub> (g) | NaHCO <sub>3</sub> (g) | KCI (g)                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------------------------|------------------------|
| Brand            | Ashes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fishen                | Alda<br>Aesan         | R3 her                 | fro hen                |
| Lot#             | 184678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 183674                | 2098068               | 187508                 | 172053                 |
| Calculated       | 3.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.80                  | 3.00                  | 5.76                   | 0.24                   |
| Actual           | 3.9703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8000                | 3.0004                | 5.7602                 | 0.2402                 |
| Balance ID: BBY2 | -0260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | -0                    |                        | NO SECURIT SE PROGRAMA |
| Analyst: $Q M o$ | Magy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                    | Add to                | Гуре 3 DI (L):         | 60                     |
| Water Use: 60L   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | DI Machine ID:        | B BY 2-0               | 160                    |
| Date: 2019 (     | Oct 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | _                     |                        |                        |
| Water Quality:   | To the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th | ****                  | -                     |                        |                        |
| Temp: 77.9       | pH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3                   | Hardness              | 100                    |                        |
| Cond.: 361       | DO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                   | Alkalinity:           |                        | • 12                   |
| Analyst: Y.Su    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | Date:                 | 2019 OCT 1             | 7                      |
| Comments:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                        |                        |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                       |                        |                        |

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulphate - anhydrous)

CaSO<sub>4</sub> (g) (Calcium Sulphate- anhydrous)

NaHCO3 (Sodium Bicarbonate)

KCI (Potassium Chloride)

Recipe:

0.45mM CaCl2: 0.37mM CaSO4: 0.25mM MgSO4: 1.14mM NaHCO3: 0.05mM KCl

# Chironomus dilutus (Formerly C. tentans) **Measurements of Head Capsule Widths**

BBY2FCD-00247/1 Page 1 of 1

Client # & Name: SLR

Start Date and Time: 2019 Oct 18

End Date: 2019 Oct 28

Organism Lot #: AB191018

Head Widths at Reginning of Test

| Beginning of Test |
|-------------------|
| Head Width (mm)   |
| 0.35              |
| 0.65              |
| 0.34              |
| 0.38              |
| 0.41              |
| 0.40              |
| 0.40              |
| 0.66              |
| 0.37              |
| 0.45              |
| 0.46              |
| 0.37              |
| 0.34              |
| 0.45              |
| 0.62              |
| 0.36              |
| 0.39              |
| 0.40              |
| 0.50              |
| 0.55              |
| 0.44              |
| 0.10              |
| DML               |
|                   |

Average must be 0.33-0.45 mm (Environment Canada 1998) 1 mm=40 units on micrometer

# Chironomus dilutus (Formerly C. tentans) Measurements of Head Capsule Widths

Maxam BBY2FCD-00247/1 Page 1 of 1

Client # & Name: 1776, 254, 4737

Start Date and Time: 1019 OCHS

End Date: 2019 OC+28

Organism Lot #: ABIQIOIS

Head Widths at Beginning of Test

|              | t Beginning of Test |
|--------------|---------------------|
| Chironomid # | Head Width (mm)     |
| 1            | 0.35                |
| 2            | 065                 |
| 3            | 0.34                |
| 4            | 0.38                |
| 5            | 0.41                |
| 6            | 0.40                |
| . 7          | 0.40                |
| 8            | 066                 |
| 9            | 0.37                |
| 10           | 0.45                |
| 11           | 0.46                |
| 12           | 0.37                |
| 13           | 0.34                |
| 14           | 0.45                |
| 15           | 0.62                |
| 16           | 0.26                |
| 17           | 0.39                |
| 18           | 0.40                |
| 19           | 0.50                |
| 20           | 0.55                |
| Average      | #DIV/0!             |
| SD           | #DIV/0!             |
| Analyst      | DML                 |

Average must be 0.33-0.45 mm (Environment Canada 1998) 1 mm=40 units on micrometer

1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524



Toll Free: 800/331-5916 Tel:970/484-5091 Fax:970/484-2514

AB191018

|                                                     |                                                                         | OKGAMSM II.                 |                   |                                         |                                         |
|-----------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|-------------------|-----------------------------------------|-----------------------------------------|
| 00 + 145+300                                        |                                                                         |                             | ě                 | 54 <sub>- 12</sub>                      | ,                                       |
| 490 + 145 + 300 DATE:                               | 10/17                                                                   | /2019                       |                   |                                         |                                         |
|                                                     |                                                                         |                             | ·                 | a                                       |                                         |
| SPECIES:                                            | Chiro                                                                   | nomus dilutus (forme        | rly C. tentans)   |                                         |                                         |
| AGE:                                                | Depo                                                                    | sited 10/7/2019             |                   |                                         |                                         |
| LIFE STAGE:                                         | Secon                                                                   | nd Instar 10/16/2019        |                   |                                         |                                         |
| HATCH DATE:                                         | Emer                                                                    | gent date 10/28/2019        |                   |                                         | •                                       |
| BEGAN FEEDING:                                      | Imme                                                                    | ediately                    |                   |                                         | ķ                                       |
| FOOD:                                               | Raph                                                                    | idocelis subcapitata.*      | , Flake slurry    |                                         |                                         |
|                                                     |                                                                         |                             | (*8)              | * 7                                     |                                         |
| Water Chemistry Record:                             |                                                                         | Current                     |                   | Range                                   |                                         |
|                                                     |                                                                         |                             |                   |                                         |                                         |
| TEMP                                                | ERATURE: 1 _                                                            | 24°C                        |                   | 24-26°C                                 |                                         |
| TEMP<br>SALINITY/COND                               |                                                                         | 24°C                        |                   | 24-26°C                                 | - 4                                     |
|                                                     | UCTIVITY: _                                                             | 24°C<br><br>146 mg/l        |                   | 24-26°C<br><br>100-180 mg/l             | 27                                      |
| SALINITY/COND                                       | UCTIVITY: _ (as CaCO <sub>3</sub> ): _                                  |                             |                   |                                         | : · · · · · · · · · · · · · · · · · · · |
| SALINITY/COND<br>TOTAL HARDNESS                     | UCTIVITY: _ (as CaCO <sub>3</sub> ): _                                  | <br>146 mg/l                |                   | <br>100-180 mg/l                        | . e                                     |
| SALINITY/COND<br>TOTAL HARDNESS<br>TOTAL ALKALINITY | UCTIVITY: _ (as CaCO <sub>3</sub> ): _ (as CaCO <sub>3</sub> ): _ pH: _ | 146 mg/l<br>80 mg/l         | a subcapitata and | 100-180 mg/l<br>50-90 mg/l<br>7.58-8.30 | rnutum                                  |
| SALINITY/COND<br>TOTAL HARDNESS<br>TOTAL ALKALINITY | UCTIVITY: _ (as CaCO <sub>3</sub> ): _ (as CaCO <sub>3</sub> ): _ pH: _ | 146 mg/l<br>80 mg/l<br>7.61 | a subcapitata and | 100-180 mg/l<br>50-90 mg/l<br>7.58-8.30 | rnutum                                  |
| SALINITY/COND<br>TOTAL HARDNESS<br>TOTAL ALKALINITY | UCTIVITY: _ (as CaCO <sub>3</sub> ): _ (as CaCO <sub>3</sub> ): _ pH: _ | 146 mg/l<br>80 mg/l<br>7.61 | a subcapitata and | 100-180 mg/l<br>50-90 mg/l<br>7.58-8.30 | rnutum                                  |

### ORGANISMS -ACCLIMATION AND HOLDING CONDITIONS



|                     |               |              |                                       |                               |                |            |          | CD-00070/5<br>of\ |  |
|---------------------|---------------|--------------|---------------------------------------|-------------------------------|----------------|------------|----------|-------------------|--|
|                     | Client #'s :  | 254/         | 4737/17                               | 776 <sub>Date &amp; Tir</sub> | me of Arrival: | 20190      | 06118@   |                   |  |
| Org                 | anism Lot #:  | AB191        | 018                                   | Age                           | upon Arrival:  | 3rd instar |          |                   |  |
| Water (L) per S     | hipping Bag:  | 5001         | np                                    |                               | 35             |            | romus di | lutus             |  |
| Number of Sh        | ipping Bags:  | 11           |                                       | #of Organis                   | ms Ordered:    | 1490 t     | 145+300  | )                 |  |
| 200 Vest 2002       |               |              |                                       | Light In                      | tensity (lux): | 60Z-8      | 818      |                   |  |
| rrival Conditions   |               |              | Cond                                  |                               |                |            |          |                   |  |
| ag ID               | # Dead        | % Dead       | Cond (µS/cm)/ Salinity                | Temp<br>(°C)                  | DO (<br>mg/L)  | рН         | Feeding  | Analyst           |  |
| - 1                 | О             | 0            | (ppt)<br>474                          | 21.5                          | 14.1           | 7.0        | \        | ys                |  |
| 2                   | O             | 0            | 471                                   | 21.7                          | 19.1           | 7.0        |          | ys                |  |
| 3                   | 0             | 0            | 469                                   | 2116                          | 20.5           | 7.0        |          | 43                |  |
| 4                   | 0             | Ð            | 475                                   | @475ei                        | 18.9           | 7.0        |          | 75                |  |
| 5                   | 0             | 0            | 470                                   | \$ 7,5                        | (4,7           | 7.0        | 219      | 75                |  |
| 6                   | 0             | Ð            | 475<br>475                            | 21.7                          | 1615           | 7.0        | 213      | 75                |  |
| 7                   | O             | Ø            |                                       | 21.8                          | 13.8           | 7.0        | Shall    | 45                |  |
| 8                   | 0             | 0            | 478                                   | 2114                          | 17.4           | 6.9        | 2001 A   | 45                |  |
| 9                   | 0             | 0            | 470                                   | 21.9                          | 19.4           | 7.0        | 100      | VS                |  |
| 10                  | O             | 0            | 481                                   | 21.9                          | 1918           | 7.0        | 0.0      | 145               |  |
| Daily Conditions Du | ring Holding/ | Acclimation  | 519                                   | 21.8                          | 19.0           | 7.0        | NA       | N                 |  |
|                     |               | alities      |                                       | 1                             | Water Quality  | ,          |          |                   |  |
| Date                | # Dead        | % Dead       | Cond<br>(µS/cm)/<br>Salinity<br>(ppt) | Temp<br>(°C)                  | DO<br>(mg/L)   | рН         | Feeding  | Analyst           |  |
|                     |               |              |                                       |                               |                |            |          |                   |  |
|                     |               |              |                                       |                               |                |            | •        | -                 |  |
|                     |               | /            |                                       |                               |                |            |          |                   |  |
|                     |               |              |                                       |                               |                |            |          |                   |  |
| S Commission        |               |              |                                       |                               |                |            |          |                   |  |
|                     |               |              |                                       | PH                            |                |            |          |                   |  |
|                     |               |              | 20                                    | la octa                       |                | ,          | -        |                   |  |
|                     |               |              |                                       | 19 Oct 21                     | ,              |            |          |                   |  |
|                     | -             |              |                                       |                               | 1              |            |          |                   |  |
|                     |               |              | -                                     |                               |                |            |          |                   |  |
|                     | -             | -            |                                       |                               |                |            |          |                   |  |
| Total Mortalities   |               |              |                                       |                               |                |            |          |                   |  |
| Equipment ID:       | BBY2          | - 0408       | J                                     |                               |                |            |          |                   |  |
| Comments (e.g. fee  | ding times ar | nd quantitie | s; fish behavi                        | our, acclimati                | on conditions  | s):        |          | Analyst           |  |
| did water           | quality       | opan         | ourival.                              | used                          | short          | y ast      | er       | - Em              |  |
|                     | . /           |              |                                       |                               |                |            |          |                   |  |
|                     |               |              |                                       | DW                            | 2019 No        | 100        |          |                   |  |
|                     |               |              |                                       | · ·                           | 0              |            |          |                   |  |

#### Randomization Chart Tab: Sediment Tests

Page 280 of 406

A Burnau Veritas Group Company

BBY2FCD-00438/2

Pg: 1 of 1

Colour

Purple

Pink

Light Blue

Light Green

Pink/Yellow

Red/Green

Test: CHIRONOMUS

Start Date: 2019 OCT 18

Client # & Name: 1776 SLR CONSULTING LTD

| Back Wall |    | Position Map | )    |
|-----------|----|--------------|------|
| 6         | 12 | 18           |      |
| 5         | 11 | 17           | *    |
| 4         | 10 | 16           |      |
| 3         | 9  | 15           |      |
| 2         | 8  | 14           |      |
| 1         | 7  | 13           | etc. |

Front of Counter

| Position # | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Replicate | Colour     |    | Position # | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Replicate    |   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---|
| 35         | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α         |            |    | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α            |   |
| 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В         |            |    | 13         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            |   |
| 40         | CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C         | Red        |    | 34         | G4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | С            |   |
| 19         | CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D         | Nea        |    | 16         | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA | D            |   |
| 14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 39         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            |   |
| 42         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure   |            |    | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure      | _ |
| 33         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А         |            |    | 47         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A            |   |
| 37         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В         |            |    | 4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            |   |
| 23         | C6 EAST/G7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С         | Orange     |    | 25         | C1 WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С            |   |
| 7          | CO EAST/G/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D         | Orange     |    | 36         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            |   |
| 22         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 17         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            |   |
| 24         | - ASSESSMENT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH | Measure   |            | *  | 2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure      | - |
| 48         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A         |            |    | 49         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A            |   |
| 10         | 7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В         |            |    | 50         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            |   |
| 41         | C5 EAST/G6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C         | Yellow     |    | 51         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С            |   |
| 21         | CS EASI/GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D         | renow      |    | 52         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D<br>E       |   |
| 43         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 53         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |   |
| 9          | EL EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Measure   |            |    | 54         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure      | - |
| 28         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α         |            |    | 55         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A            |   |
| 45         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В         |            |    | 56         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B<br>C       |   |
| 8          | C4 WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С         | Green      |    | 57         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            |   |
| 29         | C4 WLST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D         | 5,05       |    | 58         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            |   |
| 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 59         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |   |
| 26         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure   |            |    | 60         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure<br>A | - |
| 11         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α         |            |    | 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            |   |
| 31         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В         |            |    | 62         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C            |   |
| 38         | C3 WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | С         | Dark Green |    | 63         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            |   |
| 12         | CS VVLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D         |            |    | 64         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            |   |
| 30         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 65         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure      |   |
| 44         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure   |            |    | 66         | -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A            | - |
| 20         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α         |            |    | 67         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В            |   |
| 18         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | В         |            |    | 68         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C            |   |
| 27         | C3CENTRE/G5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | С         | Blue       |    | 69         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D            |   |
| 15         | COCLINING/ GO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | D         | ANTENE     |    | 70         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E            |   |
| 46         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E         |            |    | 71         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure      |   |
| 32         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Measure   |            | 20 | 72         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ivieasure    | - |



BV Labs Job #: B989884 Report Date: 2019/10/25 Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653

Sampler Initials: YS

#### **RESULTS OF CHEMICAL ANALYSES OF WATER**

| BV Labs ID        |       | WS9519                    |       | WS9520                    | WS9521                    |      |
|-------------------|-------|---------------------------|-------|---------------------------|---------------------------|------|
| Sampling Date     |       | 2019/10/18                |       | 2019/10/18                | 2019/10/18                |      |
| COC Number        |       | 18218                     |       | 18218                     | 18218                     |      |
|                   | UNITS | 1776 Control PW<br>Chiron | RDL   | 1776 C6 East PW<br>Chiron | 1776 C5 East PW<br>Chiron | RDL  |
| Nutrients         |       |                           |       |                           |                           |      |
| Total Ammonia (N) | mg/L  | 0.32                      | 0.015 | 21 (1)                    | 29 (1)                    | 0.38 |

|               | UNITS | 1776 C4 West PW<br>Chiron | RDL | 1776 C3 West PW<br>Chiron | RDL | 1776 C3 Center PW<br>Chiron | RDL |
|---------------|-------|---------------------------|-----|---------------------------|-----|-----------------------------|-----|
| COC Number    |       | 18218                     |     | 18218                     |     | 18218                       | -   |
| Sampling Date |       | 2019/10/18                |     | 2019/10/18                |     | 2019/10/18                  |     |
| BV Labs ID    |       | WS9522                    |     | WS9523                    |     | WS9524                      |     |

| Nutrients         |      |        |      |        |      |     |       |
|-------------------|------|--------|------|--------|------|-----|-------|
| Total Ammonia (N) | mg/L | 55 (1) | 0.75 | 14 (1) | 0.15 | 1.3 | 0.015 |

RDL = Reportable Detection Limit

<sup>(1)</sup> Detection limits raised due to dilution to bring analyte within the calibrated range.



BV Labs Job #: B989884 leport Date: 2019/10/25 Bureau Veritas Laboratories (TOX Internal)

Client Project #: B985653 Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WS9525               |      | WS9526                    |       | WS9527                             | WS9528                                |       |
|-----------------------------|-------|----------------------|------|---------------------------|-------|------------------------------------|---------------------------------------|-------|
| Sampling Date               |       | 2019/10/18           |      | 2019/10/18                |       | 2019/10/18                         | 2019/10/18                            |       |
| COC Number                  |       | 18218                |      | 18218                     |       | 18218                              | 18218                                 |       |
|                             | UNITS | 1776 G4 PW<br>Chiron | RDL  | 1776 C1 West PW<br>Chiron | RDL   | 1776 Control Overy<br>Day 0 Chiron | 1776 C6 East<br>Overy Day 0<br>Chiron | RDL   |
| Misc. Inorganics            |       | <del></del>          |      |                           |       |                                    |                                       |       |
| рН                          | рН    |                      |      |                           |       | 7.64                               | 7.88                                  | N/A   |
| Anions                      |       |                      |      |                           |       |                                    |                                       |       |
| Alkalinity (PP as CaCO3)    | mg/L  |                      |      |                           |       | <1.0                               | <1.0                                  | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  |                      |      |                           |       | 60                                 | 97                                    | 1.0   |
| Bicarbonate (HCO3)          | mg/L  |                      |      |                           |       | 73                                 | 120                                   | 1.0   |
| Carbonate (CO3)             | mg/L  |                      |      |                           |       | <1.0                               | <1.0                                  | 1.0   |
| Hydroxide (OH)              | mg/L  |                      |      |                           |       | <1.0                               | <1.0                                  | 1.0   |
| Nutrients                   |       |                      |      |                           |       | 2.00.00                            | Ver Santon                            |       |
| Total Ammonia (N)           | mg/L  | 11 (1)               | 0.15 | 0.64                      | 0.015 | 0.074                              | 0.13                                  | 0.015 |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

| BV Labs ID                  |       | WS9529                                | WS9530                                | WS9531                                | WS9532                                  |       |
|-----------------------------|-------|---------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------|
| Sampling Date               |       | 2019/10/18                            | 2019/10/18                            | 2019/10/18                            | 2019/10/18                              |       |
| COC Number                  |       | 18218                                 | 18218                                 | 18218                                 | 18218                                   |       |
|                             | UNITS | 1776 C5 East<br>Overy Day 0<br>Chiron | 1776 C4 West<br>Overy Day 0<br>Chiron | 1776 C3 West<br>Overy Day 0<br>Chiron | 1776 C3 Center<br>Overy Day 0<br>Chiron | RDL   |
| Misc. Inorganics            |       |                                       |                                       |                                       |                                         |       |
| рН                          | рН    | 7.99                                  | 7.99                                  | 8.01                                  | 7.93                                    | N/A   |
| Anions                      |       |                                       |                                       |                                       |                                         |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                    | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 120                                   | 130                                   | 100                                   | 93                                      | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 150                                   | 160                                   | 120                                   | 110                                     | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                    | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                                  | <1.0                                  | <1.0                                  | <1.0                                    | 1.0   |
| Nutrients                   |       |                                       |                                       |                                       |                                         |       |
|                             | mg/L  | 0.32                                  | 1.3                                   | 0.48                                  | 0.17                                    | 0.015 |



BV Labs Job #: B989884 Report Date: 2019/10/25 Bureau Veritas Laboratories (TOX Internal)

Client Project #: B985653 Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  | 9     | WS9533                        | WS9534                            |       |
|-----------------------------|-------|-------------------------------|-----------------------------------|-------|
| Sampling Date               |       | 2019/10/18                    | 2019/10/18                        |       |
| COC Number                  |       | 18218                         | 18218                             |       |
|                             | UNITS | 1776 G4 Overy<br>Day 0 Chiron | 1776 C1 West<br>Overy Day OChiron | RDL   |
| Misc. Inorganics            |       |                               |                                   |       |
| рН                          | рН    | 7.90                          | 7.77                              | N/A   |
| Anions                      |       |                               |                                   |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 100                           | 93                                | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 130                           | 110                               | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                          | <1.0                              | 1.0   |
| Nutrients                   |       |                               |                                   |       |
| Total Ammonia (N)           | mg/L  | 0.14                          | 0.11                              | 0.015 |



BV Labs Job #: B992765 Report Date: 2019/11/04 Bureau Veritas Laboratories (TOX Internal) Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WU6782                    |       | WU6783                    | WU6784                       | WU6785                    | 1     |
|-----------------------------|-------|---------------------------|-------|---------------------------|------------------------------|---------------------------|-------|
| Sampling Date               |       | 2019/10/28                |       | 2019/10/28                | 2019/10/28                   | 2019/10/28                |       |
| COC Number                  |       | 18571                     |       | 18571                     | 18571                        | 18571                     |       |
|                             | UNITS | 1776 Ch Day 10<br>Control | RDL   | 1776 Ch Day 10 C4<br>West | 1776 Ch Day 10<br>C5 East/G6 | 1776 Ch Day 10 C3<br>West | RDL   |
| Misc. Inorganics            |       |                           |       |                           |                              |                           |       |
| pH                          | рН    | 8.14                      | N/A   | 7.93                      | 7.89                         | 8.13                      | N/A   |
| Anions                      |       |                           |       |                           |                              |                           |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 140                       | 1.0   | 110                       | 97                           | 150                       | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 180                       | 1.0   | 130                       | 120                          | 190                       | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Nutrients                   |       |                           |       |                           |                              |                           |       |
| Total Ammonia (N)           | mg/L  | 6.6 (1)                   | 0.075 | 0.12                      | 0.10                         | 0.090                     | 0.015 |
|                             |       |                           |       |                           | ·                            |                           |       |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

| BV Labs ID                                         |       | WU6786                         | WU6787                    | WU6788               | WU6789                      |       |
|----------------------------------------------------|-------|--------------------------------|---------------------------|----------------------|-----------------------------|-------|
| Sampling Date                                      |       | 2019/10/28                     | 2019/10/28                | 2019/10/28           | 2019/10/28                  |       |
| COC Number                                         |       | 18571                          | 18571                     | 18571                | 18571                       |       |
|                                                    | UNITS | 1776 Ch Day 10<br>C3 Centre G5 | 1776 Ch Day 10 C1<br>West | 1776 Ch Day 10<br>G4 | 1776 Ch Day 10<br>C6EAST/G7 | RDL   |
| Misc. Inorganics                                   |       |                                |                           |                      |                             |       |
| рН                                                 | рН    | 8.19                           | 8.19                      | 8.16                 | 8.09                        | N/A   |
| Anions                                             |       |                                |                           |                      |                             |       |
| Alkalinity (PP as CaCO3)                           | mg/L  | <1.0                           | <1.0                      | <1.0                 | <1.0                        | 1.0   |
| Alkalinity (Total as CaCO3)                        | mg/L  | 150                            | 170                       | 160                  | 130                         | 1.0   |
| Bicarbonate (HCO3)                                 | mg/L  | 190                            | 200                       | 190                  | 160                         | 1.0   |
| Carbonate (CO3)                                    | mg/L  | <1.0                           | <1.0                      | <1.0                 | <1.0                        | 1.0   |
| Hydroxide (OH)                                     | mg/L  | <1.0                           | <1.0                      | <1.0                 | <1.0                        | 1.0   |
| Nutrients                                          |       |                                |                           |                      |                             |       |
| Total Ammonia (N)                                  | mg/L  | 0.078                          | 0.11                      | 0.10                 | 0.11                        | 0.015 |
| RDL = Reportable Detection<br>N/A = Not Applicable | Limit |                                |                           |                      |                             |       |

| Freshwater Sedimer    | nt Toxicity  | / Testing | usina  | Chironomus    | dilutus | and H | valella | azteca |
|-----------------------|--------------|-----------|--------|---------------|---------|-------|---------|--------|
| i iesiiwatei oeuiiiei | IL I OAIGILY | 1 County  | usiliy | Onin Ontonius | unutus  | andi  | yaiciia | azicca |

| Δ | DI | N | $\Box$ | IV |
|---|----|---|--------|----|

C 14-DAY *HYALELLA AZTECA* SURVIVAL AND GROWTH TEST

BUREAU VERITAS LABORATORIES

Report Date:

14 Nov-19 11:43 (p 1 of 2)

|                                            |              | - 10 -   | 21                                      | 6.00 + 1                   |               |           | Test Co        | de:                          | HA-1776-0119   03-5566-2885 |  |  |  |
|--------------------------------------------|--------------|----------|-----------------------------------------|----------------------------|---------------|-----------|----------------|------------------------------|-----------------------------|--|--|--|
| Hyalella 14-d Sur                          | rvival and ( | Growth   | Sediment Te                             | st                         |               |           |                |                              | Bureau Veritas Laboratories |  |  |  |
|                                            |              |          |                                         | Endpoint: Survival Rate    |               |           |                |                              | CETIS Version: CETISv1.9.2  |  |  |  |
| Analyzed: 1                                | 4 Nov-19 11  | :43      | Analysis:                               | STP 2xK Con                | itingency Tab | les       | Official       | Results:                     | Yes                         |  |  |  |
| Batch ID: 16                               | -9287-0172   |          | Test Type:                              | Test Type: Survival-Growth |               |           |                |                              |                             |  |  |  |
| Start Date: 17                             | Oct-19 16:3  | 34       | Protocol:                               | Protocol: EC/EPS 1/RM/33   |               |           |                | Diluent: Reconstituted Water |                             |  |  |  |
| Ending Date: 31                            |              | 00       | Species:                                | Hyalella azteca            |               |           | Brine:         | Brine: Not Applicable        |                             |  |  |  |
| Duration: 13                               | d 19h        |          | Source:                                 | Aquatic Biosystems, CO     |               |           | Age:           |                              |                             |  |  |  |
| Fisher Exact/Bor                           | nferroni-Ho  | lm Test  |                                         |                            |               |           |                |                              |                             |  |  |  |
| Sample I vs                                | Sample       | ll .     | Test \$                                 | Stat P-Type                | P-Value       | Decision  | n(a:5%)        |                              |                             |  |  |  |
| Control                                    | C6 East      | t / G7*  | 0.000                                   | 0 Exact                    | 4.7E-06       | Significa | nt Effect      |                              |                             |  |  |  |
|                                            | C5 East      |          | 0.000                                   | 0 Exact                    | 6.5E-11       | Significa | nt Effect      |                              |                             |  |  |  |
|                                            | C4 Wes       |          | 0.000                                   | D Exact                    | 1.7E-25       | Significa | nt Effect      |                              |                             |  |  |  |
|                                            | C3 Wes       |          | 0.000                                   |                            | 1.6E-08       | Significa | nt Effect      |                              |                             |  |  |  |
|                                            | C3 Cen       | tre / G5 | 0.029                                   |                            | 0.0594        | Non-Sigr  | ificant Effect |                              |                             |  |  |  |
|                                            | G4*          |          | 0.000                                   |                            | 2.1E-05       | Significa |                |                              |                             |  |  |  |
|                                            | C1 Wes       | t        | 0.1022                                  | 2 Exact                    | 0.1022        | Non-Sign  | ificant Effect | 3.4                          |                             |  |  |  |
| Auxiliary Tests                            |              |          |                                         |                            |               |           |                |                              |                             |  |  |  |
| Attribute                                  | Test         |          |                                         |                            | Test Stat     | Critical  | P-Value De     | ecision(a                    | :5%)                        |  |  |  |
| Extreme Value                              | Grubbs       | Extreme  | Value Test                              |                            | 2.899         | 3.036     | 0.0882 No      | Outliers                     | Detected                    |  |  |  |
| Data Summary                               |              |          |                                         |                            |               |           | . Y            | 311                          |                             |  |  |  |
| Sample                                     | Code         | NR       | R                                       | NR + R                     | Prop NR       | Prop R    | %Effect        |                              |                             |  |  |  |
| Control                                    |              | 49       | 1                                       | 50                         | 0.98          | 0.02      | 0.0%           |                              |                             |  |  |  |
| C6 East / G7                               |              | 30       | 20                                      | 50                         | 0.6           | 0.4       | 38.78%         |                              |                             |  |  |  |
| C5 East / G6                               |              | 19       | 31                                      | 50                         | 0.38          | 0.62      | 61.22%         |                              |                             |  |  |  |
| C4 West                                    |              | 1        | 49                                      | 50                         | 0.02          | 0.98      | 97.96%         |                              |                             |  |  |  |
| C3 West                                    |              | 24       | 26                                      | 50                         | 0.48          | 0.52      | 51.02%         |                              |                             |  |  |  |
| C3 Centre / G5                             |              | 43       | 7                                       | 50                         | 0.86          | 0.14      | 12.24%         |                              |                             |  |  |  |
| G4                                         |              | 32       | 18                                      | 50                         | 0.64          | 0.36      | 34.69%         |                              |                             |  |  |  |
| C1 West                                    |              | 45       | 5                                       | 50                         | 0.9           | 0.1       | 8.16%          | 7                            |                             |  |  |  |
| Survival Rate Deta                         |              | <u></u>  |                                         |                            |               |           |                |                              |                             |  |  |  |
| Sample                                     | Code         | Rep 1    | A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | Rep 3                      | Rep 4         | Rep 5     |                |                              |                             |  |  |  |
| Control                                    |              | 1.000    |                                         |                            | 1.0000        | 0.9000    |                |                              |                             |  |  |  |
| C6 East / G7                               |              | 0.500    |                                         |                            | 0.4000        | 0.8000    |                |                              |                             |  |  |  |
| C5 East / G6                               |              | 0.500    |                                         |                            | 0.6000        | 0.0000    |                |                              |                             |  |  |  |
|                                            |              | 0.000    | 0.0000                                  | 0.0000                     | 0.0000        | 0.1000    |                |                              |                             |  |  |  |
|                                            |              | 0.000    | 0.0000                                  | 0.0000                     | 0.0000        |           |                |                              |                             |  |  |  |
| C3 West                                    |              | 0.500    |                                         |                            | 0.4000        | 0.4000    |                |                              |                             |  |  |  |
| C3 West<br>C3 Centre / G5                  |              |          | 0.7000                                  | 0.4000                     |               |           |                |                              |                             |  |  |  |
| C4 West<br>C3 West<br>C3 Centre / G5<br>G4 |              | 0.500    | 0.7000<br>0 1.0000                      | 0.4000<br>0.9000           | 0.4000        | 0.4000    |                |                              |                             |  |  |  |

Report Date:

14 Nov-19 11:43 (p 2 of 2)

Test Code:

HA-1776-0119 | 03-5566-2885

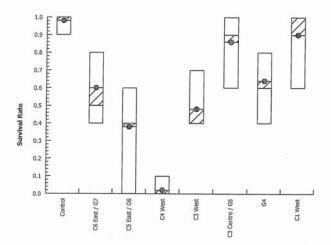
Hyalella 14-d Survival and Growth Sediment Test

**Bureau Veritas Laboratories** 

Analysis ID: Analyzed: 08-9493-9909 14 Nov-19 11:43

Enup

Endpoint: Survival Rate


Analysis: STP 2xK Contingency Tables

CETIS Version:

CETISv1.9.2

Official Results: Yes

Graphics





#### **CETIS Analytical Report** Report Date: 14 Nov-19 11:43 (p 1 of 2) Test Code: HA-1776-0119 | 03-5566-2885 Hyalella 14-d Survival and Growth Sediment Test **Bureau Veritas Laboratories** Analysis ID: 14-4476-8468 Endpoint: Mean Dry Weight-mg **CETIS Version:** CETISv1.9.2 Analyzed: 14 Nov-19 11:43 Analysis: Parametric-Two Sample Official Results: Yes Batch ID: 16-9287-0172 Test Type: Survival-Growth Analyst: Start Date: 17 Oct-19 16:34 Protocol: EC/EPS 1/RM/33 Diluent: Reconstituted Water Ending Date: 31 Oct-19 12:00 Species: Hyalella azteca Brine: Not Applicable **Duration:** Aquatic Biosystems, CO 13d 19h Source: Age: **Data Transform** Alt Hyp Comparison Result **PMSD** Untransformed C > T C6 East / G7 failed mean dry weight-mg 14.18% C5 East / G6 failed mean dry weight-mg 14.18% C4 West failed mean dry weight-mg 14.18% C3 West failed mean dry weight-mg 14.18% C3 Centre / G5 failed mean dry weight-mg 14.18% G4 failed mean dry weight-mg 14.18% C1 West failed mean dry weight-mg 14.18% **Equal Variance t Two-Sample Test** Sample I Sample II Test Stat Critical MSD DF P-Type P-Value Decision(a:5%) Control C6 East / G7\* 9.529 1.86 0.019 8 CDF 6.1E-06 Significant Effect C5 East / G6\* 8.422 Significant Effect 1.895 0.022 7 CDF 3.3E-05 C4 West\* 4.297 2.132 Significant Effect 0.040 4 CDF 0.0063 C3 West\* 13.48 1.86 0.015 8 CDF 4.4E-07 Significant Effect C3 Centre / G5\* 7.181 1.86 0.017 8 CDF 4.7E-05 Significant Effect G4\* Significant Effect 6.139 1.86 0.027 8 CDF 1.4E-04 C1 West\* 3.64 1.86 0.020 8 CDF 0.0033 Significant Effect **Auxiliary Tests** Attribute Test Stat Critical P-Value Decision(a:5%) Extreme Value Grubbs Extreme Value Test 2.971 2.978 0.0516 No Outliers Detected **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) Between 0.0472032 0.0067433 7 23.34 <1.0E-37 Significant Effect Error 0.0078016 0.0002889 27 Total 0.0550048 34 **Distributional Tests** Attribute Test Test Stat Critical P-Value Decision(a:1%) Variances Levene Equality of Variance Test 1.253 3.388 0.3101 Equal Variances Distribution Shapiro-Wilk W Normality Test 0.9727 0.9146 0.5210 Normal Distribution Mean Dry Weight-mg Summary Sample Code

| Sample         | Code | Count | wean    | 95% LCL | 95% UCL | Median  | Min     | Max     | Std Err  | CV%    | %Effect |
|----------------|------|-------|---------|---------|---------|---------|---------|---------|----------|--------|---------|
| Control        |      | 5     | 0.1415  | 0.12    | 0.163   | 0.134   | 0.1256  | 0.166   | 0.007743 | 12.24% | 0.00%   |
| C6 East / G7   |      | 5     | 0.04305 | 0.02406 | 0.06204 | 0.045   | 0.024   | 0.06    | 0.006841 | 35.53% | 69.58%  |
| C5 East / G6   |      | 4     | 0.04383 | 0.01638 | 0.07129 | 0.04667 | 0.022   | 0.06    | 0.008627 | 39.36% | 69.02%  |
| C4 West        |      | 1     | 0.06    |         |         | 0.06    | 0.06    | 0.06    | 0        | 0.00%  | 57.60%  |
| C3 West        |      | 5     | 0.02939 | 0.02093 | 0.03784 | 0.028   | 0.0225  | 0.04    | 0.003045 | 23.17% | 79.23%  |
| C3 Centre / G5 |      | 5     | 0.07627 | 0.06307 | 0.08947 | 0.08167 | 0.05889 | 0.08444 | 0.004754 | 13.94% | 46.11%  |
| G4             |      | 5     | 0.0525  | 0.01846 | 0.08654 | 0.05    | 0.02333 | 0.0975  | 0.01226  | 52.21% | 62.90%  |
| C1 West        |      | 5     | 0.1022  | 0.08135 | 0.1231  | 0.09667 | 0.08444 | 0.121   | 0.007518 | 16.45% | 27.76%  |
|                |      |       |         |         |         |         |         |         |          |        |         |

Analyst: QA: NOVI S

## **CETIS Analytical Report**

Report Date:

14 Nov-19 11:43 (p 2 of 2)

Test Code:

HA-1776-0119 | 03-5566-2885

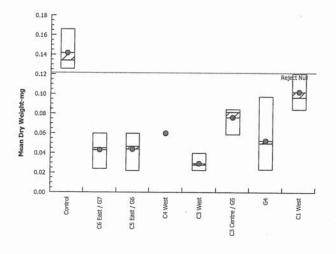
| Hyalella 14-d | Survival and | Growth Sediment T | est |
|---------------|--------------|-------------------|-----|
|---------------|--------------|-------------------|-----|

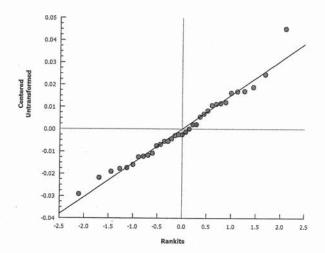
**Bureau Veritas Laboratories** 

Analysis ID: Analyzed:

14-4476-8468

14 Nov-19 11:43


Endpoint: Mean Dry Weight-mg Analysis: Parametric-Two Sample **CETIS Version:** Official Results: Yes


CETISv1.9.2

#### Mean Dry Weight-mg Detail

| Sample         | Code | Rep 1   | Rep 2   | Rep 3   | Rep 4   | Rep 5   |      |   |
|----------------|------|---------|---------|---------|---------|---------|------|---|
| Control        |      | 0.129   | 0.153   | 0.166   | 0.134   | 0.1256  |      | = |
| C6 East / G7   |      | 0.024   | 0.06    | 0.03125 | 0.055   | 0.045   |      |   |
| C5 East / G6   |      | 0.022   | 0.055   | 0.06    | 0.03833 |         |      |   |
| C4 West        |      | 0.06    |         |         |         |         |      |   |
| C3 West        |      | 0.028   | 0.03143 | 0.04    | 0.025   | 0.0225  |      |   |
| C3 Centre / G5 |      | 0.07333 | 0.083   | 0.05889 | 0.08167 | 0.08444 |      |   |
| G4             |      | 0.04167 | 0.05    | 0.02333 | 0.05    | 0.0975  | 1.59 |   |
| C1 West        |      | 0.08444 | 0.119   | 0.121   | 0.09    | 0.09667 |      |   |

#### Graphics





Appendix "A" to Report PW19008(g)/LS19004(g)
Page 290 of 406

#### **ECOTOXICOLOGY**

## Hyalella azteca Survival and Growth Test -Survival



| C11  |      | 0    |       | CID |
|------|------|------|-------|-----|
| lien | T 11 | · Xı | Name: | N R |
|      |      |      |       |     |

Start Date and Time: 2019 Oct 17 @ 16:34

Job # B985653

End Date: 2019 Oct 31

Organism Lot #: AB191015

Analysts: M. Hamad, Y. Su, N. Shergill, S. Gupta, L. Nicholls, G. Matharu

| Sample         | Rep | Initial # | Final #  | %        | Survi  | ival |
|----------------|-----|-----------|----------|----------|--------|------|
|                |     | Hyalella  | Hyalella | Survived | Mean % | SD % |
| Control        | Α   | 10        | 10       | 100      | 98     | 4    |
|                | В   | 10        | 10       | 100      |        |      |
|                | С   | 10        | 10       | 100      |        |      |
|                | D   | 10        | 10       | 100      |        |      |
|                | Е   | 10        | 9        | 90       |        |      |
| C6 East / G7   | Α   | 10        | 5        | 50       | 60     | 19   |
|                | В   | 10        | 5        | 50       |        |      |
|                | С   | 10        | 8        | 80       |        |      |
|                | D   | 10        | 4        | 40       |        |      |
|                | E   | 10        | 8        | 80       |        |      |
| C5 East / G6   | Α   | 10        | 5        | 50       | 38     | 23   |
|                | В   | 10        | 4        | 40       |        |      |
|                | С   | 10        | 4        | 40       |        |      |
|                | D   | 10        | 6        | 60       |        |      |
|                | Е   | 10        | 0        | 0        |        |      |
| C4 West        | А   | 10        | 0        | 0        | 2      | 4    |
|                | В   | 10        | 0        | 0        |        |      |
|                | С   | 10        | 0        | 0        |        |      |
|                | D   | 10        | 0        | 0        |        |      |
|                | Е   | 10        | 1        | 10       |        |      |
| C3 West        | Α   | 10        | 5        | 50       | 48     | 13   |
|                | В   | 10        | 7        | 70       |        |      |
|                | С   | 10        | 4        | 40       |        |      |
|                | D   | 10        | 4        | 40       |        |      |
|                | Е   | 10        | 4        | 40       |        |      |
| C3 Centre / G5 | Α   | 10        | 9        | 90       | 86     | 15   |
| 2.3            | В   | 10        | 10       | 100      | 1,80   |      |
| Y 1 1/2 1      | С   | 10        | 9        | 90       |        |      |
|                | D   | 10        | 6        | 60       |        |      |
| mili i basik.  | E   | 10        | 9        | 90       |        |      |
| G4             | Α   | 10        | 6        | 60       | 64     | 17   |
|                | В   | 10        | 8        | 80       |        |      |
|                | С   | 10        | 6        | 60       |        |      |
|                | D   | 10        | 8        | 80       |        |      |
|                | Е   | 10        | 4        | 40       |        |      |

Appendix "A" to Report PW19008(g)/LS19004(g) Page 291 of 406

**ECOTOXICOLOGY** 

### Hyalella azteca Survival and Growth Test -Survival



BBY2FCD-00275/4 Page & of 2

Client # & Name: SLR

Start Date and Time: 2019 Oct 17 @ 16:34

Job # B985653

End Date: 2019 Oct 31

Organism Lot #: AB191015

Analysts: M. Hamad, Y. Su, N. Shergill, S. Gupta, L. Nicholls, G. Matharu

| Sample  | Rep | Initial # | Final #  | %        | Survi  | val  |
|---------|-----|-----------|----------|----------|--------|------|
|         |     | Hyalella  | Hyalella | Survived | Mean % | SD % |
| C1 West | Α   | 10        | 9        | 90       | 90     | 17   |
|         | В   | 10        | 10       | 100      |        |      |
| Tree is | С   | 10        | 10       | 100      |        |      |
|         | D   | 10        | 10       | 100      |        |      |
|         | Е   | 10        | 6        | 60       |        |      |

Proofed By. PHaves 2019Nov15

#### **ECOTOXICOLOGY**

## Hyalella azteca Survival and Growth Test -**Dry Weights**

Page 292 of 406

BBY2FCD-00129/5 Page 1 of 1

Client # & Name: 1776 SLR CONSULTING LTD

Start Date and Time: 2019 OCT 17 @ 16:34

Job/Sample #: B985653

End Date: 2019 Oct 31

Weighing Dates: 2019 Nov 12

Drying Temperature (°C): 60

Analysts: Y. Su

Organism Lot #: AB191015

Drying Time (h): >24

| Boat<br># | Sample        | Rep   | #<br>Hyalella | Hyalella<br>Wt.(g) | Hyalella Wt. | Mean Wt./Hyalella<br>(mg) | Mean Wt./Sample (mg) | SD      |
|-----------|---------------|-------|---------------|--------------------|--------------|---------------------------|----------------------|---------|
| 41        | CONTROL       | А     | 10            | 0.00129            | 1.29         | 0.13                      | 0.14                 | 0.02    |
| 42        | 1             | В     | 10            | 0.00153            | 1.53         | 0.15                      |                      | 0.02    |
| 43        |               | С     | 10            | 0.00166            | 1.66         | 0.17                      |                      |         |
| 44        | ]             | D     | 10            | 0.00134            | 1.34         | 0.13                      |                      |         |
| 45        |               | E     | 9             | 0.00113            | 1.13         | 0.13                      |                      |         |
| 46        | C6 EAST / G7  | А     | 5             | 0.00012            | 0.12         | 0.02                      | 0.04                 | 0.02    |
| 47        |               | В     | 5             | 0.00030            | 0.30         | 0.06                      |                      |         |
| 48        |               | С     | 8             | 0.00025            | 0.25         | 0.03                      |                      |         |
| 49        |               | D     | 4             | 0.00022            | 0.22         | 0.06                      |                      |         |
| 50        |               | E     | 8             | 0.00036            | 0.36         | 0.05                      |                      |         |
| 51        | C5 EAST / G6  | Α     | 5             | 0.00011            | 0.11         | 0.02                      | 0.04                 | 0.02    |
| 52        |               | В     | 4             | 0.00022            | 0.22         | 0.06                      |                      | 10      |
| 53        |               | C*    | 1             | 0.00006            | 0.06         | 0.06                      |                      |         |
| 54        |               | D     | 6             | 0.00023            | 0.23         | 0.04                      |                      |         |
| 55        |               | Е     | 0             |                    | -            | -                         |                      |         |
| 56        | C4 WEST       | Α     | 0             |                    | -            | -                         | 0.06                 | #DIV/0! |
| 57        | 1             | В     | 0             |                    | -            | ¥                         |                      |         |
| 58        |               | С     | 0             |                    | -            | -                         |                      |         |
| 59        |               | D     | 0 -           |                    | 100 L        | _                         |                      |         |
| 60        |               | Е     | 1             | 0.00006            | 0.06         | 0.06                      |                      |         |
| 61        | C3 WEST       | Α     | 5             | 0.00014            | 0.14         | 0.03                      | 0.03                 | 0.01    |
| 62        |               | В     | 7             | 0.00022            | 0.22         | 0.03                      |                      |         |
| 63        |               | С     | 4             | 0.00016            | 0.16         | 0.04                      |                      |         |
| 64        |               | D     | 4             | 0.00010            | 0.10         | 0.03                      |                      |         |
| 65        |               | E     | 4             | 0.00009            | 0.09         | 0.02                      |                      |         |
| 66        | C3 CENTRE/ G5 | Α     | 9             | 0.00066            | 0.66         | 0.07                      | 0.08                 | 0.01    |
| 67        |               | В     | 10            | 0.00083            | 0.83         | 0.08                      |                      |         |
| 68        |               | С     | 9             | 0.00053            | 0.53         | 0.06                      |                      |         |
| 69        |               | D     | 6             | 0.00049            | 0.49         | 0.08                      |                      |         |
| 70        |               | Е     | 9             | 0.00076            | 0.76         | 0.08                      |                      |         |
| 71        | G4            | Α     | 6             | 0.00025            | 0.25         | 0.04                      | 0.05                 | 0.03    |
| 72        |               | В     | 8             | 0.00040            | 0.40         | 0.05                      |                      |         |
| 73        |               | С     | 6             | 0.00014            | 0.14         | 0.02                      |                      |         |
| 74        |               | D     | 8             | 0.00040            | 0.40         | 0.05                      |                      |         |
| 75        |               | E     | 4             | 0.00039            | 0.39         | 0.10                      |                      |         |
| 46        |               | QA/QC | 5             | 0.00012            | 0.12         | 0.02                      |                      |         |
| 41        |               | 0 - A | 10            | 0.00128            | 1.28         | 0.13                      |                      |         |

The average dry weight for the replicate controls must be  $\geq$ 0.1 mg, for the test to be valid.

Analyst:

Notes: \* 3 missing organism discovered during dry weigh process. Mean dry weight adjsuted for missing organisms

Appendix "A" to Report PW19008(g)/LS19004(g)

**ECOTOXICOLOGY** 

## Hyalella azteca Survival and Growth Test -**Dry Weights**

Page 293 of 406

BBY2FCD-00129/5

Page 1 of 1

Client # & Name: 1776 SLR CONSULTING LTD

Start Date and Time: 2019 OCT 17 @ 16:34

Job/Sample #: B985653

End Date: 2019 Oct 31

Organism Lot #: AB191015

Drying Temperature (°C): 60

Weighing Dates: 2019 Nov 12

Drying Time (h): >24

Analysts: Y. Su

| Boat<br># | Sample  | Rep     | #<br>Hyalella | Hyalella<br>Wt.(g) | Hyalella Wt.<br>(mg) | Mean Wt./ <i>Hyalella</i><br>(mg) | Mean Wt./Sample (mg) | SD   |
|-----------|---------|---------|---------------|--------------------|----------------------|-----------------------------------|----------------------|------|
| 76        | C1 WEST | Α       | 9             | 0.00076            | 0.76                 | 0.08                              | 0.10                 | 0.02 |
| 77        |         | В       | 10            | 0.00119            | 1.19                 | 0.12                              |                      |      |
| 78        |         | С       | 10            | 0.00121            | 1.21                 | 0.12                              |                      |      |
| 79        |         | D       | 10            | 0.00090            | 0.90                 | 0.09                              |                      |      |
| 80        |         | E       | 6             | 0.00058            | 0.58                 | 0.10                              |                      |      |
| 76        |         | 0 - A   | 9             | 0.00073            | 0.73                 | 0.08                              |                      |      |
|           |         | Analyst |               | VC                 |                      |                                   | •                    |      |

The average dry weight for the replicate controls must be  $\geq$ 0.1 mg, for the test to be valid.

Notes:

Proofed By. PHars 2019 NOV 15

A Bureau Veritas Group Company

#### **ECOTOXICOLOGY**

## HYALELLA AZTECA SURVIVAL AND GROWTH TEST - TEST INFORMATION

BBY2FCD-00144/5

Page 1 of 1

| Client # & Name:             | 1776 SLR CONSULTING LTD                                                 |
|------------------------------|-------------------------------------------------------------------------|
| Job #:                       | B985653                                                                 |
| Test Initiation Date & Time: | 2019 OCT 17 @ 16:34                                                     |
| <b>Test Completion Date:</b> | 2019 OCT 31 @ 18 235                                                    |
| Room #:                      | 103                                                                     |
| Analyst(s):                  | M. O' Toole, Monson, Y. Su                                              |
|                              | NShergill, S-Cupley                                                     |
|                              | 3 / 1                                                                   |
| Control Water Batch:         | 20191015                                                                |
| Control Sediment:            | yaquina control sediments 2019 OCT 04                                   |
|                              |                                                                         |
|                              | Dugora Monor                                                            |
| Organism Lot:                | AB191015                                                                |
| Age at Start of Test:        | 6-8 days                                                                |
| Feeding Regime:              | 1.75mL YCT & 800 $\mu$ L tetramin slurry (4g/L) per replicate 3x weekly |
|                              | 0.75 mL YCT & 340 μL tetramin slurry (4g/L) per replicate daily feeding |
| YCT Batch Number:            | 20191002                                                                |
| Tetramin Preparation Date:   | J019 OCT 18                                                             |
|                              |                                                                         |
| Balance ID:                  | 3812-0260                                                               |
| Drying Oven ID:              | BB12-0278                                                               |
| WQ Instrument ID:            | BBY2-0352, BBY2-0366                                                    |
|                              |                                                                         |
|                              |                                                                         |
| Additional Comments:         |                                                                         |
|                              |                                                                         |
|                              | DMU 2019 NOOL4                                                          |
|                              | Jan -                                                                   |
|                              |                                                                         |
|                              |                                                                         |
| ټ<br>ر                       |                                                                         |
| /                            |                                                                         |

BBY2FCD-00142/2

Page 1 of 1

Client # & Name: 1776 SLR CONSULTING Start Date: Zo19 Oct 17

Initial when aeration is checked. If air is off record DO and note which replicate(s) in comments section.

|          | Day -1         | Day 0          | 1    | 2          | 3    | 4          | 5              | 6       |
|----------|----------------|----------------|------|------------|------|------------|----------------|---------|
| Date     | ZO19<br>OCT 16 | 2019<br>OUT 17 | 2019 | 2019       | 2019 | 2019       | 2019<br>OCT 33 | 2019    |
| Early AM | NA             | ys .           | ys.  | 1          | us   | 7          | ys             | y5      |
| Mid-day  | NA             | ys             | 45   | 7          | 59   | 7          | ys             | 43      |
| Late PM  | ps             | ys             | 43   | Y          | 34   | Ĭ          | 42             | ys      |
|          |                |                |      | Ø          |      |            |                |         |
|          | Day 7          | 8              | . 9  | 10         | 11   | 12         | 13             | 14      |
| Date     | 2019<br>00724  | 2019<br>OCT 25 | 2019 | 2019 oct 7 | 2019 | 2019       | 20130          | 2019    |
| Early AM | @ NAW          | 45             | 45   | 54         | 43   | y5         | Y              | NS      |
| Mid-day  | A THAYS        | ys             | ns   | 59         | 45   | <b>Y</b> 5 | 9              | Del.    |
| Late PM  | A) ys          | 20             | igs  | Sy         | Y    | ys         | W              | ما مورد |

| mments:       |             |          |                                                  |     |
|---------------|-------------|----------|--------------------------------------------------|-----|
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  | _/_ |
|               |             |          | /                                                |     |
|               |             |          |                                                  |     |
|               | ## 12231B3X |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               | 1.          | Der Dord |                                                  |     |
|               |             | Do Do    |                                                  |     |
|               |             | Magaz    |                                                  |     |
|               |             | 1        |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               |             |          |                                                  |     |
|               | 5.50.710.00 |          | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |     |
| AWELYS 2019 6 | VA 25       |          |                                                  |     |

## Page 296 of 406 Maxxam

#### **ECOTOXICOLOGY**

#### HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Control

| Sample ID: | CONTROL |  |
|------------|---------|--|
|            |         |  |

Start Date: October 17, 2019

Job #: B985653

|         |       | Measu   | Samples Taken         |            |        |         |                       |         |       |
|---------|-------|---------|-----------------------|------------|--------|---------|-----------------------|---------|-------|
| .,,     |       | Har     | dness                 | Condu      | ctance | Alka    | alinity               | Ami     | monia |
| р       | рН    |         | . CaCO <sub>3</sub> ) | (μS/       | cm)    | (mg/L   | . CaCO <sub>3</sub> ) | (m      | ng/L) |
| Initial | Final | Initial | Final                 | Initial 00 | Final  | Initial | , Final               | Initial | Final |
| 1.8.78  | 8.5   | 112     | 152                   | 458        | 596    | 47      | 150                   | 0,04    | 466   |

| Dauesday Tay 12          | Date 201900  Thursday  Day 14  2 2 · 1  8 · 8 |            |                                             |
|--------------------------|-----------------------------------------------|------------|---------------------------------------------|
| ay 12<br>22, 3 2<br>8, 5 | Day 14 22.1 8.8                               |            |                                             |
| ay 12<br>22, 3 2<br>8, 5 | Day 14 22.1 8.8                               |            |                                             |
| 8.5<br>1                 | 8.8                                           |            |                                             |
| J                        | /                                             |            |                                             |
| V5                       | /<br>NS                                       |            |                                             |
| 195                      | NS                                            |            |                                             |
|                          |                                               |            |                                             |
| 9                        | 10 1                                          | .1 12      | 13                                          |
| igs                      | 39.                                           | de ch      | ys                                          |
| Aux                      | Emo 2019                                      | Cidro      |                                             |
| 0,000                    | JC (10 2014)                                  |            | 2019 Oct                                    |
| BY Wi                    | JE, 45 20                                     | 19 ACT 17  |                                             |
| 8                        | Hwe and                                       | LPH for SC | <u> </u>                                    |
|                          |                                               |            | alyst                                       |
|                          | ® 1                                           |            | BVF, 45 2019 OCT 17<br>O PHWE and PH for SC |

| Replicate | Comments and/or additional WQ measurements: | SoraMovis | Analyst     |
|-----------|---------------------------------------------|-----------|-------------|
|           | 10.00 W                                     |           |             |
|           |                                             |           |             |
|           |                                             |           |             |
|           |                                             |           |             |
|           |                                             |           |             |
|           | Can 12-1                                    | 14        |             |
|           | Show Nov                                    |           |             |
|           | 0                                           |           |             |
|           |                                             |           |             |
|           |                                             |           |             |
|           |                                             |           |             |
|           |                                             | Dava Now  | David House |

## Page 297 of 406 Maxxam A Bureau Veritas Group Company

#### **ECOTOXICOLOGY**

#### HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

4363

Sample ID: C6 EAST / G7

Start Date: October 17, 2019

Job #/Sample #: B985653

|                            |                | Measure         | ements                             |                             |            |            | Sam                    | ples Taken                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |       |  |
|----------------------------|----------------|-----------------|------------------------------------|-----------------------------|------------|------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--|
| рН                         |                | Hardr           | ness                               | Conduc                      | tance      | Al         | kalinity               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ammor | ia    |  |
|                            |                | (mg/L C         |                                    | (μS/c                       |            | (mg        | /L CaCO <sub>3</sub> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (mg/L | )     |  |
| Initial                    | Final          | Initial         | Final                              | Initial                     | Final      | Initial    | Final                  | Init                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ial   | Final |  |
| 8,4                        | 8.4            | 172             | 12 416                             | 1617 1219<br>Werm 2019 0417 |            | 100        | \200                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o o   | 598   |  |
| Initial overlyin           | g WQ measu     | rements:        |                                    |                             |            | lying WQ m | easurement             | ts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |  |
| Analyst $\gamma$           | 70             | Date 20         | 19041                              | 7                           | Analyst    | NS_        | Date 7                 | 2019 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :3    |       |  |
| Day                        | Thursday Day 0 | Sunday<br>Day 3 | Tuesday                            | Thursday                    | Sunday     | Tuesday    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| Temp. (ºC)                 | 22.6           | 23.4            | Day 5  23, 0                       | 22.8                        | Day 10     | Day 12     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| D.O. (mg/L)                | , 0, , 0,      |                 | 8.3 8.3                            |                             | 8.5        | 8.6        | 8.1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| Subsampled for ammonia (v) |                |                 |                                    |                             |            |            | J                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| Analyst                    | m              | 34              | 25                                 | ys.                         | 94         | <i>ys</i>  | N                      | Ó                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |  |
| Feeding-Day:               | 0 1            | L 2             | 3 4                                | 5                           | 6 7        | 8          | 9 10                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12    | 13    |  |
| Analyst                    | ys y           | 13 7            | 34 1                               | ys !                        | n b        | ys .       | ys S4                  | .82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | As    | 4.    |  |
| Replicate                  | Α              | B               | c                                  | D                           | E          |            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
| # Surviving                | 5              | 5               | 8                                  | 4                           | 8          |            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | £ 50, |  |
| Analyst                    | NS             | <b>y</b> 5      | IMHM                               | w.                          | MHM        |            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 40    |  |
| Date                       | Replicate      | Comments        | and/or additi                      | onal WQ mea                 | surements: | !<br>      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An    | alyst |  |
| 20190031                   | В              | a red wo        | a red worm was found in the sample |                             |            |            |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |  |
|                            |                |                 |                                    |                             |            |            |                        | a bir a sayan a sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |  |
| 201900131                  | Ь              | a red w         | itm was fe                         | ound IN th                  | e sample   |            |                        | at a succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the succession of the success | 14    |       |  |

## Page 298 of 406

#### **ECOTOXICOLOGY**

#### HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C5 EAST / G6

Start Date: October 17, 2019

Job #/Sample #: B985653

|         |        | Measu   | Samples Taken       |         |         |         |                       |         |       |
|---------|--------|---------|---------------------|---------|---------|---------|-----------------------|---------|-------|
| рН      |        | Hard    | iness               | Cond    | uctance | Alka    | alinity               | Ammonia |       |
| P       | ип<br> | (mg/L   | CaCO <sub>3</sub> ) | (μS     | 5/cm)   | (mg/L   | . CaCO <sub>3</sub> ) | (mg/L)  |       |
| Initial | Final  | Initial | Final               | Initial | Final   | Initial | Final                 | Initial | Final |
| 8.5     | 8.3    | 168     | 300                 | 682     | 1106    | 120     | 011                   | 1/      | OIL   |

| Initial over | lying WQ measur | ements:        | Final overlying WQ | measurements:   |
|--------------|-----------------|----------------|--------------------|-----------------|
| Analyst      | mo              | Date 2019 OCH) | Analyst NS         | Date 2019 00+35 |
|              |                 |                |                    |                 |

| Day                        | Thursday  | Sunday | Tuesday | Thursday | Sunday | Tuesday | Thursday |
|----------------------------|-----------|--------|---------|----------|--------|---------|----------|
| Day                        | Day 0     | Day 3  | Day 5   | Day 7    | Day 10 | Day 12  | Day 14   |
| Temp. (ºC)                 | 22.6      | 23.2   | 22.9    | 22.9     | 22.9   | 22.8    | 22,5     |
| D.O. (mg/L)                | 8.5       | 8.4    | 8.4     | 8.5      | 8.6    | 8.7     | 8.5      |
| Subsampled for ammonia (v) | $\sqrt{}$ |        |         |          |        |         | ✓        |
| Analyst                    | m         | 59     | 75      | ÿs       | 39     | ys.     |          |

| Feeding-Day: | 0  | 1  | 2   | 3   | 4   | 5  | 6  | 7  | 8   | 9  | 10  | 11 | 12 | 13  |
|--------------|----|----|-----|-----|-----|----|----|----|-----|----|-----|----|----|-----|
| Analyst      | YS | ys | 7   | SGI | 1   | ys | ys | 49 | 1/5 | VS | 54, | ys | ys | ys. |
| Replicate    | Α  |    | B   |     | c V | D  |    | E  | ]   |    |     |    |    |     |
|              |    |    | 200 |     |     | 4  |    |    | 7   |    |     |    |    |     |

| Replicate   | A    | В   | С    | D   | E   |
|-------------|------|-----|------|-----|-----|
| # Surviving | S    | 4   | 4    | 6   | 0   |
| Analyst     | MITM | MHM | MITM | ys. | MHM |

| Date | Replicate | Comments and/or additional WQ measurements: | Analyst |
|------|-----------|---------------------------------------------|---------|
|      |           |                                             |         |
|      |           |                                             |         |
|      |           |                                             |         |
|      |           | Show 10 Most 5                              |         |
|      |           | JOHN MONIS                                  |         |
|      |           |                                             |         |
| /    |           |                                             |         |

## Page 299 of 406

#### **ECOTOXICOLOGY**

## HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

| Sample ID:      | C4 WEST | Start Date: | October 17, 2019 |  |
|-----------------|---------|-------------|------------------|--|
| Job #/Sample #: | B985653 | End Date:   | October 31, 2019 |  |

|               |     | Measu         | Samples Taken       |               |         |         |                       |         |       |         |       |
|---------------|-----|---------------|---------------------|---------------|---------|---------|-----------------------|---------|-------|---------|-------|
| рН            |     | Hard          | dness               | Condu         | ıctance | Alka    | alinity               | Ammonia |       |         |       |
| ١             | /n  | (mg/L         | CaCO <sub>3</sub> ) | (μS           | /cm)    | (mg/L   | . CaCO <sub>3</sub> ) | (mg/L)  |       |         |       |
| Initial Final |     | Final Initial |                     | Initial Final |         | Initial | Final                 | Initial | Final | Initial | Final |
| 8.4           | 8.3 | 168           | 326                 | 687           | 1009    | . 140   | 180                   | 20      | 010   |         |       |

| Initial overlyin           | ig WQ mea | asuren | nents:      |            |       |          | Fir | Final overlying WQ measurements: |       |     |          |       |     |     |
|----------------------------|-----------|--------|-------------|------------|-------|----------|-----|----------------------------------|-------|-----|----------|-------|-----|-----|
| Analyst                    | m         |        | Date 20190C |            | 90917 |          |     | alyst                            | 15    |     | Date 20  | 49.00 | 151 | **  |
| Day                        | Thursda   | -      | Sunday      | -          | esday | Thursday |     | Sunday                           | Tueso | lay | Thursday |       |     |     |
|                            | Day 0     |        | Day 3       | Da         | ay 5  | Day 7    |     | Day 10                           | Day   | 12  | Day 14   |       |     |     |
| Temp. (ºC)                 | 22.       | 12     | 3.2         | Z          | 2.9   | 77.0     | 1 2 | 2.8                              | ZZ.   | 7   | 22.      | 5     |     |     |
| D.O. (mg/L)                | 8.5       | 8      | ,.4         | 8          | 6.3   | 8.4      | 8   | .6                               | 8.3   | 5   | 8.5      |       |     | 180 |
| Subsampled for ammonia (v) | 7         |        |             |            |       |          |     |                                  |       | ,   | /        |       |     |     |
| Analyst                    | mo        |        | Sq          | <b>V</b> . | 5     | 93       | 5   | , 9                              | ¥5    |     |          |       |     |     |
| Feeding-Day:               | 0         | 1      | 2           | 3          | 4     | 5        | 6   | 7                                | 8     | 9   | 1,0      | 11    | 12  | 13  |
| Analyst                    | 23        | y      | 7           | 54         | y     | S        | ys  | 45                               | 45    | 45  | sa       | ys    | de  | y   |
| Replicate                  | Α         |        | B           |            | c     | D        |     | E                                |       |     |          |       |     |     |
| # Surviving                | 0 -       |        | 0           | 0          | )     | O        |     | 1                                |       |     |          |       |     | *   |
| Analyst                    | Lw.       |        | Lu.         | y          | 5     | MHM      |     | ys                               |       |     |          |       |     |     |

| Date       | Replicate | Comments and/or additional WQ measurements:          | Analyst |
|------------|-----------|------------------------------------------------------|---------|
| 2014 DC+31 | D         | Sample is thick Slurry with hydrocarbon odor         | MHM     |
| 20190431   | E, C      | strong hydrocarbon odor several red worms were found | ijs     |
| 18420Plac  | BA        | 3 trang hydrocarbon sour                             | hu      |
|            |           |                                                      |         |
|            |           |                                                      |         |
|            |           |                                                      |         |
|            |           |                                                      |         |
|            |           | Dundle Mons.                                         |         |
|            |           |                                                      |         |
|            |           |                                                      |         |
|            |           |                                                      |         |

Appendix "A" to Report PW19008(g)/LS19004(g)

Page 300 of 406

Max A Bureau Veritas Group Company

#### **ECOTOXICOLOGY**

#### HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C3 WEST Start Date: October 17, 2019

 Job #/Sample #:
 B985653
 End Date:
 October 31, 2019

|         |           | Meas    | urements              |         |                                   | Samples Taken |         |         |       |  |  |
|---------|-----------|---------|-----------------------|---------|-----------------------------------|---------------|---------|---------|-------|--|--|
| рН      |           | Hai     | dness                 | Cond    | luctance                          | Alk           | alinity | Ammonia |       |  |  |
|         | <b>УП</b> | (mg/l   | L CaCO <sub>3</sub> ) | (μ      | (μS/cm) (mg/L CaCO <sub>3</sub> ) |               | (n      | (mg/L)  |       |  |  |
| Initial | Final     | Initial | Final                 | Initial | Final                             | Initial       | Final   | Initial | Final |  |  |
| 8.4     | 8.2       | 180     | 400                   | 578     | 936                               | 110           | 180     | 5.9     | 0.16  |  |  |

| g WQ me | asure                        | ments:                                |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | I                                                                                                                                                                                                                                | inal overly                                                                                                                        | ing WQ                                                                                                           | measu                         | rements:                      |                                                  |                                                  |                                                  |
|---------|------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| m       | -11-7                        | Date 2                                | 2019                                                                                                  | Dc417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                    | A                                                                                                                                                                                                                                | Analyst                                                                                                                            | 15                                                                                                               |                               | Date 2019 04 31               |                                                  |                                                  |                                                  |
|         | -                            | Sunday<br>Day 3                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | -                                                                                                                                                                                                                                | Sunday<br>Day 10                                                                                                                   |                                                                                                                  |                               |                               |                                                  |                                                  |                                                  |
| 22.4    |                              | 23.2                                  | à                                                                                                     | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.                                                                                                                | 9                                                                                                                                                                                                                                | 22.8                                                                                                                               | 1000                                                                                                             |                               | 22.5                          | -                                                |                                                  |                                                  |
| 8.6     | ,                            | 8.5                                   | 8                                                                                                     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.4                                                                                                                | 1                                                                                                                                                                                                                                | 8.4                                                                                                                                | 8,                                                                                                               | 5                             | The second second             |                                                  |                                                  |                                                  |
| 1       |                              |                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | **                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                  | 1                             |                               |                                                  |                                                  |                                                  |
| mo      | ,                            | 34                                    |                                                                                                       | <b>Y</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ys                                                                                                                 |                                                                                                                                                                                                                                  | 59                                                                                                                                 | צע                                                                                                               | 5                             |                               |                                                  |                                                  | 16                                               |
| 0       | 1                            | 2                                     | 3                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                  | 6                                                                                                                                                                                                                                | 7                                                                                                                                  | 8                                                                                                                | 9                             | 10                            | 11                                               | 12                                               | 13                                               |
| 43      | y                            | 14                                    | SY                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ys                                                                                                                 | ys                                                                                                                                                                                                                               | دلا                                                                                                                                | 45                                                                                                               | ys                            | 39                            | ys                                               | y                                                | 30                                               |
| Α       | -                            | B                                     |                                                                                                       | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                  |                                                                                                                                                                                                                                  | E                                                                                                                                  | ]                                                                                                                |                               |                               |                                                  |                                                  |                                                  |
| 5       |                              |                                       |                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                  |                                                                                                                                                                                                                                  | 4                                                                                                                                  |                                                                                                                  |                               |                               |                                                  |                                                  |                                                  |
|         | Thursd Day ( 22.4 8.6 7 0 95 | Thursday Day 0 22.4 8.6 V Mo  1 MS MS | Thursday Sunday Day 0 Day 3 22.4 23.2 8.6 8.5  Mo 34  0 1 2  MS MS MS MS MS MS MS MS MS MS MS MS MS M | Thursday Sunday Tu Day 0 Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D Day 3 D D D Day 3 D D D D D D D D D D D D D D D D D D | Date 2019 Oct 17  Thursday Sunday Tuesday Day 0 Day 3 Day 5  22.4 33.2 32.9  8.6 8.5 8.2  V 4 95  0 1 2 3 4  95 99 | Thursday Sunday Tuesday Thursday Day 0 Day 3 Day 5 Day 7 22.4 23.2 22.9 22. 8.6 8.5 8.2 9.4  Thursday Sunday Tuesday Thursday Day 0 Day 3 Day 5 Day 7 22.4 23.2 22.9 22.  8.6 8.5 8.2 9.4  1 1 2 3 4 5  1 1 2 3 4 5  1 1 2 3 4 5 | Thursday Sunday Tuesday Thursday Day 0 Day 3 Day 5 Day 7  22.4 23.2 22.9  8.6 8.5 8.2 9.4  Mo 94 95 95  0 1 2 3 4 5 6  95 95 95 95 | Date 2019 Oct 17   Analyst   No.   Sunday   Tuesday   Thursday   Sunday   Day 0   Day 3   Day 5   Day 7   Day 10 | Date 2019 Oct 17   Analyst NS | Date 2019 Oct 17   Analyst NS | Date 2019 Oct 17   Analyst NS   Date 2019 Oct 17 | Date 2019 Oct 17   Analyst NS   Date 2019 Oct 17 | Date 2019 Oct 17   Analyst NS   Date 2019 Oct 31 |

| Date      | Replicate | Comments and/or additional WQ measurements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analyst               |
|-----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 201900731 | D         | The Ped worms was found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/5                   |
| 20190931  | E         | several red worms were found.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ys-                   |
|           |           | Annual Control Annual Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control | and the second second |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
|           |           | Small Nooly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|           |           | J Gu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
|           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |

A WES 20 20 19 OUT >1

Analyst

Page 301 of 406 Maxxam

#### **ECOTOXICOLOGY**

## HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

Sample ID: C3 CENTRE / G5

Start Date: October 17, 2019

Job #/Sample #: B985653

|         |       | Measu                     | rements |         |         | Samples Taken             |         |         |         |  |  |
|---------|-------|---------------------------|---------|---------|---------|---------------------------|---------|---------|---------|--|--|
| рН      |       | Hard                      | iness   | Cond    | uctance | Alka                      | alinity | Ammonia |         |  |  |
|         |       | (mg/L CaCO <sub>3</sub> ) |         | (μ5     | 5/cm)   | (mg/L CaCO <sub>3</sub> ) |         | (mg/L)  |         |  |  |
| Initial | Final | Initial                   | Final   | Initial | Final   | Initial                   | , Final | Initial | / Final |  |  |
| 8.4     | 8.5   | 152                       | 344     | 521     | 935     | 86                        | 200     | 23      | 0.051   |  |  |

| Initial overlyin           | ig WQ me | asurer | nents:  |                  |       |          | F   | inal overly | ing WQ     | measi      | rements:       |     |    |    |
|----------------------------|----------|--------|---------|------------------|-------|----------|-----|-------------|------------|------------|----------------|-----|----|----|
| Analyst                    | mo       |        | Date 29 | Date 2019 OCH 17 |       |          | А   | Analyst 15  |            |            | Date 2019 0431 |     |    |    |
| Day                        | Thursda  |        | Sunday  |                  | esday | Thursday |     | Sunday      | Tues       |            | Thursday       |     |    |    |
| Temp. (ºC)                 | 22.6     |        | Day 3   |                  | ay 5  | 23,0     | 0 1 | Day 10      | Day ZZ.    |            | 22.6           |     |    |    |
| D.O. (mg/L)                | 8,6      |        | 8.4     | -                | 8.4   | 8.5      |     | 8.3         | 8.4        | -          | ,8.4           | 2   |    |    |
| Subsampled for ammonia (v) |          |        |         |                  |       |          |     |             |            | ¥          | ,              |     |    |    |
| Analyst                    | ma       | 5      | .4      |                  | V5    | ys       |     | 39          | ys         |            |                |     |    |    |
| Feeding–Day:               | 0        | 1      | 2       | 3                | 4     | 5        | 6   | 7           | 8          | 9          | 10             | 11  | 12 | 13 |
| Analyst                    | 33       | ys     |         | 54               | 1     | ys       | ys  | ys          | V5         | V3         | Sq             | Sys | 45 | y) |
| Replicate                  | Α        |        | В       |                  | c     | D        |     | E<br>WESU2  | 10 a a L a |            |                |     |    | 74 |
| # Surviving                | 9        |        | 16      | (                | 7     | 6        |     | \$ 9        | 3170013    | <i>y</i> . |                |     |    |    |
| Analyst                    | ys       |        | MHM     | M                | M     | Lu.      | S   | 9.          |            |            |                |     |    |    |

| Date      | Replicate                                           | Comments and/or additional WQ measurements: | Analyst |
|-----------|-----------------------------------------------------|---------------------------------------------|---------|
| 20190CF31 | D                                                   | Found 7 indigenous worms in sample.         |         |
|           |                                                     |                                             |         |
|           |                                                     |                                             |         |
|           |                                                     |                                             |         |
|           | 70                                                  | Smoon Nool4                                 |         |
|           | — <del>( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( </del> |                                             |         |
|           |                                                     |                                             |         |
|           |                                                     |                                             |         |
|           |                                                     |                                             |         |

Page 302 of 406

Max Varias Group Company

#### **ECOTOXICOLOGY**

## HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

BBY2FCD-00143/6

Form: Sample

| Sample ID: | G4 | Start Date: | October 17, | 2019 |
|------------|----|-------------|-------------|------|
|            |    |             |             |      |

 Job #/Sample #:
 B985653
 End Date:
 October 31, 2019

|         |       | Measu                                 | rements |         |         | Samples Taken             |         |         |        |  |
|---------|-------|---------------------------------------|---------|---------|---------|---------------------------|---------|---------|--------|--|
| рН      |       | Hardness<br>(mg/L CaCO <sub>3</sub> ) |         | Condu   | ıctance | Alka                      | alinity | Ammonia |        |  |
|         |       |                                       |         | (μS     | /cm)    | (mg/L CaCO <sub>3</sub> ) |         | (mg/L)  |        |  |
| Initial | Final | Initial                               | Final   | Initial | Final   | Initial                   | , Final | Initial | /Final |  |
| 8.3     | 8.2   | 160                                   | 360     | 553     | 1009    | 94                        | 87      | 3.6     | 0.H    |  |

| Initial overl | lying WQ measure | ements: |         | _        | Final overly | ing WQ mea | surements: |          |
|---------------|------------------|---------|---------|----------|--------------|------------|------------|----------|
| Analyst       | mo               | Date 20 | 190417  |          | Analyst N    | 5          | Date 2010  | 1 Oct 31 |
|               | Thursday         | Sunday  | Tuesday | Thursday | Sunday       | Tuesday    | Thursday   | Í        |

|                            | Thursday | Sunday | Tuesday | Thursday | Sunday | Tuesday | Thursday |
|----------------------------|----------|--------|---------|----------|--------|---------|----------|
| Day                        | Day 0    | Day 3  | Day 5   | Day 7    | Day 10 | Day 12  | Day 14   |
| Temp. (ºC)                 | 22.7     | 23,0   | 22.7    | 23.0     | 22.8   | 22.7    | 22.6     |
| D.O. (mg/L)                | 8,5      | 8.5    | 8.5     | 8.4      | 8.5    | 8.6     | ,8.5     |
| Subsampled for ammonia (V) | 1        |        |         |          |        |         |          |
| Analyst                    | m        | 94     | ys      | ys.      | 34     | ¥5      |          |

| Feeding-Day: | 0  | 1  | 2      | 3  | 4        | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |
|--------------|----|----|--------|----|----------|----|----|----|----|----|----|----|----|----|
| Analyst      | As | ys | 1      | sy | 1        | Bs | ys | ys | 45 | ys | 54 | 45 | y  | 45 |
| Penlicate    | ٨  |    | V<br>R |    | <u> </u> | D  |    | E  | 1  |    | /  |    |    |    |

| Replicate   | Α   | В | С     | D  | E  |
|-------------|-----|---|-------|----|----|
| # Surviving | 5   | 8 | 6     | 8  | 4  |
| Analyst     | Ln. | 2 | as as | 63 | 29 |

| Date     | Replicate | Comments and/or additional WQ measurements: | Analyst |
|----------|-----------|---------------------------------------------|---------|
| 20190431 | E         | Many Red worns found in the Sample.         | sec     |
|          |           | 0                                           | _       |
|          |           |                                             |         |
|          |           |                                             |         |
|          |           |                                             |         |
|          |           | Drawn Novil                                 |         |
|          |           | gor,                                        |         |
|          |           |                                             |         |
|          |           |                                             |         |
|          |           |                                             | ı       |
| /        |           |                                             |         |

#### ECOTOXICOLOGY

## HYALELLA AZTECA SURVIVAL AND GROWTH TEST - DATA SHEET

Maxxam Veritas Group Company

BBY2FCD-00143/6

Form: Sample

| Sample ID:      | C1 WEST | Start Date: | October 17, 2019 |  |
|-----------------|---------|-------------|------------------|--|
| Job #/Sample #: | B985653 | End Date:   | October 31, 2019 |  |

|         |       | Measu   | rements             |         |             |                           | Sample     | es Taken  |       |
|---------|-------|---------|---------------------|---------|-------------|---------------------------|------------|-----------|-------|
| рН (    |       | Hard    | Hardness Cond       |         | Conductance |                           | Alkalinity |           | nonia |
|         |       | (mg/L   | CaCO <sub>3</sub> ) | (µS/cm) |             | (mg/L CaCO <sub>3</sub> ) |            | (mg/L)    |       |
| Initial | Final | Initial | Final               | Initial | Final       | Initial                   | Final      | , Initial | Final |
| 8.4     | 8.2   | 176     | 420                 | רור     | 1349        | 84                        | 110        | 0.72      | 0.12  |

| Initial overlying WQ measurements: |        |    |               |     |       | Final overlying WQ measurements: |     |         |        |       |         |          |     |    |    |
|------------------------------------|--------|----|---------------|-----|-------|----------------------------------|-----|---------|--------|-------|---------|----------|-----|----|----|
| Analyst                            | mo     |    | Date 20190G17 |     |       |                                  | Ana | alyst N | 5      |       | Date ZO | 19 Oct   | 131 |    |    |
| Day                                | Thurso | -  | Sunday        |     | esday | Thursda                          | -   | S       | iunday | Tuesd | lay     | Thursday |     |    |    |
|                                    | Day    | 0  | Day 3         | D   | ay 5  | Day 7                            | '   | D       | ay 10  | Day:  | 12      | Day 14   |     |    |    |
| Temp. (ºC)                         | 22:    |    | 23.1          | ò   | 72.7  | 23,0                             | 0   | 22      | 9      | 22.   | 7       | 72.5     | 5   |    |    |
| D.O. (mg/L)                        | 8.5    |    | 8.3           |     | 8.5   | 8.3                              | 5   | 8       | 6      | 8.5   | 5       | 8.5      |     |    |    |
| Subsampled for ammonia (V)         | 7      |    | 4.            |     |       |                                  |     |         |        |       | •       | /        |     |    |    |
| Analyst                            | m      | )  | 59            | 7   | ns    | <b>y</b> 5                       |     | S       | 9      | ys    |         |          |     |    |    |
| Feeding-Day:                       | 0      | 1  | 2             | / 3 | 4     | 5                                |     | 6       | 7      | 8     | 9       | 10       | 11  | 12 | 13 |
| Analyst                            | ys     | ys | Y             | 54  | 1     | ys                               | y   | 1       | 45     | 45    | 45      | Sy       | ys  | ys | 7  |
| Replicate                          | Α      | T  | B             | T   | c     | D                                |     |         | E      |       |         |          |     |    |    |
| # Surviving                        | 9      |    | 10            | 1   | 0     | 10                               | )   | 6       | 5      |       |         |          |     |    |    |
| Analyst                            | 54     |    | Mitm          | )   | 15    | ys                               | 5   | L       | V.     |       |         |          |     |    |    |

| Date | Replicate | Comments and/or additional WQ measurements: | Analyst |
|------|-----------|---------------------------------------------|---------|
|      |           |                                             |         |
|      |           |                                             |         |
|      |           |                                             |         |
|      |           |                                             |         |
|      |           |                                             |         |
|      |           | and Harly                                   |         |
|      |           | (3) GOM                                     |         |
|      |           |                                             |         |
|      |           |                                             |         |
|      |           | 7                                           |         |
|      |           |                                             |         |

| ECO1 | <b>TOXICOL</b> | OGY |
|------|----------------|-----|
|------|----------------|-----|

## BUREAU VERITAS LABORATORIES

BBY2FCD-00133/3

## SAM-5S Water Recipe for Hyalella

Page 1 of 1

BATCH ID:

2019 OCT 15

(Date Hardened)

# SAM-5S Reconstituted Water Recipe for *Hyalella azteca* as per Borgmann 1996 (For water hardness ~125 mg/L)

| Chemical Weights |            | CaCl <sub>2</sub> X2H <sub>2</sub> O | MgSO <sub>4</sub> (g) | NaBr (g)       | NaHCO₃ (g)   | KCI (g) |
|------------------|------------|--------------------------------------|-----------------------|----------------|--------------|---------|
|                  | Brand      | Fisher                               | Fisher                | 0              | Fisher       | Fisher  |
|                  | Lot#       | 184678                               | 183674                | (187782        | 187782       | 195613  |
|                  | Calculated | 8.82                                 | 1.81                  | 0.06           | 5.04         | 0.22    |
|                  | Actual     | 8,8249                               | 1.8135                | 0.0612         | 5.0430       | 0.2219  |
| Balance ID:      | BB42-      | 0260                                 |                       | _              |              |         |
| Analyst:         | YuSu       |                                      |                       | Add to Ty      | pe 3 DI (L): | 60      |
| Water Use:       | 60 L       |                                      |                       | DI Machine ID: | BB42-0       | 160     |
| Date:            | 201900     | T 15                                 |                       |                |              |         |

| Water Quality | <i>'</i> : |             |     |                    |             |
|---------------|------------|-------------|-----|--------------------|-------------|
| Temp (°C):    | 23.0       | pH:_        | 8.0 | Hardness (mg/L) _  | 136         |
| Cond (µs/cm): | 383        | DO (mg/L):_ | 8.3 | Alkalinity (mg/L): | NIA         |
| Analyst:      | Yusu       |             |     | Date:              | 2019 OUT 16 |
| Comments:     |            |             |     |                    |             |
|               |            |             |     |                    |             |

NaHCO3 (Sodium Bicarbonate)

NaBr (Sodium Bromide)

CaCl2 x 2H2O (Calcium Chloride - dihydrous)

MgSO4 (Magnesium Sulfate (anhydrous)

KCI (Potassium Chloride)

SAM-5S Recipe = 1 mM CaCl2, 1 mM NaHCO3, 0.01 mM NaBr, 0.05 mM KCl, and 0.25 mM MgSO4

Borgmann, U. 1996. Systematic analysis of aqueous ion requirements of *Hyalella azteca*: A standard artificial medium including the essential bromide ion. *Archives of Environmental Contamination and Toxicology*. 30: 356-363.

A WE, 43 2019 OCT 15

Toll Free: 800/331-5916

Tel: 970/484-5091 Fax: 970/484-2514



## 1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

AB191015

| #13 | 70 | +13 | 5 |
|-----|----|-----|---|
|-----|----|-----|---|

## ORGANISM HISTORY

| DATE:                                    | 10/14/2019          | *            |
|------------------------------------------|---------------------|--------------|
| SPECIES:                                 | Hyalella azteca     |              |
| AGE:                                     | 3-5 day             |              |
| LIFE STAGE:                              | Juvenile            |              |
| HATCH DATE:                              | Variable            |              |
| BEGAN FEEDING:                           | Immediately         |              |
| FOOD:                                    | Flake slurry        |              |
|                                          |                     |              |
| Water Chemistry Record:                  | Current             | Range        |
| TEMPERATURE                              | E: \$25°C           | 23-26°C      |
| SALINITY/CONDUCTIVITY                    | /:                  |              |
| TOTAL HARDNESS (as CaCO <sub>3</sub>     | ):178 mg/l          | 118-200 mg/l |
| TOTAL ALKALINITY (as CaCO <sub>3</sub> ) | ): 85 mg/l          | 50-90 mg/l   |
| pH                                       | I: 8.03             | 7.56-8.20    |
| Comments:                                | So falle            |              |
|                                          | Facility Supervisor | · ·          |

### ORGANISMS -**ACCLIMATION AND HOLDING CONDITIONS**

Maxxam

| 1 | v | A Bureau Veritas Group Company |
|---|---|--------------------------------|
|   |   | 0 ***                          |
|   |   | DDW0500 00000 /-               |

|                     |               |             |                                  |              |                 |          |             | CD-00070/5 |
|---------------------|---------------|-------------|----------------------------------|--------------|-----------------|----------|-------------|------------|
|                     | Client #'s :  | 254         | 1176,47                          | 37 Date & T  | ime of Arrival: | 20190    | OCT 15 @    | 13:00      |
| Org                 | ganism Lot #: |             | 20 0000                          |              | e upon Arrival: |          | •           |            |
| Water (L) per S     | Shipping Bag: | 14          |                                  | _            | Organism:       | Hyall    | elia azteo  | coa        |
| Number of Sh        | nipping Bags: | 3           |                                  | #of Organ    | isms Ordered:   | 1370     | +135        | 61         |
| Arrival Conditions  |               |             |                                  | Light I      | ntensity (lux): | 600      | 2 ~ 818     |            |
| Arrival Conditions  | T             | <del></del> | Cond                             |              |                 |          |             |            |
| Bag ID              | # Dead        | % Dead      | (μS/cm)/<br>Salinity<br>(ppt)    | Temp<br>(°C) | DO (<br>mg/L)   | рН       | Feeding     | Analyst    |
| ĺ                   | 0             | 0           | (ppt)<br> 42                     | 20.5         | 8.1             | 7.6      | 5m1+5ml     | ys         |
| 2                   | 0             | Ð           | 1409                             | 2012         | 8.1             | 7.5      | 5m +5m      | 45         |
| 3                   | 0             | 0           | 1405                             | 20.1         | 8.2             | 7.5      | 5ml+5ml     | ys         |
|                     |               |             |                                  |              |                 |          |             |            |
|                     |               |             | -65                              | M            |                 |          |             |            |
|                     |               |             | 4)                               | 2019         | 10000           |          |             |            |
|                     |               |             |                                  | 90.          | (02             |          |             |            |
|                     |               |             |                                  |              |                 |          |             |            |
| Daily Conditions Du | ring Holding/ | Acclimatio  | n                                |              |                 |          |             |            |
|                     | Morta         | alities     |                                  |              | Water Quality   |          |             |            |
| Date                | # Dead        | % Dead      | Cond (µS/cm)/ Salinity (ppt) (40 | Temp<br>(°C) | DO<br>(mg/L)    | рН       | Feeding     | Analyst    |
| 70190cT16           | Ø             | 0           | ATGH                             | 23.6         | 8, 3            | 8,5      | cmf + 5ml   | W          |
| 2019 OCTIB          | 0             | 0           | 1402                             | 23,5         | 8-1             | 8.1      | 10m +10m    | ys         |
|                     |               |             |                                  |              |                 |          |             |            |
|                     |               |             |                                  |              |                 |          |             |            |
|                     |               |             |                                  | DU           | _               |          |             |            |
|                     |               |             |                                  | A            | 29              |          |             |            |
|                     |               |             |                                  | <i>'</i> O   | HOWOT           | >        |             |            |
|                     |               |             |                                  |              | 100             |          |             |            |
|                     |               |             |                                  |              |                 |          |             |            |
| Total Mortalities   |               |             |                                  |              |                 |          |             |            |
| Equipment ID:       | BB12-         | 0368        | BBY                              | 7-0468       |                 |          |             |            |
| Comments (e.g. feed |               |             |                                  |              |                 |          |             | Analyst    |
| > recieved o        | rganisms      | , did u     | NTR quality                      | , stoled     | to other        | diff siz | es of pyres | s dishery  |
| -> 2019 OCT         |               |             |                                  |              |                 |          |             | ys         |
|                     |               |             |                                  |              |                 |          |             |            |



BV Labs Job #: B989145 Report Date: 2019/10/25

Bureau Veritas Laboratories (TOX Internal)

Client Project #: B985653 Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WS4947                          |       | WS4948                          |       | WS4949                          |      |
|-----------------------------|-------|---------------------------------|-------|---------------------------------|-------|---------------------------------|------|
| Sampling Date               | R     | 2019/10/17                      |       | 2019/10/17                      |       | 2019/10/17                      |      |
| COC Number                  |       | 18213                           |       | 18213                           |       | 18213                           |      |
|                             | UNITS | 1776 Control Day<br>0 Hy Overly | RDL   | 1776 C6 East Day<br>0 Hy Overly | RDL   | 1776 C5 East Day<br>0 Hy Overly | RDL  |
| Misc. Inorganics            |       |                                 |       |                                 |       | 9,                              |      |
| рН                          | рН    | 7.11                            | N/A   | 7.99                            | N/A   | 8.06                            | N/A  |
| Anions                      |       |                                 |       |                                 |       |                                 |      |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                            | 1.0   | <1.0                            | 1.0   | <1.0                            | 1.0  |
| Alkalinity (Total as CaCO3) | mg/L  | 47                              | 1.0   | 100                             | 1.0   | 120                             | 1.0  |
| Bicarbonate (HCO3)          | mg/L  | 57                              | 1.0   | 130                             | 1.0   | 140                             | 1.0  |
| Carbonate (CO3)             | mg/L  | <1.0                            | 1.0   | <1.0                            | 1.0   | <1.0                            | 1.0  |
| Hydroxide (OH)              | mg/L  | <1.0                            | 1.0   | <1.0                            | 1.0   | <1.0                            | 1.0  |
| Nutrients                   |       |                                 | -     |                                 |       |                                 |      |
| Total Ammonia (N)           | mg/L  | 0.040                           | 0.015 | 7.5 (1)                         | 0.075 | 11 (1)                          | 0.15 |
| RDL = Reportable Detection  | Limit |                                 |       |                                 |       |                                 |      |

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

| BV Labs ID                  |       | WS4950                          |      | WS4951                          | WS4952                            | WS4953                     |       |
|-----------------------------|-------|---------------------------------|------|---------------------------------|-----------------------------------|----------------------------|-------|
| Sampling Date               |       | 2019/10/17                      |      | 2019/10/17                      | 2019/10/17                        | 2019/10/17                 |       |
| COC Number                  |       | 18213                           |      | 18213                           | 18213                             | 18213                      |       |
|                             | UNITS | 1776 C4 West Day<br>0 Hy Overly | RDL  | 1776 C3 West Day<br>0 Hy Overly | 1776 C3 Center<br>Day 0 Hy Overly | 1776 G4 Day 0 Hy<br>Overly | RDL   |
| Misc. Inorganics            |       |                                 |      |                                 |                                   |                            |       |
| рН                          | рН    | 8.12                            | N/A  | 7.97                            | 7.77                              | 7.86                       | N/A   |
| Anions                      |       |                                 |      |                                 |                                   |                            |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                            | 1.0  | <1.0                            | <1.0                              | <1.0                       | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 140                             | 1.0  | 110                             | 86                                | 94                         | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 170                             | 1.0  | 130                             | 110                               | 110                        | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                            | 1.0  | <1.0                            | <1.0                              | <1.0                       | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                            | 1.0  | <1.0                            | <1.0                              | <1.0                       | 1.0   |
| Nutrients                   |       |                                 |      |                                 |                                   |                            |       |
| Total Ammonia (N)           | mg/L  | 20 (1)                          | 0.30 | 5.9 (1)                         | 2.3 (1)                           | 3.6 (1)                    | 0.075 |
| 001 0                       |       |                                 |      |                                 |                                   | - (-)                      |       |

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.



BV Labs Job #: B989145 Report Date: 2019/10/25

Bureau Veritas Laboratories (TOX Internal) Client Project #: B985653

Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                                         |       | WS4954                          |       |
|----------------------------------------------------|-------|---------------------------------|-------|
| Sampling Date                                      |       | 2019/10/17                      |       |
| COC Number                                         |       | 18213                           |       |
|                                                    | UNITS | 1776 C1 West Day<br>0 Hy Overly | RDL   |
| Misc. Inorganics                                   |       |                                 |       |
| рН                                                 | рН    | 7.70                            | N/A   |
| Anions                                             |       |                                 |       |
| Alkalinity (PP as CaCO3)                           | mg/L  | <1.0                            | 1.0   |
| Alkalinity (Total as CaCO3)                        | mg/L  | 84                              | 1.0   |
| Bicarbonate (HCO3)                                 | mg/L  | 100                             | 1.0   |
| Carbonate (CO3)                                    | mg/L  | <1.0                            | 1.0   |
| Hydroxide (OH)                                     | mg/L  | <1.0                            | 1.0   |
| Nutrients                                          |       |                                 |       |
| Total Ammonia (N)                                  | mg/L  | 0.72                            | 0.015 |
| RDL = Reportable Detection<br>N/A = Not Applicable | Limit |                                 | •     |



BV Labs Job #: B993764 Report Date: 2019/11/06 Bureau Veritas Laboratories (TOX Internal) Sampler Initials: YS

#### RESULTS OF CHEMICAL ANALYSES OF WATER

| BV Labs ID                  |       | WV1542                    |       | WV1543                    | WV1544                       | WV1545                    |       |
|-----------------------------|-------|---------------------------|-------|---------------------------|------------------------------|---------------------------|-------|
| Sampling Date               |       | 2019/10/31<br>19:19       |       | 2019/10/31<br>19:19       | 2019/10/31<br>19:19          | 2019/10/31<br>19:19       |       |
| COC Number                  |       | 18574                     |       | 18574                     | 18574                        | 18574                     |       |
|                             | UNITS | 1776 Hy Day 14<br>Control | RDL   | 1776 Hy Day 14 C4<br>West | 1776 Hy Day 14<br>C5 East/G6 | 1776 Hy Day 14 C3<br>West | RDL   |
| Misc. Inorganics            |       |                           |       |                           |                              |                           |       |
| рН                          | рН    | 8.12                      | N/A   | 8.26                      | 7.97                         | 8.23                      | N/A   |
| Anions                      |       |                           |       |                           |                              |                           |       |
| Alkalinity (PP as CaCO3)    | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Alkalinity (Total as CaCO3) | mg/L  | 150                       | 1.0   | 180                       | 110                          | 180                       | 1.0   |
| Bicarbonate (HCO3)          | mg/L  | 180                       | 1.0   | 220                       | 130                          | 220                       | 1.0   |
| Carbonate (CO3)             | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Hydroxide (OH)              | mg/L  | <1.0                      | 1.0   | <1.0                      | <1.0                         | <1.0                      | 1.0   |
| Nutrients                   |       |                           |       |                           |                              |                           |       |
| Total Ammonia (N)           | mg/L  | 6.6 (1)                   | 0.075 | 0.10                      | 0.16                         | 0.16                      | 0.015 |

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

| BV Labs ID                                         |                  | WV1546                         | WV1547                    | WV1548               | WV1549                      |       |
|----------------------------------------------------|------------------|--------------------------------|---------------------------|----------------------|-----------------------------|-------|
| Sampling Date                                      |                  | 2019/10/31<br>19:19            | 2019/10/31<br>19:19       | 2019/10/31<br>19:19  | 2019/10/31<br>19:19         |       |
| COC Number                                         |                  | 18574                          | 18574                     | 18574                | 18574                       |       |
|                                                    | UNITS            | 1776 Hy Day 14<br>C3 Centre G5 | 1776 Hy Day 14 C1<br>West | 1776 Hy Day 14<br>G4 | 1776 Hy Day 14<br>C6West/G7 | RDL   |
| Misc. Inorganics                                   |                  |                                |                           |                      |                             |       |
| рН                                                 | рН               | 8.34                           | 7.92                      | 7.88                 | 8.33                        | N/A   |
| Anions                                             | AUX - 14 - 177-0 |                                |                           |                      |                             |       |
| Alkalinity (PP as CaCO3)                           | mg/L             | 1.7                            | <1.0                      | <1.0                 | 1.4                         | 1.0   |
| Alkalinity (Total as CaCO3)                        | mg/L             | 200                            | 110                       | 87                   | 200                         | 1.0   |
| Bicarbonate (HCO3)                                 | mg/L             | 240                            | 130                       | 110                  | 250                         | 1.0   |
| Carbonate (CO3)                                    | mg/L             | 2.1                            | <1.0                      | <1.0                 | 1.6                         | 1.0   |
| Hydroxide (OH)                                     | mg/L             | <1.0                           | <1.0                      | <1.0                 | <1.0                        | 1.0   |
| Nutrients                                          |                  |                                |                           |                      |                             |       |
| Total Ammonia (N)                                  | mg/L             | 0.054                          | 0.12                      | 0.17                 | 0.098                       | 0.015 |
| RDL = Reportable Detection<br>N/A = Not Applicable | Limit            |                                |                           |                      |                             |       |

## Randomization Chart

**Tab: Sediment Tests** 

Maxxam BBY2FCD-00438/2

Pg: 1 of 1

Test: HYALELLA

Start Date: 2019 OCT 17

Client # & Name: 1776 SLR CONSULTING LTD

| Back Wall |    | Position Map | 0    |
|-----------|----|--------------|------|
| 6         | 12 | 18           |      |
| 5         | 11 | 17           |      |
| 4         | 10 | 16           |      |
| 3         | 9  | 15           |      |
| 2         | 8  | 14           |      |
| 1         | 7  | 13           | etc. |

Front of Counter

| Position # | Sample ID    | Replicate | Colour     |     | Position # | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Replicate | Colour        |
|------------|--------------|-----------|------------|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------|
| 2          |              | А         |            |     | 24         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А         |               |
| 17         |              | В         |            |     | 22         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 36         | CONTROL      | С         | Red        |     | 7          | G4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С         | Purple        |
| 25         | CONTROL      | D         | Neu        |     | 23         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | ruipic        |
| 4          |              | E         |            |     | 37         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ε         |               |
| 47         |              | Measure   |            |     | 33         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measure   |               |
| 1          |              | Α         |            |     | 42         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α         |               |
| 39         | 2 H * 10     | В         |            |     | 14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 16         | C6 EAST/G7   | C         | Orange     |     | 19         | C1 WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С         | Pink          |
| 34         | CO LAST/G/   | D         | Orange     |     | 40         | CI VVLST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D         | 1-11110       |
| 13         |              | E         |            |     | 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         |               |
| 5          |              | Measure   |            |     | 35         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measure   |               |
| 32         |              | Α         |            |     | 49         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α         |               |
| 46         |              | В         |            |     | 50         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 15         | C5 EAST/G6   | С         | Yellow     |     | 51         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С         | Light Blue    |
| 27         | C3 EA31/00   | D         | Tellow     |     | 52         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | LIGHT DIGC    |
| 18         |              | E         |            |     | 53         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         |               |
| 20         |              | Measure   |            |     | 54         | ALC: NO SECTION AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | Measure   |               |
| 44         |              | Α         |            |     | 55         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α         |               |
| 30         |              | В         |            |     | 56         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 12         | C4 WEST      | С         | Green      |     | 57         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С         | Light Green   |
| 38         | C4 WEST      | D         | Green      |     | 58         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | Light dreen   |
| 31         |              | E         |            | 175 | 59         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Е         |               |
| 11         |              | Measure   |            |     | 60         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measure   |               |
| 26         |              | A         |            |     | 61         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Α         |               |
| 3          |              | В         |            |     | 62         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 29         | C3 WEST      | С         | Dark Green |     | 63         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C         | Pink/Yellow   |
| 8          | C2 ME21      | D         | Dark Green |     | 64         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | FIIIK/ TEIIOW |
| 45         |              | E         |            |     | 65         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         |               |
| 28         |              | Measure   |            |     | 66         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measure   |               |
| 9          |              | Α         |            |     | 67         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | А         |               |
| 43         |              | В         |            |     | 68         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В         |               |
| 21         | CACENTEE /CE | С         | DI.        |     | 69         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | С         | Red/Green     |
| 41         | C3CENTRE/G5  | D         | Blue       |     | 70         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D         | ked/Green     |
| 10         |              | E         |            |     | 71         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E         |               |
| 48         |              | Measure   |            |     | 72         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Measure   |               |

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 311 of 406

# APPENDIX F ProUCL Outputs

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

|    | A B C                          | D E                                   | F              | G H I J K                                                           | L      |
|----|--------------------------------|---------------------------------------|----------------|---------------------------------------------------------------------|--------|
| 1  |                                | Nonparametric UC                      | L Statistics   | for Data Sets with Non-Detects                                      |        |
| 2  |                                |                                       |                |                                                                     |        |
| 3  | User Selected Options          |                                       |                |                                                                     |        |
| 4  | Date/Time of Computation       | ProUCL 5.112/31/2019 3                |                |                                                                     |        |
| 5  | From File                      | SED 0-0.15mbg Chemis                  | try_input_v5   | i.xls                                                               |        |
| 6  | Full Precision                 | OFF                                   |                |                                                                     |        |
| 7  |                                | 95%                                   |                |                                                                     |        |
| 8  | Number of Bootstrap Operations | 2000                                  |                |                                                                     |        |
| 9  | aluminum                       |                                       |                |                                                                     |        |
| 11 | aummum                         |                                       |                |                                                                     |        |
| 12 |                                |                                       | General        | Statistics                                                          |        |
| 13 | Total                          | Number of Observations                | 6              | Number of Distinct Observations                                     | 6      |
| 14 |                                |                                       |                | Number of Missing Observations                                      | 17     |
| 15 |                                | Minimum                               | 9030           | Mean                                                                | 10842  |
| 16 |                                | Maximum                               | 13200          | Median                                                              | 10600  |
| 17 |                                | SD                                    | 1603           | Std. Error of Mean                                                  | 654.4  |
| 18 |                                | Coefficient of Variation              | 0.148          | Skewness                                                            | 0.492  |
| 19 |                                | Mean of logged Data                   | 9.282          | SD of logged Data                                                   | 0.146  |
| 20 |                                | -33                                   |                | ]                                                                   | _      |
| 21 | Not                            | e: Sample size is small (             | (e.g., <10). i | f data are collected using ISM approach                             |        |
| 22 |                                |                                       |                | JCL to estimate EPC (ITRC, 2012).                                   |        |
| 24 | Chet                           | yshev UCL can be com                  | puted using    | the Nonparametric and All UCL Options.                              |        |
| 25 |                                |                                       | -              | <u> </u>                                                            |        |
| 26 |                                | Nonparame                             | tric Distribu  | tion Free UCL Statistics                                            |        |
| 27 |                                | Data appear Nor                       | mal Distribu   | ited at 5% Significance Level                                       |        |
| 28 |                                |                                       |                | -                                                                   |        |
| 29 |                                | Ass                                   | suming Nor     | mal Distribution                                                    |        |
| 30 | 95% No                         | rmal UCL                              |                | 95% UCLs (Adjusted for Skewness)                                    |        |
| 31 |                                | 95% Student's-t UCL                   | 12160          | 95% Adjusted-CLT UCL (Chen-1995)                                    | 12059  |
| 32 |                                |                                       |                | 95% Modified-t UCL (Johnson-1978)                                   | 12182  |
| 33 |                                |                                       |                |                                                                     |        |
| 34 |                                | Nonpar                                | rametric Dis   | tribution Free UCLs                                                 |        |
| 35 |                                | 95% CLT UCL                           | 11918          | 95% Jackknife UCL                                                   | 12160  |
| 36 | 95% \$                         | Standard Bootstrap UCL                | 11830          | 95% Bootstrap-t UCL                                                 | 12715  |
| 37 | 95                             | 5% Hall's Bootstrap UCL               | 13362          | 95% Percentile Bootstrap UCL                                        | 11820  |
| 38 | 9                              | 5% BCA Bootstrap UCL                  | 11987          |                                                                     |        |
| 39 | 90% Che                        | ebyshev(Mean, Sd) UCL                 | 12805          | 95% Chebyshev(Mean, Sd) UCL                                         | 13694  |
| 40 | 97.5% Che                      | ebyshev(Mean, Sd) UCL                 | 14928          | 99% Chebyshev(Mean, Sd) UCL                                         | 17353  |
| 41 |                                |                                       |                |                                                                     |        |
| 42 |                                |                                       | Suggested      | UCL to Use                                                          |        |
| 43 |                                | Data appear Noi                       | rmal, May w    | ant to try Normal Distribution                                      |        |
| 44 |                                |                                       |                |                                                                     |        |
| 45 |                                |                                       |                | ovided to help the user to select the most appropriate 95% UC       | L.     |
| 46 |                                |                                       |                | ta size, data distribution, and skewness.                           |        |
| 47 |                                | · · · · · · · · · · · · · · · · · · · |                | nulation studies summarized in Singh, Maichle, and Lee (2006)       |        |
| 48 | However, simulations results   | s will not cover all Real W           | orld data se   | ts; for additional insight the user may want to consult a statistic | ian.   |
| 49 |                                |                                       |                |                                                                     |        |
| 50 | antimony                       |                                       |                |                                                                     |        |
| 51 |                                |                                       | C ·            | Challables                                                          |        |
| 52 | T                              | Number of Ob-                         |                | Statistics                                                          | 7      |
| 53 | l'otal                         | Number of Observations                | 22             | Number of Distinct Observations                                     | 7      |
| 54 |                                | Months (D.)                           | 7              | Number of Missing Observations                                      | 1      |
| 55 | **                             | Number of Detects                     | 7              | Number of Non-Detects                                               | 15     |
| 56 | Nu                             | Imber of Distinct Detects             | 6              | Number of Distinct Non-Detects                                      | 1      |
| 57 |                                | Minimum Detect                        | 0.53           | Minimum Non-Detect                                                  | 0.8    |
| 58 |                                | Maximum Detect                        | 1.54           | Maximum Non-Detect                                                  | 0.8    |
| 59 |                                | Variance Detects                      | 0.124          | Percent Non-Detects                                                 | 68.18% |

SLR Page 1 of 42

|              | A B C                          | D E  Nonparametric UC         | F<br>I Statistics | G<br>for Data Sats | H With Non-F      | )<br>Natacte | J                             | K                                       | L              |
|--------------|--------------------------------|-------------------------------|-------------------|--------------------|-------------------|--------------|-------------------------------|-----------------------------------------|----------------|
| 1            |                                | Nonparametric OC              | L Statistics      | IOI Data Sets      | WILL NOII-L       | relects      |                               |                                         |                |
| 2            | User Selected Options          |                               |                   |                    |                   |              |                               |                                         |                |
| 3            | Date/Time of Computation       | ProUCL 5.112/31/2019 3        | 0-E0-10 DM        |                    |                   |              |                               |                                         |                |
| 4            | From File                      |                               |                   | vle                |                   |              |                               |                                         |                |
| 5            | Full Precision                 | SED 0-0.15mbg Chemist         | try_iriput_va     | ).XIS              |                   |              |                               |                                         |                |
| 6            | Confidence Coefficient         | 95%                           |                   |                    |                   |              |                               |                                         |                |
| 7            |                                | 2000                          |                   |                    |                   |              |                               |                                         |                |
| 8<br>9<br>10 | Number of Bootstrap Operations | 2000                          |                   |                    |                   |              |                               |                                         |                |
|              |                                | Mean Detects                  | 0.997             |                    |                   |              | SI                            | D Detects                               | 0.352          |
| 60           |                                | Median Detects                | 0.92              |                    |                   |              | C'                            | V Detects                               | 0.353          |
| 61           |                                | Skewness Detects              | 0.257             |                    |                   |              |                               | is Detects                              | -0.651         |
| 62           |                                | Mean of Logged Detects        | -0.0598           |                    |                   |              | SD of Logge                   |                                         | 0.372          |
| 63           |                                |                               |                   |                    |                   |              | 33-                           |                                         |                |
| 64           |                                | Nonparame                     | tric Distribu     | tion Free UC       | L Statistics      |              |                               |                                         |                |
| 65           |                                | Detected Data appea           |                   |                    |                   | nce Level    |                               |                                         |                |
| 66           |                                | Dottottoa Data appoa          | i itomiai bi      | ourbatoa at o      | 70 Olgrilloui     | 100 20101    |                               |                                         |                |
| 67           | Kanjan-                        | Meier (KM) Statistics usin    | a Normal C        | ritical Values     | and other         | Nonnarame    | atric LICLs                   |                                         |                |
| 68           | Карын                          | Mean                          | 0.723             | Tidodi Valdoc      | dia otiloi        | Tonpulani    | Standard Erro                 | r of Mean                               | 0.0714         |
| 69           |                                | SD                            | 0.268             |                    |                   |              | 95% KM (E                     |                                         | 0.932          |
| 70           |                                | 95% KM (t) UCL                | 0.846             |                    |                   | 95% KM /E    | Percentile Boots              | ,                                       | 0.932          |
| 71           |                                | 95% KM (z) UCL                | 0.84              |                    |                   | ,            | 95% KM Bootst                 | ' /                                     | 0.832          |
| 72           | C                              | 90% KM Chebyshev UCL          | 0.937             |                    |                   |              | 95% KM Chebys                 |                                         | 1.034          |
| 73           |                                | .5% KM Chebyshev UCL          | 1.169             |                    |                   |              | 99% KM Chebys                 |                                         | 1.434          |
| 74           | 37                             | .5 % KW Gliebysliev GGE       | 1.103             |                    |                   | •            | JO 70 TAINI OHEDYA            | SHEV OCE                                | 1.707          |
| 75           | Static                         | tics using KM estimates       | on Logged         | Data and Δee       | umina I oar       | ormal Diet   | ribution                      |                                         |                |
| 76           | Giais                          | KM SD (logged)                | 0.305             |                    | dining Logi       |              | Critical H Value              | (KM-Log)                                | 1.842          |
| 77           |                                | KM Mean (logged)              | -0.377            |                    |                   | 3070         |                               | Geo Mean                                | 0.686          |
| 78           | KM Standa                      | rd Error of Mean (logged)     | 0.0929            |                    |                   |              | 95% H-UCL (                   |                                         | 0.812          |
| 79           | TWI Glandar                    | a Error or wearr (logged)     | 0.0323            |                    |                   |              | 33 /0 TI-OOL (                | (IKIVI -LOG)                            | 0.012          |
| 80           |                                |                               | Sunnested         | UCL to Use         |                   |              |                               |                                         |                |
| 81           |                                | Data appear No                |                   |                    | rmal Dietrih      | ution        |                               |                                         |                |
| 82           | Note: Suggestions regard       | ling the selection of a 95%   |                   |                    |                   |              | most appropriate              | 95% ПС                                  |                |
| 83           |                                | Recommendations are bas       |                   | <u> </u>           |                   |              |                               |                                         |                |
| 84           |                                | s are based upon the resu     |                   |                    |                   |              |                               | ee (2006)                               |                |
| 85           | However, simulations result    |                               |                   |                    |                   |              |                               |                                         | an             |
| 86           | riewever, simulatione result   | to will not dover all real ve |                   |                    | iai irioigiit iri | - doci may   | Want to conoun                | a otationoi                             | uii.           |
| 87           |                                |                               |                   |                    |                   |              |                               |                                         |                |
| 88           | arsenic                        |                               |                   |                    |                   |              |                               |                                         |                |
| 89           |                                |                               |                   |                    |                   |              |                               |                                         |                |
| 90           |                                |                               | General           | Statistics         |                   |              |                               |                                         |                |
| 91           | Total                          | Number of Observations        | 22                |                    |                   | Numbe        | r of Distinct Obs             | servations                              | 19             |
| 92           | Total                          |                               |                   |                    |                   |              | r of Missing Obs              |                                         | 1              |
| 93           |                                | Minimum                       | 3                 |                    |                   |              | g obc                         | Mean                                    | 4.551          |
| 94           |                                | Maximum                       | 12                |                    |                   |              |                               | Median                                  | 4.551          |
| 95           |                                | SD                            | 1.82              |                    |                   |              | Std Frro                      | r of Mean                               | 0.388          |
| 96           |                                | Coefficient of Variation      | 0.4               |                    |                   |              |                               | Skewness                                | 3.536          |
| 97           |                                | Mean of logged Data           | 1.468             |                    |                   |              |                               | ged Data                                | 0.283          |
| 98           |                                | ca c. logged Data             |                   |                    |                   |              | 35 01 log                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.200          |
| 99           |                                | Nonnarama                     | tric Distribu     | tion Free UC       | L Statistice      |              |                               |                                         |                |
| 100          |                                | Data do not fe                |                   |                    |                   | 5)           |                               |                                         |                |
| 101          |                                | Data do 110t li               | UUTT a DISC       | JOHN DIGHT         | Dadon (0.00       | ''           |                               |                                         |                |
| 102          |                                | ٨٥٠                           | sumina Nos        | mal Distributi     | on                |              |                               |                                         |                |
| 103          | OEO/ NA                        | ormal UCL                     | adining NOT       | mai vistribūti     |                   | IICI e /Adii | usted for Skewr               | 1000)                                   |                |
|              | 1 35% N                        | ormal OCL                     |                   | 1                  | 90%               | oors (wall   | JOHNAY IOI DARRAL             | 1699)                                   |                |
| 104          |                                | 95% Student's + LICI          | 5 210             |                    | 0                 | 5% Adineta   | A-CLT LICE (CF                | nen_1005\                               | 5 502          |
| 105          |                                | 95% Student's-t UCL           | 5.219             |                    |                   |              | ed-CLT UCL (Ch                |                                         | 5.502          |
|              |                                | 95% Student's-t UCL           | 5.219             |                    |                   |              | ed-CLT UCL (Ched-t UCL (Johns |                                         | 5.502<br>5.268 |

SLR Page 2 of 42

|                                                                                                                                                                      |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------|
| _                                                                                                                                                                    | A B C                                       | D E Nonparametric UC                                                                                                                                                                                                      | F<br>L Statistics                                                                                                                                                  | for Data Sets                                                          | H With Non-D                           | etects                                                                                 | J                                                                        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | L                                                                                      |
| 1                                                                                                                                                                    |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 3                                                                                                                                                                    | User Selected Options                       |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 4                                                                                                                                                                    | Date/Time of Computation Prol               | JCL 5.112/31/2019 3                                                                                                                                                                                                       | 3:58:18 PM                                                                                                                                                         |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 5                                                                                                                                                                    | From File SED                               | 0 0-0.15mbg Chemis                                                                                                                                                                                                        | try_input_v5                                                                                                                                                       | 5.xls                                                                  |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 6                                                                                                                                                                    | Full Precision OFF                          |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 7                                                                                                                                                                    | Confidence Coefficient 95%                  | ,<br>)                                                                                                                                                                                                                    |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 8                                                                                                                                                                    | Number of Bootstrap Operations 2000         | 0                                                                                                                                                                                                                         |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 9                                                                                                                                                                    | '                                           |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 108                                                                                                                                                                  |                                             | <del>-</del>                                                                                                                                                                                                              |                                                                                                                                                                    | tribution Free                                                         | UCLs                                   |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 109                                                                                                                                                                  | 05%                                         | 95% CLT UCL                                                                                                                                                                                                               | 5.189                                                                                                                                                              |                                                                        |                                        |                                                                                        |                                                                          | ckknife UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | 5.219                                                                                  |
| 110                                                                                                                                                                  |                                             | dard Bootstrap UCL                                                                                                                                                                                                        | 5.171                                                                                                                                                              |                                                                        |                                        | 05%                                                                                    | 95% Boot                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 6.013                                                                                  |
| 111                                                                                                                                                                  |                                             | Hall's Bootstrap UCL<br>BCA Bootstrap UCL                                                                                                                                                                                 | 7.679<br>5.517                                                                                                                                                     |                                                                        |                                        | 95% P                                                                                  | Percentile Boo                                                           | otstrap UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,L                                     | 5.244                                                                                  |
| 112                                                                                                                                                                  |                                             | hev(Mean, Sd) UCL                                                                                                                                                                                                         | 5.715                                                                                                                                                              |                                                                        |                                        | 0E% Ch                                                                                 | ebyshev(Mea                                                              | n 64) IIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N                                      | 6.243                                                                                  |
| 113                                                                                                                                                                  | ·                                           | hev(Mean, Sd) UCL                                                                                                                                                                                                         | 6.975                                                                                                                                                              |                                                                        |                                        |                                                                                        | ebyshev(Mea                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 8.413                                                                                  |
| 114                                                                                                                                                                  | 37.370 Onobysi                              | nev(weam, ou) occ                                                                                                                                                                                                         | 0.575                                                                                                                                                              |                                                                        |                                        | 3370 0110                                                                              | SDY3HCV(IVICE                                                            | in, ou) oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,_                                     | 0.410                                                                                  |
| 115                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           | Suggested                                                                                                                                                          | UCL to Use                                                             |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 116                                                                                                                                                                  | 9.                                          | 5% Student's-t UCL                                                                                                                                                                                                        | 5.219                                                                                                                                                              |                                                                        |                                        |                                                                                        | or 95% Mod                                                               | dified-t UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CL                                     | 5.268                                                                                  |
| 117                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 118                                                                                                                                                                  | Note: Suggestions regarding th              | ne selection of a 95%                                                                                                                                                                                                     | UCL are pr                                                                                                                                                         | rovided to help                                                        | the user to                            | select the m                                                                           | nost appropri                                                            | ate 95% U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JCL.                                   |                                                                                        |
| 120                                                                                                                                                                  | Recon                                       | nmendations are bas                                                                                                                                                                                                       | sed upon dat                                                                                                                                                       | ta size, data d                                                        | istribution, a                         | nd skewnes                                                                             | is.                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 121                                                                                                                                                                  | These recommendations are                   | based upon the resu                                                                                                                                                                                                       | Its of the sin                                                                                                                                                     | nulation studie                                                        | s summarize                            | ed in Singh,                                                                           | Maichle, and                                                             | d Lee (200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6).                                    |                                                                                        |
| 122                                                                                                                                                                  | However, simulations results will           | not cover all Real W                                                                                                                                                                                                      | orld data se                                                                                                                                                       | ets; for addition                                                      | nal insight the                        | e user may v                                                                           | want to consi                                                            | ult a statis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tician.                                |                                                                                        |
| 123                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 124                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 125                                                                                                                                                                  | barium                                      |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 126                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 120                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    |                                                                        |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
| 127                                                                                                                                                                  |                                             |                                                                                                                                                                                                                           |                                                                                                                                                                    | Statistics                                                             |                                        |                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                        |
|                                                                                                                                                                      | Total Num                                   | ber of Observations                                                                                                                                                                                                       | General<br>22                                                                                                                                                      | Statistics                                                             |                                        |                                                                                        | of Distinct O                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 19                                                                                     |
| 127                                                                                                                                                                  | Total Num                                   |                                                                                                                                                                                                                           | 22                                                                                                                                                                 | Statistics                                                             |                                        |                                                                                        | of Distinct O                                                            | bservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | าร                                     | 1                                                                                      |
| 127<br>128                                                                                                                                                           | Total Num                                   | Minimum                                                                                                                                                                                                                   | 22<br>69                                                                                                                                                           | Statistics                                                             |                                        |                                                                                        |                                                                          | bservatior<br>Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns<br>an 1                             | 1 03.8                                                                                 |
| 127<br>128<br>129<br>130<br>131                                                                                                                                      | Total Num                                   | Minimum<br>Maximum                                                                                                                                                                                                        | 69<br>210                                                                                                                                                          | Statistics                                                             |                                        |                                                                                        | of Missing O                                                             | bservation<br>Mea<br>Media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns<br>an 1                             | 1<br>03.8<br>95.5                                                                      |
| 127<br>128<br>129<br>130<br>131<br>132                                                                                                                               |                                             | Minimum<br>Maximum<br>SD                                                                                                                                                                                                  | 69<br>210<br>32.69                                                                                                                                                 | Statistics                                                             |                                        |                                                                                        | of Missing O                                                             | Mea<br>Media<br>rror of Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>an 1<br>an                       | 1<br>03.8<br>95.5<br>6.969                                                             |
| 127<br>128<br>129<br>130<br>131<br>132<br>133                                                                                                                        | Co                                          | Minimum<br>Maximum<br>SD<br>efficient of Variation                                                                                                                                                                        | 22<br>69<br>210<br>32.69<br>0.315                                                                                                                                  | Statistics                                                             |                                        |                                                                                        | of Missing O                                                             | Mea<br>Media<br>rror of Mea<br>Skewnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133                                                                                                                        | Co                                          | Minimum<br>Maximum<br>SD                                                                                                                                                                                                  | 69<br>210<br>32.69                                                                                                                                                 | Statistics                                                             |                                        |                                                                                        | of Missing O                                                             | Mea<br>Media<br>rror of Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969                                                             |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134                                                                                                                 | Co                                          | Minimum<br>Maximum<br>SD<br>efficient of Variation<br>Mean of logged Data                                                                                                                                                 | 22<br>69<br>210<br>32.69<br>0.315<br>4.603                                                                                                                         |                                                                        | L Statistics                           |                                                                                        | of Missing O                                                             | Mea<br>Media<br>rror of Mea<br>Skewnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136                                                                                                   | Co                                          | Minimum<br>Maximum<br>SD<br>efficient of Variation<br>Mean of logged Data                                                                                                                                                 | 69<br>210<br>32.69<br>0.315<br>4.603                                                                                                                               | ition Free UC                                                          |                                        | Number                                                                                 | of Missing O                                                             | Mea<br>Media<br>rror of Mea<br>Skewnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136                                                                                                   | Co                                          | Minimum Maximum SD efficient of Variation flean of logged Data Nonparame                                                                                                                                                  | 69<br>210<br>32.69<br>0.315<br>4.603                                                                                                                               | ition Free UC                                                          |                                        | Number                                                                                 | of Missing O                                                             | Mea<br>Media<br>rror of Mea<br>Skewnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137                                                                                            | Co                                          | Minimum Maximum SD efficient of Variation flean of logged Data Nonparame a appear Approxima                                                                                                                               | 69<br>210<br>32.69<br>0.315<br>4.603<br>otric Distribu                                                                                                             | ition Free UC                                                          | 5% Significa                           | Number                                                                                 | of Missing O                                                             | Mea<br>Media<br>rror of Mea<br>Skewnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138                                                                                     | Co                                          | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima                                                                                                                              | 69<br>210<br>32.69<br>0.315<br>4.603<br>otric Distribu                                                                                                             | ition Free UC                                                          | 5% Significa                           | Number                                                                                 | of Missing O                                                             | Mea<br>Media<br>Tror of Mea<br>Skewnes<br>ogged Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an 1<br>an an                          | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137                                                                                            | Co<br>N<br>Dat                              | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima                                                                                                                              | 69<br>210<br>32.69<br>0.315<br>4.603<br>otric Distribu                                                                                                             | ition Free UC                                                          | 5% Signification                       | Number  ance Level                                                                     | of Missing O Std. Er                                                     | Mean Media Media Media Media Media Media Media Media Mean Mean Mean Mean Mean Mean Mean Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns 1 an 1 an ss ta                     | 1<br>03.8<br>95.5<br>6.969<br>1.703                                                    |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140                                                                       | Co<br>N<br>Dat                              | Minimum Maximum SD efficient of Variation Mean of logged Data Nonparame a appear Approxima Ass                                                                                                                            | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>ortic Distribu                                                                                                       | ition Free UC                                                          | <b>5% Significa</b> on <b>95% l</b> 99 | Number  ance Level  JCLs (Adjusted)  JCLs (Adjusted)                                   | of Missing O Std. Er SD of I                                             | Mean Media Media Media Media Media Media Media Media Mean Mean Mean Mean Mean Mean Mean Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279                                           |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140                                                                       | Co<br>N<br>Dat                              | Minimum Maximum SD efficient of Variation Mean of logged Data Nonparame a appear Approxima Ass                                                                                                                            | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>htric Distribu                                                                                                       | ition Free UC                                                          | <b>5% Significa</b> on <b>95% l</b> 99 | Number  ance Level  JCLs (Adjusted)  JCLs (Adjusted)                                   | Std. Er SD of I                                                          | Mean Media Media Media Media Media Media Media Media Mean Mean Mean Mean Mean Mean Mean Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279                                           |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141                                                                | Co<br>N<br>Dat                              | Minimum Maximum SD efficient of Variation Mean of logged Data Nonparame a appear Approxima Ass I UCL 5% Student's-t UCL Nonpar                                                                                            | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>htric Distribusiate Normal I                                                                                         | ition Free UC                                                          | 5% Signification                       | Number  ance Level  JCLs (Adjusted)  JCLs (Adjusted)                                   | Std. Er SD of I                                                          | Mean Media Media Media Media Media Media Media Media Mean Mean Mean Mean Mean Mean Mean Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns   1   1   1   1   1   1   1   1   1 | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279                                           |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143                                                  | Co  M  Dat  95% Normal                      | Minimum Maximum SD efficient of Variation Mean of logged Data  Nonparame a appear Approxima  Ast I UCL 5% Student's-t UCL  Nonpar                                                                                         | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>htric Distribu<br>ate Normal I<br>115.8                                                                              | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  ance Level  JCLs (Adjusted)  JCLs (Adjusted)                                   | Std. Er SD of I                                                          | Media<br>Media<br>Tror of Mea<br>Skewnes<br>ogged Da<br>wness)<br>Chen-199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns   1   1   1   1   1   1   1   1   1 | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279                                           |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143                                                  | 95% Normal 9                                | Minimum Maximum SD efficient of Variation Mean of logged Data  Nonparame a appear Approxima  Ass I UCL 5% Student's-t UCL  Nonpar 95% CLT UCL dard Bootstrap UCL                                                          | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>Attric Distribution of the Normal I                                                                                  | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  ance Level  JCLs (Adjusted)  5% Adjusted  5% Modifie                           | Std. Er SD of I  sted for Sket J-CLT UCL ( d-t UCL (Joh 95% Jac 95% Boot | Mean Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media M | ns   1   1   1   1   1   1   1   1   1 | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>18<br>16.2                       |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145                                    | 95% Normal 95% Stance                       | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima  Ass I UCL 5% Student's-t UCL  Nonpar 95% CLT UCL dard Bootstrap UCL fall's Bootstrap UCL                                    | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>Attric Distribution of the Normal I                                                                                  | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  ance Level  JCLs (Adjusted)  5% Adjusted  5% Modifie                           | Std. Er SD of I                                                          | Mean Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media M | ns   1   1   1   1   1   1   1   1   1 | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279                                           |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>140<br>141<br>142<br>143<br>144<br>145<br>146                                    | 95% Normal 95% Stance 95% H                 | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima  Ass I UCL  S% Student's-t UCL  Nonpar  95% CLT UCL dard Bootstrap UCL BCA Bootstrap UCL                                     | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>Atric Distribution of the Normal I                                                                                   | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  Pance Level  JCLs (Adjusted  S% Adjusted  S% Modifie                           | Std. Er SD of I Sted for Sker d-CLT UCL ( d-t UCL (Joh 95% Boot          | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>16.2<br>15.8<br>18.6<br>15       |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147                             | 95% Normal 95% Normal 95% Stant 95% H 95% E | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima  Ass  I UCL  S% Student's-t UCL  dard Bootstrap UCL flall's Bootstrap UCL BCA Bootstrap UCL hev(Mean, Sd) UCL                | 22  69 210 32.69 0.315 4.603  Atric Distribution Normal II  115.8  Tametric Distribution 115.8  115.3 115 125.6 117.9 124.7                                        | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  Pance Level  JCLs (Adjusted Street Modifier)  95% Page 195% Chee               | sted for Skerd-CLT UCL (John 95% Boot Percentile Bookebyshev(Mea         | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>18<br>16.2<br>15.8<br>18.6<br>15 |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150 | 95% Normal 95% Normal 95% Stant 95% H 95% E | Minimum Maximum SD efficient of Variation flean of logged Data  Nonparame a appear Approxima  Ass I UCL  S% Student's-t UCL  Nonpar  95% CLT UCL dard Bootstrap UCL BCA Bootstrap UCL                                     | 22<br>69<br>210<br>32.69<br>0.315<br>4.603<br>Atric Distribution of the Normal I                                                                                   | ition Free UC<br>Distributed at<br>mal Distributio                     | 5% Signification                       | Number  Pance Level  JCLs (Adjusted Street Modifier)  95% Page 195% Chee               | Std. Er SD of I Sted for Sker d-CLT UCL ( d-t UCL (Joh 95% Boot          | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>16.2<br>15.8<br>18.6<br>15       |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150 | 95% Normal 95% Normal 95% Stant 95% H 95% E | Minimum Maximum SD efficient of Variation Mean of logged Data  Nonparame a appear Approxima  Ass I UCL  Nonpar  95% CLT UCL dard Bootstrap UCL dall's Bootstrap UCL BCA Bootstrap UCL hev(Mean, Sd) UCL hev(Mean, Sd) UCL | 22  69 210 32.69 0.315 4.603  Aric Distribution of the Normal II  115.8  Tametric Distribution of the Normal II  125.6 117.9 124.7 147.4                           | ntion Free UC<br>Distributed at<br>mal Distribution<br>stribution Free | 5% Signification                       | Number  Pance Level  JCLs (Adjusted Street Modifier)  95% Page 195% Chee               | sted for Skerd-CLT UCL (John 95% Boot Percentile Bookebyshev(Mea         | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>18<br>16.2<br>15.8<br>18.6<br>15 |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150<br>151 | 95% Normal 95% Normal 95% Stant 95% H 95% E | Minimum Maximum SD efficient of Variation Mean of logged Data  Nonparame a appear Approxima  Ass I UCL  Nonpar  95% CLT UCL dard Bootstrap UCL dall's Bootstrap UCL BCA Bootstrap UCL hev(Mean, Sd) UCL hev(Mean, Sd) UCL | 22 69 210 32.69 0.315 4.603  Atric Distribution of the Normal I  suming Normal I  115.8  Tametric Distribution of the Normal I  125.6 117.9 124.7 147.4  Suggested | ttion Free UC Distributed at mal Distribution tribution Free           | 5% Signification 95% (                 | Number  Pance Level  JCLs (Adjusted)  SW Adjusted  SW Modifie  95% P  95% Che  99% Che | sted for Skerd-CLT UCL (John 95% Boot Percentile Bookebyshev(Mea         | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>18<br>16.2<br>15.8<br>18.6<br>15 |
| 127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140<br>141<br>142<br>143<br>144<br>145<br>146<br>147<br>148<br>149<br>150 | 95% Normal 95% Normal 95% Stant 95% H 95% E | Minimum Maximum SD efficient of Variation Mean of logged Data  Nonparame a appear Approxima  Ass I UCL  Nonpar  95% CLT UCL dard Bootstrap UCL dall's Bootstrap UCL BCA Bootstrap UCL hev(Mean, Sd) UCL hev(Mean, Sd) UCL | 22 69 210 32.69 0.315 4.603  Atric Distribution of the Normal I  suming Normal I  115.8  Tametric Distribution of the Normal I  125.6 117.9 124.7 147.4  Suggested | ttion Free UC Distributed at mal Distribution tribution Free           | 5% Signification 95% (                 | Number  Pance Level  JCLs (Adjusted)  SW Adjusted  SW Modifie  95% P  95% Che  99% Che | sted for Skerd-CLT UCL (John 95% Boot Percentile Bookebyshev(Mea         | Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media Media  | 1                                      | 1<br>03.8<br>95.5<br>6.969<br>1.703<br>0.279<br>18<br>18<br>16.2<br>15.8<br>18.6<br>15 |

SLR Page 3 of 42

|                                                                                                                                                                      | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                                                  | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1                                                                                                                                                                    | Nonparametric UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Statistics                                                                                                                       | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 2                                                                                                                                                                    | Harri Calanta di Cartinana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 3                                                                                                                                                                    | User Selected Options  Date/Time of Computation ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2-52-12 DM                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 4                                                                                                                                                                    | From File SED 0-0.15mbg Chemist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | vle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| 5                                                                                                                                                                    | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iry_iriput_vo                                                                                                                      | .Alo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |
| 6                                                                                                                                                                    | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 7                                                                                                                                                                    | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 8<br>9<br>10                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 155                                                                                                                                                                  | Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UCL are pr                                                                                                                         | ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 156                                                                                                                                                                  | Recommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed upon da                                                                                                                         | ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
| 157                                                                                                                                                                  | These recommendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lts of the sin                                                                                                                     | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 158                                                                                                                                                                  | However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orld data se                                                                                                                       | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ın.                                                |
| 159                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 160                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 161                                                                                                                                                                  | beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 162                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 163                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 164                                                                                                                                                                  | Total Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                 | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19                                                 |
| 165                                                                                                                                                                  | Ar. :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                               | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                  |
| 166                                                                                                                                                                  | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.28                                                                                                                               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                                               |
| 167                                                                                                                                                                  | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.67                                                                                                                               | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.425                                              |
| 168                                                                                                                                                                  | SD Octobrish of Vericina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                                | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0213                                             |
| 169                                                                                                                                                                  | Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.844                                                                                                                             | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.645                                              |
| 170                                                                                                                                                                  | Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.844                                                                                                                             | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.222                                              |
| 171                                                                                                                                                                  | Nonnarama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tric Dietribu                                                                                                                      | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 172                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | ited at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| 173                                                                                                                                                                  | Data appear No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mai Distribe                                                                                                                       | ited at 0 % Olgrinication Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 174                                                                                                                                                                  | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sumina Nor                                                                                                                         | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 175                                                                                                                                                                  | Ass<br>95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | suming Nor                                                                                                                         | mal Distribution 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 175<br>176                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suming Non                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.479                                              |
| 175<br>176<br>177                                                                                                                                                    | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.479                                              |
| 175<br>176<br>177<br>178                                                                                                                                             | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                    | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 175<br>176<br>177<br>178<br>179                                                                                                                                      | 95% Normal UCL<br>95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.477                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 175<br>176<br>177<br>178                                                                                                                                             | 95% Normal UCL<br>95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.477                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| 175<br>176<br>177<br>178<br>179<br>180                                                                                                                               | 95% Normal UCL 95% Student's-t UCL Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.477                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.478                                              |
| 175<br>176<br>177<br>178<br>179<br>180<br>181                                                                                                                        | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.477  ametric Dis 0.476 0.475 0.481                                                                                               | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.478                                              |
| 175<br>176<br>177<br>178<br>179<br>180<br>181                                                                                                                        | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.477  ametric Dis  0.476  0.475                                                                                                   | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.478<br>0.477<br>0.483                            |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182                                                                                                                 | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504                                                                                   | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.478<br>0.477<br>0.483<br>0.475                   |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183                                                                                                          | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.477  ametric Dis 0.476 0.475 0.481 0.477                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.478<br>0.477<br>0.483<br>0.475                   |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184                                                                                                   | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574                                                                             | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.478<br>0.477<br>0.483<br>0.475                   |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185                                                                                            | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested                                                                  | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.478<br>0.477<br>0.483<br>0.475                   |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186                                                                                     | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested                                                                  | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.478<br>0.477<br>0.483<br>0.475                   |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>188<br>199                                                                | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w                                                       | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>188<br>190                                                                | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Data appear Nor  Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mai, May w                                                       | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>188<br>189<br>190                                                         | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are priced upon dar                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>198<br>199<br>191<br>192<br>193                                           | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  The appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are based upon the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the resulting the selection of the resulting the resulting the resulting the resulting the resulting the resulting the resulting the resulting t | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are proced upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL uCL to Use ant to try Normal Distribution  Ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>198<br>199<br>191<br>192<br>193<br>194                                    | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  The appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are based upon the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the resulting the selection of the resulting the resulting the resulting the resulting the resulting the resulting the resulting the resulting t | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are proced upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>198<br>190<br>191<br>192<br>193<br>194<br>195                             | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  The appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are based upon the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the resulting the selection of the resulting the resulting the resulting the resulting the resulting the resulting the resulting the resulting t | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are proced upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL uCL to Use ant to try Normal Distribution  Ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>198<br>190<br>191<br>192<br>193<br>194<br>195                             | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  The appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are based upon the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the selection of the resulting the resulting the selection of the resulting the resulting the resulting the resulting the resulting the resulting the resulting the resulting t | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are proced upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL uCL to Use ant to try Normal Distribution  Ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196                             | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean of a 95%  Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are proced upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL uCL to Use ant to try Normal Distribution  Ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197                      | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean of a 95%  Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are prived upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL uCL to Use ant to try Normal Distribution  Ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198               | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean of a 95%  Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are prived upon dar lits of the sin              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL ucl to Use ant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness. culation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198<br>199<br>200 | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Pata appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are base These recommendations are based upon the resul However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are prized upon dar lits of the sin orld data se | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 UCL to Use 100 and to try Normal Distribution  101 a size, data distribution, and skewness. 102 a size, data distribution, and skewness. 103 a size, data distribution, and skewness. 104 a size, data distribution and skewness. 105 a size, data distribution and skewness. 107 a size, data distribution and skewness. 108 a size, data distribution and skewness. 109 a size, data distribution and skewness. 109 a size, data distribution and skewness. 100 a size, data distribution and skewness. 101 a size, data distribution and skewness. 102 a size, data distribution and skewness. 103 a size, data distribution and skewness. 104 a size, data distribution and skewness. 105 a size, data distribution and skewness. 106 a size, data distribution and skewness. 107 a size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of size of s | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198<br>200<br>201 | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Pata appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are base These recommendations are based upon the resul However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are prized upon dar lits of the sin orld data se | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 UCL to Use 100 and to try Normal Distribution  100 vided to help the user to select the most appropriate 95% UCL 101 ta size, data distribution, and skewness. 101 and studies summarized in Singh, Maichle, and Lee (2006). 102 ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.478<br>0.477<br>0.483<br>0.475<br>0.533<br>0.653 |
| 175<br>176<br>177<br>178<br>179<br>180<br>181<br>182<br>183<br>184<br>185<br>186<br>187<br>190<br>191<br>192<br>193<br>194<br>195<br>196<br>197<br>198<br>199<br>200 | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Data appear Nor  Note: Suggestions regarding the selection of a 95% Recommendations are base These recommendations are based upon the result However, simulations results will not cover all Real W  boron  Total Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.477  ametric Dis 0.476 0.475 0.481 0.477 0.504 0.574  Suggested mal, May w  UCL are pried upon dar lits of the sin orld data se  | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 UCL to Use 100 ant to try Normal Distribution  100 ovided to help the user to select the most appropriate 95% UCL. 101 ta size, data distribution, and skewness. 101 hundrid summarized in Singh, Maichle, and Lee (2006). 102 tts; for additional insight the user may want to consult a statisticia  103 Statistics  Number of Distinct Observations Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.478  0.477  0.483  0.475  0.533  0.653           |

SLR Page 4 of 42

| H    | A B C                          | D E Nonnarametric UC        | F<br>Statistics | G H I J K I for Data Sets with Non-Detects                            | L     |
|------|--------------------------------|-----------------------------|-----------------|-----------------------------------------------------------------------|-------|
| 1    |                                | Nonparametric 00            | L Otatiotics    | Of Data Gets with Non-Detects                                         |       |
| 2    | User Selected Options          |                             |                 |                                                                       |       |
| 3    | ,                              | ProUCL 5.112/31/2019 3      | 2-52-12 DM      |                                                                       |       |
| 4    | ·                              | SED 0-0.15mbg Chemist       |                 | vlo                                                                   |       |
| 5    |                                | OFF                         | iry_iriput_vo   | .AIS                                                                  |       |
| 6    |                                |                             |                 |                                                                       |       |
| 7    |                                | 95%<br>2000                 |                 |                                                                       |       |
| 8    | Number of Bootstrap Operations | 2000                        |                 |                                                                       |       |
| 10   |                                | SDI                         | 3.981           | Std. Error of Mean                                                    | 1.028 |
| 204  |                                | Coefficient of Variation    | 0.229           | Skewness                                                              | 0.358 |
| 205  |                                | Mean of logged Data         | 2.829           | SD of logged Data                                                     | 0.23  |
| 206  |                                | Medit of logged Data        | 2.020           | OD OF TOGGET DATE                                                     | 0.20  |
| 207  |                                | Nonnarame                   | tric Distribu   | tion Free UCL Statistics                                              |       |
| 208  |                                | ·                           |                 | ited at 5% Significance Level                                         |       |
| 209  |                                | Data appear Not             | mai Distribe    | ted at 070 Oigninication Level                                        |       |
| 210  |                                | Δοσ                         | suming Non      | mal Distribution                                                      |       |
| 211  | QE% No                         | rmal UCL                    | sulling Non     | 95% UCLs (Adjusted for Skewness)                                      |       |
| 212  | 95 % 140                       | 95% Student's-t UCL         | 19.16           | ` •                                                                   | 19.14 |
| 213  |                                | 30 % Student S-t UCL        | 13.10           | 95% Adjusted-CLT UCL (Chen-1995)<br>95% Modified-t UCL (Johnson-1978) | 19.14 |
| 214  |                                |                             |                 | 95% Modified-t UCL (Johnson-1978)                                     | 19.17 |
| 215  |                                | k1                          | ometric Pi      | tribution Fron LICLo                                                  |       |
| 216  |                                | · .                         |                 | tribution Free UCLs                                                   | 10.10 |
| 217  | 0.504                          | 95% CLT UCL                 | 19.04           | 95% Jackknife UCL                                                     | 19.16 |
| 218  |                                | Standard Bootstrap UCL      | 19.01           | 95% Bootstrap-t UCL                                                   | 19.34 |
| 219  |                                | 5% Hall's Bootstrap UCL     | 19.02           | 95% Percentile Bootstrap UCL                                          | 18.96 |
| 220  |                                | 5% BCA Bootstrap UCL        | 19              |                                                                       |       |
| 221  |                                | ebyshev(Mean, Sd) UCL       | 20.43           | 95% Chebyshev(Mean, Sd) UCL                                           | 21.83 |
| 222  | 97.5% Che                      | ebyshev(Mean, Sd) UCL       | 23.77           | 99% Chebyshev(Mean, Sd) UCL                                           | 27.57 |
| 223  |                                |                             |                 |                                                                       |       |
| 224  |                                |                             |                 | UCL to Use                                                            |       |
| 225  |                                | Data appear Nor             | mal, May w      | ant to try Normal Distribution                                        |       |
| 226  |                                |                             |                 |                                                                       |       |
| 227  | Note: Suggestions regarding    | ng the selection of a 95%   | UCL are pr      | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 228  |                                |                             |                 | a size, data distribution, and skewness.                              |       |
| 229  |                                |                             |                 | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 230  | However, simulations results   | s will not cover all Real W | orld data se    | ts; for additional insight the user may want to consult a statisticia | n.    |
| 231  |                                |                             |                 |                                                                       |       |
| 232  |                                |                             |                 |                                                                       |       |
| 233  | cadmium                        |                             |                 |                                                                       |       |
| 234  |                                |                             |                 |                                                                       |       |
| 235  |                                |                             |                 | Statistics                                                            |       |
| 236  | Total i                        | Number of Observations      | 22              | Number of Distinct Observations                                       | 20    |
| 237  |                                |                             |                 | Number of Missing Observations                                        | 1     |
| 238  |                                | Minimum                     | 0.27            | Mean                                                                  | 1.354 |
| 239  |                                | Maximum                     | 8.5             | Median                                                                | 0.616 |
| 240  |                                | SD                          | 2.041           | Std. Error of Mean                                                    | 0.435 |
| 241  |                                | Coefficient of Variation    | 1.507           | Skewness                                                              | 2.883 |
| 242  |                                | Mean of logged Data         | -0.217          | SD of logged Data                                                     | 0.867 |
| 243  |                                | -                           |                 | 1                                                                     |       |
| 244  |                                | Nonparame                   | tric Distribu   | tion Free UCL Statistics                                              |       |
| 245  |                                | Data do not fo              | ollow a Disc    | ernible Distribution (0.05)                                           |       |
| 246  |                                |                             |                 |                                                                       |       |
| 247  |                                | Ass                         | suming Non      | nal Distribution                                                      |       |
| 248  | 95% No                         | rmal UCL                    |                 | 95% UCLs (Adjusted for Skewness)                                      |       |
| 249  |                                | 95% Student's-t UCL         | 2.103           | 95% Adjusted-CLT UCL (Chen-1995)                                      | 2.356 |
| 250  |                                |                             |                 | 95% Modified-t UCL (Johnson-1978)                                     | 2.147 |
| 251  |                                |                             |                 | · 'I                                                                  |       |
| 2J I |                                |                             |                 |                                                                       |       |

SLR Page 5 of 42

|            | A B C                          | D E Nonparametric UC                            | F<br>Statistics | G G              | H<br>with Non-F | )etects      | J               | К               | L        |
|------------|--------------------------------|-------------------------------------------------|-----------------|------------------|-----------------|--------------|-----------------|-----------------|----------|
| 1          |                                | Nonparametric CO                                | L Otatiotics    | or Data Cott     | Widi Non-E      |              |                 |                 |          |
| 3          | User Selected Options          |                                                 |                 |                  |                 |              |                 |                 |          |
| 4          | ,                              | ProUCL 5.112/31/2019 3                          | 3:58:18 PM      |                  |                 |              |                 |                 |          |
| 5          | From File                      | SED 0-0.15mbg Chemist                           | try_input_v5    | .xls             |                 |              |                 |                 |          |
| 6          | Full Precision                 | OFF                                             |                 |                  |                 |              |                 |                 |          |
| 7          | Confidence Coefficient         | 95%                                             |                 |                  |                 |              |                 |                 |          |
| 8          | Number of Bootstrap Operations | 2000                                            |                 |                  |                 |              |                 |                 |          |
| 9          |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 252        |                                |                                                 |                 | tribution Free   | UCLs            |              | 050/ 1          |                 | 0.400    |
| 253        | 050/ 6                         | 95% CLT UCL                                     | 2.07            |                  |                 |              |                 | ckknife UCI     |          |
| 254        |                                | Standard Bootstrap UCL                          | 2.049           |                  |                 | 0E9/ I       |                 | tstrap-t UCI    |          |
| 255        |                                | 5% Hall's Bootstrap UCL<br>5% BCA Bootstrap UCL | 3.928<br>2.427  |                  |                 | 95% 1        | Percentile Bo   | otstrap UCI     | L 2.113  |
| 256        |                                | ebyshev(Mean, Sd) UCL                           | 2.427           |                  |                 | 95% Ch       | ebyshev(Me      | an Sd\IICI      | L 3.251  |
| 257        |                                | ebyshev(Mean, Sd) UCL                           | 4.072           |                  |                 |              | ebyshev(Me      |                 |          |
| 258        | 07.0% CHC                      | bysnev(wean, ea) eez                            | 1.072           |                  |                 | 0070 011     | iobyonev(ivio   | un, ou) ooi     | 0.00     |
| 259        |                                |                                                 | Suggested       | UCL to Use       |                 |              |                 |                 |          |
| 260<br>261 | 95% Chel                       | byshev (Mean, Sd) UCL                           | 3.251           |                  |                 |              |                 |                 | T        |
| 262        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 263        | Note: Suggestions regarding    | ng the selection of a 95%                       | UCL are pr      | ovided to help   | the user to     | select the r | nost appropr    | iate 95% U      | OL.      |
| 264        | Re                             | ecommendations are bas                          | ed upon dat     | a size, data d   | listribution, a | nd skewne    | SS.             |                 |          |
| 265        | These recommendations          | are based upon the resul                        | Its of the sin  | ulation studie   | es summariz     | ed in Singh  | , Maichle, an   | d Lee (2006     | i).      |
| 266        | However, simulations results   | will not cover all Real W                       | orld data se    | ts; for addition | nal insight th  | e user may   | want to cons    | sult a statisti | cian.    |
| 267        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 268        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 269        | chromium (III+VI)              |                                                 |                 |                  |                 |              |                 |                 |          |
| 270        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 271        |                                |                                                 | General         | Statistics       |                 |              |                 |                 |          |
| 272        | Total N                        | Number of Observations                          | 22              |                  |                 | Numbe        | r of Distinct C | Observations    | s 16     |
| 273        |                                |                                                 |                 |                  |                 | Number       | r of Missing C  | Observations    | s 1      |
| 274        |                                | Minimum                                         | 16              |                  |                 |              |                 | Mear            |          |
| 275        |                                | Maximum                                         | 41              |                  |                 |              |                 | Mediar          |          |
| 276        |                                | SD                                              | 6.79            |                  |                 |              | Std. E          | rror of Mear    |          |
| 277        |                                | Coefficient of Variation                        | 0.273           |                  |                 |              |                 | Skewnes         |          |
| 278        |                                | Mean of logged Data                             | 3.182           |                  |                 |              | SD of           | logged Data     | a 0.252  |
| 279        |                                | N                                               | ada Biradhii    | V F 110          |                 |              |                 |                 |          |
| 280        |                                | Nonparame<br>Data do not fo                     |                 | tion Free UC     |                 | 2            |                 |                 |          |
| 281        |                                | Data do not to                                  | DIIOW a DISC    | emible Distri    | bution (0.05    | "            |                 |                 |          |
| 282        |                                | Δεσ                                             | suming Non      | nal Distributi   | on              |              |                 |                 |          |
| 283        | 95% No                         | rmal UCL                                        | Julining 1401   | nai Distribut    |                 | UCI s (Adii  | sted for Ske    | wness)          |          |
| 284        | 0070110                        | 95% Student's-t UCL                             | 27.37           |                  |                 |              | d-CLT UCL       |                 | 27.61    |
| 285        |                                |                                                 |                 |                  |                 |              | ed-t UCL (Jol   |                 |          |
| 286<br>287 |                                |                                                 |                 |                  |                 |              | ,               |                 | <u> </u> |
| 288        |                                | Nonpar                                          | ametric Dis     | tribution Free   | UCLs            |              |                 |                 |          |
| 289        |                                | 95% CLT UCL                                     | 27.26           |                  |                 |              | 95% Ja          | ckknife UCI     | L 27.37  |
| 290        | 95% \$                         | Standard Bootstrap UCL                          | 27.18           |                  |                 |              | 95% Boo         | tstrap-t UCI    | L 27.89  |
| 291        | 95                             | % Hall's Bootstrap UCL                          | 27.45           |                  |                 | 95% I        | Percentile Bo   | otstrap UCI     | L 27.23  |
| 292        | 9:                             | 5% BCA Bootstrap UCL                            | 27.52           |                  |                 |              |                 |                 | +        |
| 293        | 90% Che                        | ebyshev(Mean, Sd) UCL                           | 29.22           |                  |                 | 95% Ch       | ebyshev(Me      | an, Sd) UCI     | J 31.19  |
| 294        | 97.5% Che                      | ebyshev(Mean, Sd) UCL                           | 33.92           |                  |                 | 99% Ch       | ebyshev(Me      | an, Sd) UCI     | J 39.28  |
| 295        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 296        |                                |                                                 | Suggested       | UCL to Use       |                 |              |                 |                 |          |
| 297        |                                | 95% Student's-t UCL                             | 27.37           |                  |                 |              | or 95% Mc       | odified-t UCI   | L 27.42  |
| 298        |                                |                                                 |                 |                  |                 |              |                 |                 |          |
| 299        | Note: Suggestions regarding    | ng the selection of a 95%                       | UCL are pr      | ovided to help   | the user to     | select the r | nost appropr    | iate 95% U      | DL.      |
| 300        | Re                             | ecommendations are bas                          | ed upon dat     | a size, data d   | listribution, a | and skewne   | ss.             |                 |          |
|            |                                |                                                 |                 |                  |                 |              |                 |                 |          |

SLR Page 6 of 42

|            |                                |                           | _                 |                                                                        |                 |
|------------|--------------------------------|---------------------------|-------------------|------------------------------------------------------------------------|-----------------|
|            | A B C                          | D E Nonparametric UC      | F<br>L Statistics | G H I J K for Data Sets with Non-Detects                               | L               |
| 1          |                                |                           |                   |                                                                        |                 |
| 2          | User Selected Options          |                           |                   |                                                                        |                 |
| 3          | ,                              | ProUCL 5.112/31/2019 3    | 3:58:18 PM        |                                                                        |                 |
| 4          | ·                              | SED 0-0.15mbg Chemist     |                   | .xls                                                                   |                 |
| 5          |                                | OFF                       | 7- ' -            |                                                                        |                 |
| 6          | Confidence Coefficient         | 95%                       |                   |                                                                        |                 |
|            | Number of Bootstrap Operations | 2000                      |                   |                                                                        |                 |
| 9          |                                |                           |                   |                                                                        |                 |
| 301        | These recommendations          | are based upon the resul  | Its of the sim    | nulation studies summarized in Singh, Maichle, and Lee (2006).         |                 |
| 302        | However, simulations results   | will not cover all Real W | orld data se      | ts; for additional insight the user may want to consult a statistician | n.              |
| 303        |                                |                           |                   |                                                                        |                 |
| 304        |                                |                           |                   |                                                                        |                 |
| 305        | copper                         |                           |                   |                                                                        |                 |
| 306        |                                |                           |                   |                                                                        |                 |
| 307        |                                |                           | General           | Statistics                                                             |                 |
| 308        | Total f                        | Number of Observations    | 22                | Number of Distinct Observations                                        | 22              |
| 309        |                                |                           |                   | Number of Missing Observations                                         | 0               |
| 310        |                                | Minimum                   | 30                | Mean                                                                   | 76.29           |
| 311        |                                | Maximum                   | 170               | Median                                                                 | 64.5            |
| 312        |                                | SD                        | 36.81             | Std. Error of Mean                                                     | 7.847           |
| 313        |                                | Coefficient of Variation  | 0.482             | Skewness                                                               | 1.266           |
| 314        |                                | Mean of logged Data       | 4.237             | SD of logged Data                                                      | 0.443           |
| 315        |                                |                           |                   | 1                                                                      |                 |
| 316        |                                | Nonparame                 | tric Distribu     | tion Free UCL Statistics                                               |                 |
| 317        |                                | Data appear Gan           | nma Distribu      | uted at 5% Significance Level                                          |                 |
| 318        |                                |                           |                   |                                                                        |                 |
| 319        |                                | Ass                       | suming Nori       | mal Distribution                                                       |                 |
| 320        | 95% No                         | rmal UCL                  |                   | 95% UCLs (Adjusted for Skewness)                                       |                 |
| 321        |                                | 95% Student's-t UCL       | 89.79             | 95% Adjusted-CLT UCL (Chen-1995)                                       | 91.46           |
| 322        |                                |                           |                   | 95% Modified-t UCL (Johnson-1978)                                      | 90.15           |
| 323        |                                |                           |                   | 1                                                                      |                 |
| 324        |                                | Nonpar                    | ametric Dis       | tribution Free UCLs                                                    |                 |
| 325        |                                | 95% CLT UCL               | 89.2              | 95% Jackknife UCL                                                      | 89.79           |
| 326        | 95% \$                         | Standard Bootstrap UCL    | 88.8              | 95% Bootstrap-t UCL                                                    | 93.53           |
| 327        | 95                             | 5% Hall's Bootstrap UCL   | 91.71             | 95% Percentile Bootstrap UCL                                           | 89.32           |
| 328        | 9                              | 5% BCA Bootstrap UCL      | 91.01             |                                                                        |                 |
| 329        | 90% Che                        | ebyshev(Mean, Sd) UCL     | 99.83             | 95% Chebyshev(Mean, Sd) UCL                                            | 110.5           |
| 330        | 97.5% Che                      | ebyshev(Mean, Sd) UCL     | 125.3             | 99% Chebyshev(Mean, Sd) UCL                                            | 154.4           |
| 331        |                                |                           |                   |                                                                        |                 |
| 332        |                                |                           | Suggested         | UCL to Use                                                             |                 |
| 333        |                                | Data appear Gam           | nma, May w        | ant to try Gamma Distribution                                          |                 |
| 334        |                                | <u> </u>                  |                   |                                                                        |                 |
| 335        | Note: Suggestions regardi      | ng the selection of a 95% | UCL are pr        | ovided to help the user to select the most appropriate 95% UCL.        |                 |
| 336        | Re                             | ecommendations are bas    | ed upon dat       | a size, data distribution, and skewness.                               |                 |
| 337        | These recommendations          | are based upon the resul  | Its of the sim    | nulation studies summarized in Singh, Maichle, and Lee (2006).         |                 |
| 338        | However, simulations results   | will not cover all Real W | orld data se      | ts; for additional insight the user may want to consult a statistician | n.              |
| 339<br>340 | iron                           |                           |                   |                                                                        |                 |
| 341        | iron                           |                           |                   |                                                                        |                 |
| 342        |                                |                           | Con'              | Statistics                                                             |                 |
| 343        | Total                          | Number of Observations    | General<br>6      | Statistics  Number of Distinct Observations                            | 6               |
| 344        | I otal i                       | Number of Observations    | 0                 | Number of Missing Observations                                         | 6               |
| 345        |                                | B. 41 . 1                 | 10000             | Number of Missing Observations                                         | 17              |
| 346        |                                | Minimum<br>Maximum        | 18800             |                                                                        | 22650           |
|            |                                | Mayımıım                  | 25600             | Median 2                                                               | 22800           |
| 347        |                                |                           |                   | 0.1 =                                                                  | 1011            |
|            |                                | SD                        | 2477              |                                                                        | 1011            |
| 347        |                                |                           |                   |                                                                        | -0.496<br>0.112 |

SLR Page 7 of 42

| H.  | A B C                          | D E  Nonparametric UC       | F<br>I Statistics | for Data Sets v   | H  <br>with Non-De | l J L                      | K           | L     |
|-----|--------------------------------|-----------------------------|-------------------|-------------------|--------------------|----------------------------|-------------|-------|
| 1   |                                | Horiparameurc 00            | L Otatiotics      | IOI Data Gets     | Willi Non-De       | 10010                      |             |       |
| 2   | User Selected Options          |                             |                   |                   |                    |                            |             |       |
| 3   | ,                              | ProUCL 5.112/31/2019 3      | 0.E0.10 DM        |                   |                    |                            |             |       |
| 4   | Date/Time of Computation       |                             |                   |                   |                    |                            |             |       |
| 5   | From File                      | SED 0-0.15mbg Chemis        | try_input_v5      | o.XIS             |                    |                            |             |       |
| 6   | Full Precision                 | OFF                         |                   |                   |                    |                            |             |       |
| 7   | Confidence Coefficient         | 95%                         |                   |                   |                    |                            |             |       |
| 8   | Number of Bootstrap Operations | 2000                        |                   |                   |                    |                            |             |       |
| 10  |                                |                             |                   |                   |                    |                            |             |       |
| 351 | Ne                             | te: Sample size is small (  | 'a10\ i           | if data are selle | and union I        | CM approach                |             |       |
| 352 | No                             | •                           |                   |                   |                    |                            |             |       |
| 353 | Oho                            | you may want to use C       |                   |                   |                    |                            |             |       |
| 354 | Cité                           | byshev UCL can be com       | puteu using       | uie Noriparari    | neurc and Ai       | TOCL Options.              |             |       |
| 355 |                                | Namanana                    | ada Disadh.       | F UO              | Osesiesies         |                            |             |       |
| 356 |                                | <u> </u>                    |                   | tion Free UCL     |                    |                            |             |       |
| 357 |                                | Data appear Nor             | mai Distribl      | ited at 5% Sig    | nificance Le       | /ei                        |             |       |
| 358 |                                |                             |                   | 181.0             |                    |                            |             |       |
| 359 |                                |                             | suming Nor        | mal Distributio   |                    |                            |             |       |
| 360 | 95% No                         | ormal UCL                   |                   |                   |                    | CLs (Adjusted for Skewi    |             |       |
| 361 |                                | 95% Student's-t UCL         | 24688             |                   |                    | % Adjusted-CLT UCL (Cl     |             | 24094 |
| 362 |                                |                             |                   |                   | 95                 | % Modified-t UCL (Johns    | son-1978)   | 24653 |
| 363 |                                |                             |                   |                   |                    |                            |             |       |
| 364 |                                |                             |                   | tribution Free    | UCLs               |                            |             |       |
| 365 |                                | 95% CLT UCL                 |                   |                   |                    | 95% Jack                   |             |       |
| 366 |                                |                             | 24180             |                   |                    | 95% Bootst                 |             | 24572 |
| 367 |                                | 5% Hall's Bootstrap UCL     |                   |                   |                    | 95% Percentile Boots       | strap UCL   | 24167 |
| 368 | •                              | 95% BCA Bootstrap UCL       | 23967             |                   |                    |                            |             |       |
| 369 | 90% Ch                         | ebyshev(Mean, Sd) UCL       | 25684             |                   |                    | 95% Chebyshev(Mean         | , Sd) UCL   | 27058 |
| 370 | 97.5% Ch                       | ebyshev(Mean, Sd) UCL       | 28965             |                   |                    | 99% Chebyshev(Mean         | , Sd) UCL   | 32711 |
| 371 |                                |                             |                   |                   |                    |                            |             |       |
| 372 |                                |                             | Suggested         | UCL to Use        |                    |                            |             |       |
| 373 |                                | Data appear Nor             | mal, May w        | ant to try Norn   | nal Distributi     | on                         |             |       |
| 374 |                                |                             |                   |                   |                    |                            |             |       |
| 375 | Note: Suggestions regard       | ing the selection of a 95%  | UCL are pr        | ovided to help    | the user to se     | elect the most appropriate | e 95% UC    | L.    |
| 376 | F                              | ecommendations are bas      | ed upon da        | ta size, data dis | stribution, and    | d skewness.                |             |       |
| 377 | These recommendations          | are based upon the resu     | Its of the sin    | nulation studies  | summarized         | I in Singh, Maichle, and L | ee (2006)   | -     |
| 378 | However, simulations result    | s will not cover all Real W | orld data se      | ts; for additiona | al insight the     | user may want to consult   | a statistic | ian.  |
| 379 |                                |                             |                   |                   |                    |                            |             |       |
| 380 | Note: For highly negat         | vely-skewed data, confid    | lence limits      | (e.g., Chen, J    | ohnson, Log        | normal, and Gamma) m       | ay not be   |       |
| 381 | reliable. C                    | chen's and Johnson's me     | thods provi       | ide adjustment    | s for positve      | ly skewed data sets.       |             |       |
| 382 |                                |                             |                   |                   |                    |                            |             |       |
| 383 |                                |                             |                   |                   |                    |                            |             |       |
| 384 | lead                           |                             |                   |                   |                    |                            |             |       |
| 385 |                                |                             |                   |                   |                    |                            |             |       |
| 386 |                                |                             | General           | Statistics        |                    |                            |             |       |
| 387 | Total                          | Number of Observations      | 22                |                   |                    | Number of Distinct Obs     | servations  | 21    |
| 388 |                                |                             |                   |                   |                    | Number of Missing Obs      | servations  | 0     |
| 389 |                                | Minimum                     | 13                |                   |                    |                            | Mean        | 44.95 |
| 390 |                                | Maximum                     | 145               |                   |                    |                            | Median      | 40.8  |
| 391 |                                | SD                          | 28.85             |                   |                    | Std. Erro                  | r of Mean   | 6.15  |
| 392 |                                | Coefficient of Variation    | 0.642             |                   |                    | Ç                          | Skewness    | 2.16  |
| 393 |                                | Mean of logged Data         | 3.649             |                   |                    | SD of log                  | ged Data    | 0.562 |
| 394 |                                | l                           |                   | 1                 |                    |                            |             |       |
| 395 |                                | Nonparame                   | tric Distribu     | tion Free UCL     | Statistics         |                            |             |       |
| 396 |                                | Data appear Gan             | nma Distrib       | uted at 5% Sig    | nificance Le       | vel                        |             |       |
| 397 |                                |                             |                   |                   |                    |                            |             |       |
| J9/ |                                |                             |                   |                   |                    |                            |             |       |

SLR Page 8 of 42

|                                                                                                                                                                                                         | A B C                                                                          | D E                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1                                                                                                                                                                                                       | . , , ,                                                                        |                                                                                                                                                                                                                               | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 2                                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 3                                                                                                                                                                                                       | User Selected Options                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 4                                                                                                                                                                                                       | Date/Time of Computation                                                       | ProUCL 5.112/31/2019 3                                                                                                                                                                                                        | 3:58:18 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 5                                                                                                                                                                                                       | From File                                                                      | SED 0-0.15mbg Chemis                                                                                                                                                                                                          | try_input_v5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| 6                                                                                                                                                                                                       | Full Precision                                                                 | OFF                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 7                                                                                                                                                                                                       | Confidence Coefficient                                                         | 95%                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 8                                                                                                                                                                                                       | Number of Bootstrap Operations                                                 | 2000                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 9                                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I Del a Visa                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| 398                                                                                                                                                                                                     | OEW No                                                                         | ormal UCL                                                                                                                                                                                                                     | suming Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |
| 399                                                                                                                                                                                                     | 95% NO                                                                         | 95% Student's-t UCL                                                                                                                                                                                                           | 55.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                          | EQ 1                                              |
| 400                                                                                                                                                                                                     |                                                                                | 95% Student s-t UCL                                                                                                                                                                                                           | 55.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Adjusted-CLT UCL (Chen-1995)<br>95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                     | 58.1<br>56.01                                     |
| 401                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% Modified-LOCE (Jofffison-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.01                                             |
| 402                                                                                                                                                                                                     |                                                                                | Nonna                                                                                                                                                                                                                         | ametric Die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   |
| 403                                                                                                                                                                                                     |                                                                                | 95% CLT UCL                                                                                                                                                                                                                   | 55.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.54                                             |
| 404                                                                                                                                                                                                     | 95%                                                                            | Standard Bootstrap UCL                                                                                                                                                                                                        | 54.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.18                                             |
| 405                                                                                                                                                                                                     |                                                                                | 5% Hall's Bootstrap UCL                                                                                                                                                                                                       | 102.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55.5                                              |
| 406                                                                                                                                                                                                     |                                                                                | 95% BCA Bootstrap UCL                                                                                                                                                                                                         | 57.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS 7. STOCKING BOSTONAP OCE                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.0                                              |
| 407                                                                                                                                                                                                     |                                                                                | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                         | 63.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71.76                                             |
| 408                                                                                                                                                                                                     |                                                                                | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                         | 83.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                               | 106.1                                             |
| 409                                                                                                                                                                                                     | 2                                                                              | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - "                                               |
| 411                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                               | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 411                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ant to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   |
| 413                                                                                                                                                                                                     |                                                                                | ···                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
| 414                                                                                                                                                                                                     | Note: Suggestions regardi                                                      | ing the selection of a 95%                                                                                                                                                                                                    | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ovided to help the user to select the most appropriate 95% UCL                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|                                                                                                                                                                                                         | R                                                                              | ecommendations are bas                                                                                                                                                                                                        | ed unon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 1 2 2 2 2 2 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   |
| 415                                                                                                                                                                                                     | · ·                                                                            |                                                                                                                                                                                                                               | ou apon au                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |
| 415                                                                                                                                                                                                     |                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta size, data distribution, and skewness.<br>nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                               |                                                   |
| 416                                                                                                                                                                                                     | These recommendations                                                          | are based upon the resu                                                                                                                                                                                                       | Its of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                   |
|                                                                                                                                                                                                         | These recommendations                                                          | are based upon the resu                                                                                                                                                                                                       | Its of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 416<br>417                                                                                                                                                                                              | These recommendations                                                          | are based upon the resu                                                                                                                                                                                                       | Its of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 416<br>417<br>418                                                                                                                                                                                       | These recommendations                                                          | are based upon the resu                                                                                                                                                                                                       | Its of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
| 416<br>417<br>418<br>419                                                                                                                                                                                | These recommendations However, simulations result                              | are based upon the resu                                                                                                                                                                                                       | Its of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistici                                                                                                                                                                                                                                                                                                                                       |                                                   |
| 416<br>417<br>418<br>419<br>420                                                                                                                                                                         | These recommendations However, simulations result manganese                    | are based upon the resu<br>s will not cover all Real W                                                                                                                                                                        | Its of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticity.  Statistics                                                                                                                                                                                                                                                                                                                        | an.                                               |
| 416<br>417<br>418<br>419<br>420<br>421                                                                                                                                                                  | These recommendations However, simulations result manganese                    | are based upon the resu                                                                                                                                                                                                       | Its of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticity as the statistic statistics.  Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                          | an.<br>6                                          |
| 416<br>417<br>418<br>419<br>420<br>421<br>422                                                                                                                                                           | These recommendations However, simulations result manganese                    | s are based upon the resu<br>s will not cover all Real W                                                                                                                                                                      | Its of the sin<br>forld data se<br>General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticity  Statistics  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                       | 6<br>17                                           |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423                                                                                                                                                    | These recommendations However, simulations result manganese                    | are based upon the resu<br>s will not cover all Real W                                                                                                                                                                        | General 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticity.  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean                                                                                                                                                                                                                                               | 6<br>17<br>551.8                                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423                                                                                                                                                    | These recommendations However, simulations result manganese                    | s are based upon the resu<br>s will not cover all Real W<br>Number of Observations<br>Minimum<br>Maximum                                                                                                                      | General 6 390 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticity.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median                                                                                                                                                                                                                                          | 6<br>17<br>551.8<br>577                           |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424                                                                                                                                             | These recommendations However, simulations result manganese                    | s are based upon the results is will not cover all Real William Number of Observations  Minimum  Maximum  SD                                                                                                                  | General 6 390 623 83.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticity.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                       | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426                                                                                                                               | These recommendations However, simulations result manganese                    | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation                                                                                                                                                        | General 6 390 623 83.12 0.151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | statistics  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness                                                                                                                                                                                                                                                                                                                                            | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426                                                                                                                               | These recommendations However, simulations result manganese                    | s are based upon the results is will not cover all Real William Number of Observations  Minimum  Maximum  SD                                                                                                                  | General 6 390 623 83.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticity.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                       | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427                                                                                                                        | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data                                                                                                                                   | General 6 390 623 83.12 0.151 6.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                      | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431                                                                                            | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data                                                                                                                                   | General 6 390 623 83.12 0.151 6.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                       | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432                                                                                     | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C                                                                                | General 6 390 623 83.12 0.151 6.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Statistics  Statistics  Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                     | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433                                                                              | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C                                                                                | General 6 390 623 83.12 0.151 6.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                       | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>430<br>431<br>432<br>433<br>434                                                                              | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C  byshev UCL can be com                                                         | General 6 390 623 83.12 0.151 6.302 Ge.g., <10), I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Nean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.                                                                                                                                                                                     | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>430<br>431<br>432<br>433<br>434<br>435                                                                       | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C  byshev UCL can be com                                                         | General 6 390 623 83.12 0.151 6.302 (e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Std. Error of Mean Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.                                                                                                                                               | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>430<br>431<br>432<br>433<br>434<br>435<br>436                                                                       | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C  byshev UCL can be com                                                         | General 6 390 623 83.12 0.151 6.302 (e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Nean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.                                                                                                                                                                                     | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437                                                                | These recommendations However, simulations result  manganese  Total            | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Se: Sample size is small (  you may want to use C  byshev UCL can be com  Nonparame  Data do not for                             | General 6 390 623 83.12 0.151 6.302 e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Std. Error of Mean Std. Error of Mean Skewness SD of logged Data  If data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics estimate Distribution (0.05)                                                                                       | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438                                                         | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Se: Sample size is small (  you may want to use C  byshev UCL can be com  Nonparame  Data do not fo                              | General 6 390 623 83.12 0.151 6.302 e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Statistics  Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). Ithe Nonparametric and All UCL Options.  tion Free UCL Statistics emible Distribution                                                                                           | 6<br>17<br>551.8<br>577<br>33.93                  |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439                                    | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C  byshev UCL can be com  Nonparame  Data do not for                             | General 6 390 623 83.12 0.151 6.302 e.g., <10), ichebyshev Uputed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Statistics  Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ermible Distribution  95% UCLs (Adjusted for Skewness)                                                         | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440                             | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Se: Sample size is small (  you may want to use C  byshev UCL can be com  Nonparame  Data do not fo                              | General 6 390 623 83.12 0.151 6.302 e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Statistics  Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Median Std. Error of Mean Skewness SD of logged Data  If data are collected using ISM approach JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  100                                                                                                                                                                       | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441                             | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  te: Sample size is small (  you may want to use C  byshev UCL can be com  Nonparame  Data do not for                             | General 6 390 623 83.12 0.151 6.302 e.g., <10), ichebyshev Uputed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Statistics  Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ermible Distribution  95% UCLs (Adjusted for Skewness)                                                         | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442                      | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  te: Sample size is small ( you may want to use Cobyshev UCL can be com  Nonparame Data do not formal UCL 95% Student's-t UCL         | General 6 390 623 83.12 0.151 6.302 Ge.g., <10), ichebyshev Uputed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). The Nonparametric and All UCL Options.  tion Free UCL Statistics  semible Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443        | These recommendations However, simulations result  manganese  Total  Not       | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  te: Sample size is small ( you may want to use C byshev UCL can be com  Nonparame Data do not formal UCL 95% Student's-t UCL  Nonpar | General 6 390 623 83.12 0.151 6.302 Ge.g., <10), ichebyshev Uputed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ternible Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443<br>444 | These recommendations However, simulations result  manganese  Total  Not  Chel | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Me: Sample size is small ( you may want to use Cobyshev UCL can be com  Nonparame Data do not formal UCL 95% Student's-t UCL  Nonpar | General 6 390 623 83.12 0.151 6.302 Ge.g., <10), i chebyshev Uputed using htric Distribution a Disconstruction of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics emible Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  100        | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |
| 416<br>417<br>418<br>419<br>420<br>421<br>422<br>423<br>424<br>425<br>426<br>427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440<br>441<br>442<br>443        | These recommendations However, simulations result  manganese  Total  Not  Chel | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  te: Sample size is small ( you may want to use C byshev UCL can be com  Nonparame Data do not formal UCL 95% Student's-t UCL  Nonpar | General 6 390 623 83.12 0.151 6.302 Ge.g., <10), ichebyshev Uputed using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics  Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ternible Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  | 6<br>17<br>551.8<br>577<br>33.93<br>-1.96<br>0.17 |

SLR Page 9 of 42

| 1 2        |                                | Nonparametric UC               | L Statistics  | for Data Sets with Non-Detects                                                                            |        |
|------------|--------------------------------|--------------------------------|---------------|-----------------------------------------------------------------------------------------------------------|--------|
| 2          |                                |                                |               |                                                                                                           |        |
| -          |                                |                                |               |                                                                                                           |        |
| 3          | User Selected Options          |                                |               |                                                                                                           |        |
| 4          | <u>'</u>                       | ProUCL 5.112/31/2019 3         |               |                                                                                                           |        |
| 5          | From File Full Precision       | SED 0-0.15mbg Chemis OFF       | try_input_v5  | .XIS                                                                                                      |        |
| 6          |                                | 95%                            |               |                                                                                                           |        |
| 7          |                                | 2000                           |               |                                                                                                           |        |
| 8<br>9     | Number of Bootstrap Operations | 2000                           |               |                                                                                                           |        |
| 447        | 9                              | 5% BCA Bootstrap UCL           | 589           |                                                                                                           |        |
| 448        | 90% Che                        | ebyshev(Mean, Sd) UCL          | 653.6         | 95% Chebyshev(Mean, Sd) UCL                                                                               | 699.7  |
| 449        | 97.5% Che                      | ebyshev(Mean, Sd) UCL          | 763.7         | 99% Chebyshev(Mean, Sd) UCL                                                                               | 889.5  |
| 450        |                                |                                |               |                                                                                                           |        |
| 451        |                                |                                |               | UCL to Use                                                                                                |        |
| 452        |                                | 95% Student's-t UCL            | 620.2         | or 95% Modified-t UCL                                                                                     | 615.7  |
| 453        |                                |                                |               |                                                                                                           |        |
| 454        |                                |                                |               | ovided to help the user to select the most appropriate 95% UCL                                            |        |
| 455        |                                |                                |               | ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006). |        |
| 456        |                                |                                |               | ts; for additional insight the user may want to consult a statisticia                                     | an     |
| 457        | Tiowever, simulations result   | 3 WIII FIOT COVET All FTCAT VV | oria data se  | is, for additional insight the deer may want to consult a statisticis                                     |        |
| 458        | Note: For highly negative      | vely-skewed data. confid       | lence limits  | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                    |        |
| 459<br>460 |                                |                                |               | de adjustments for positvely skewed data sets.                                                            |        |
| 461        |                                |                                | <del>-</del>  |                                                                                                           |        |
| 462        |                                |                                |               |                                                                                                           |        |
|            | mercury                        |                                |               |                                                                                                           |        |
| 464        |                                |                                |               |                                                                                                           |        |
| 465        |                                |                                | General       | Statistics                                                                                                |        |
| 466        | Total                          | Number of Observations         | 6             | Number of Distinct Observations                                                                           | 5      |
| 467        |                                |                                |               | Number of Missing Observations                                                                            | 17     |
| 468        |                                | Minimum                        | 0.057         | Mean                                                                                                      | 0.136  |
| 469        |                                | Maximum                        | 0.255         | Median                                                                                                    | 0.104  |
| 470        |                                | SD<br>Coefficient of Variation | 0.0741        | Std. Error of Mean Skewness                                                                               | 0.0303 |
| 471        |                                | Mean of logged Data            | -2.114        | SD of logged Data                                                                                         | 0.537  |
| 472        |                                | Wicall of logged Bala          | 2.117         | OD or rogged Data                                                                                         | 0.007  |
| 473        | Not                            | e: Sample size is small (      | e.g., <10), i | f data are collected using ISM approach                                                                   |        |
| 474<br>475 |                                | ·                              |               | JCL to estimate EPC (ITRC, 2012).                                                                         |        |
| 476        | Chet                           |                                |               | the Nonparametric and All UCL Options.                                                                    |        |
| 477        |                                |                                |               |                                                                                                           |        |
| 478        |                                | Nonparame                      | tric Distribu | tion Free UCL Statistics                                                                                  |        |
| 479        |                                | Data appear Approxima          | ate Normal I  | Distributed at 5% Significance Level                                                                      |        |
| 480        |                                |                                |               |                                                                                                           |        |
| 481        |                                |                                | suming Nori   | mal Distribution                                                                                          |        |
| 482        | 95% No                         | ormal UCL                      |               | 95% UCLs (Adjusted for Skewness)                                                                          |        |
| 483        |                                | 95% Student's-t UCL            | 0.197         | 95% Adjusted-CLT UCL (Chen-1995)                                                                          | 0.199  |
| 484        |                                |                                |               | 95% Modified-t UCL (Johnson-1978)                                                                         | 0.199  |
| 485        |                                | Norse                          | ametric Dis   | tribution Free UCLs                                                                                       |        |
| 486        |                                | 95% CLT UCL                    | 0.186         | 95% Jackknife UCL                                                                                         | 0.197  |
| 487        | 95% 9                          | Standard Bootstrap UCL         | 0.180         | 95% Bootstrap-t UCL                                                                                       | 0.197  |
| 488        |                                | 5% Hall's Bootstrap UCL        | 0.694         | 95% Percentile Bootstrap UCL                                                                              | 0.185  |
| 489        |                                | 5% BCA Bootstrap UCL           | 0.187         | ,                                                                                                         |        |
| 490<br>491 |                                | ebyshev(Mean, Sd) UCL          | 0.227         | 95% Chebyshev(Mean, Sd) UCL                                                                               | 0.268  |
| 491        |                                | ebyshev(Mean, Sd) UCL          | 0.325         | 99% Chebyshev(Mean, Sd) UCL                                                                               | 0.437  |
| 702        |                                |                                |               |                                                                                                           |        |
| 493        |                                |                                |               |                                                                                                           |        |
| 493<br>494 |                                |                                | Suggested     | UCL to Use                                                                                                |        |

SLR Page 10 of 42

| <u> </u>                                                                                                                                                                           | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                                                                        | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1                                                                                                                                                                                  | Nonparametric UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Statistics                                                                                                                                             | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 2                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 3                                                                                                                                                                                  | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .F0.10 DM                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 4                                                                                                                                                                                  | Date/Time of Computation ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | ada.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 5                                                                                                                                                                                  | From File SED 0-0.15mbg Chemist  Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | try_input_v5                                                                                                                                             | .XIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 6                                                                                                                                                                                  | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 7                                                                                                                                                                                  | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 8<br>9<br>10                                                                                                                                                                       | Name of Booking Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 496                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 497                                                                                                                                                                                | Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UCL are pr                                                                                                                                               | ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 498                                                                                                                                                                                | Recommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ed upon dat                                                                                                                                              | a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
| 499                                                                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 500                                                                                                                                                                                | However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orld data se                                                                                                                                             | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.                                               |
| 501                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 502                                                                                                                                                                                | made de dominio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 503                                                                                                                                                                                | molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 504                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General                                                                                                                                                  | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| 505                                                                                                                                                                                | Total Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                       | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                               |
| 506                                                                                                                                                                                | . Stat. Tallibor of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                          | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                |
| 507                                                                                                                                                                                | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                      | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.216                                            |
| 508                                                                                                                                                                                | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4                                                                                                                                                      | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.075                                            |
| 510                                                                                                                                                                                | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.506                                                                                                                                                    | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.108                                            |
| 511                                                                                                                                                                                | Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.416                                                                                                                                                    | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.258                                            |
| 512                                                                                                                                                                                | Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.124                                                                                                                                                    | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.375                                            |
| 513                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 514                                                                                                                                                                                | Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tric Distribu                                                                                                                                            | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
|                                                                                                                                                                                    | Data annear Logno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | arment District                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 515                                                                                                                                                                                | Bata appear Logit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ormai Distri                                                                                                                                             | buted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 515<br>516                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
|                                                                                                                                                                                    | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 516<br>517<br>518                                                                                                                                                                  | Ass<br>95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | suming Nor                                                                                                                                               | mal Distribution 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 424                                            |
| 516<br>517<br>518<br>519                                                                                                                                                           | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.424                                            |
| 516<br>517<br>518<br>519<br>520                                                                                                                                                    | Ass<br>95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | suming Nor                                                                                                                                               | mal Distribution 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.424<br>1.406                                   |
| 516<br>517<br>518<br>519<br>520<br>521                                                                                                                                             | Ass<br>95% Normal UCL<br>95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | suming Nort                                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 516<br>517<br>518<br>519<br>520<br>521<br>522                                                                                                                                      | Ass<br>95% Normal UCL<br>95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | suming Nort                                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523                                                                                                                               | Ass 95% Normal UCL 95% Student's-t UCL Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.402                                                                                                                                                    | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.406                                            |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524                                                                                                                        | Ass 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.402 ametric Dis                                                                                                                                        | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.406                                            |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525                                                                                                                 | Ass 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402  ametric Dis 1.393 1.39                                                                                                                            | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.406<br>1.402<br>1.443                          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524                                                                                                                        | Ass 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.402<br>ametric Dis<br>1.393<br>1.39<br>1.422                                                                                                           | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.406<br>1.402<br>1.443                          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526                                                                                                          | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.402<br>ametric Dis<br>1.393<br>1.39<br>1.422<br>1.407                                                                                                  | ### Page 10 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Pa | 1.406<br>1.402<br>1.443<br>1.4                   |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526                                                                                                          | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889                                                                                                    | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.406<br>1.402<br>1.443<br>1.4                   |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528                                                                                            | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested                                                                                         | ### Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Page 12 Pa | 1.406<br>1.402<br>1.443<br>1.4                   |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529                                                                                     | 95% Normal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.406<br>1.402<br>1.443<br>1.4                   |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530                                                                              | 95% Normal UCL 95% Student's-t UCL 95% Student's-t UCL  Nonpar 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w                                                                              | ### Page 12   ### Page 24   ### Page 25   ### Page 25   ### Page 25   ### Page 26   ## | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533                                                         | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534                                                  | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  Note: Suggestions regarding the selection of a 95%  Recommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w  UCL are priced upon date                                                    | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535                                           | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resulting the selection of a 95% and the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendation are based upon the resulting the selection of a 95% are commendation are commendation are commendation are commendation are commendati | ametric Dis 1.402 1.402 1.393 1.39 1.422 1.407 1.539 1.889 Suggested mal, May w UCL are priced upon dat lits of the sin                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>532<br>533<br>534<br>535                                    | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resulting the selection of a 95% and the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendation are based upon the resulting the selection of a 95% are commendation are commendation are commendation are commendation are commendati | ametric Dis 1.402 1.402 1.393 1.39 1.422 1.407 1.539 1.889 Suggested mal, May w UCL are priced upon dat lits of the sin                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536                                    | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resulting the selection of a 95% and the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendation are based upon the resulting the selection of a 95% are commendation are commendation are commendation are commendation are commendati | ametric Dis 1.402 1.402 1.393 1.39 1.422 1.407 1.539 1.889 Suggested mal, May w UCL are priced upon dat lits of the sin                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537                                    | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resulting the selection of a 95% and the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendations are based upon the resulting the selection of a 95% are commendation are based upon the resulting the selection of a 95% are commendation are commendation are commendation are commendation are commendati | ametric Dis 1.402 1.402 1.393 1.39 1.422 1.407 1.539 1.889 Suggested mal, May w UCL are priced upon dat lits of the sin                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538                             | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The appear Lognor  Note: Suggestions regarding the selection of a 95%  Recommendations are base  These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ametric Dis 1.402 1.402 1.393 1.39 1.422 1.407 1.539 1.889 Suggested mal, May w UCL are priced upon dat lits of the sin                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537                                    | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The appear Lognor  Note: Suggestions regarding the selection of a 95%  Recommendations are base  These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ametric Dis 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w  UCL are project upon data its of the sim orld data se           | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540        | Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The appear Lognor  Note: Suggestions regarding the selection of a 95%  Recommendations are base  These recommendations are based upon the result However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ametric Dis 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w  UCL are project upon data its of the sim orld data se           | ### P5% UCLs (Adjusted for Skewness)  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.406<br>1.402<br>1.443<br>1.4<br>1.686<br>2.289 |
| 516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536<br>537<br>538<br>539<br>540<br>541 | P5% Normal UCL 95% Student's-t UCL 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL 95% Standard Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Data appear Lognor  Note: Suggestions regarding the selection of a 95% Recommendations are base These recommendations are based upon the resul However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ametric Dis 1.402  ametric Dis 1.393 1.39 1.422 1.407 1.539 1.889  Suggested mal, May w  UCL are predupon data see dupon data see dupon data see General | ### P5% UCLs (Adjusted for Skewness)  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  #### P5% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  ##### ant to try Lognormal Distribution  UVICL to Use Indicate the most appropriate 95% UCL  ###################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.402<br>1.443<br>1.4<br>1.686<br>2.289          |

SLR Page 11 of 42

|            | A B C                          | D E                           | F             | GHIJK                                                                 | 1      |
|------------|--------------------------------|-------------------------------|---------------|-----------------------------------------------------------------------|--------|
| 1          | Λ   Β   0                      |                               |               | for Data Sets with Non-Detects                                        |        |
| 2          |                                |                               |               |                                                                       |        |
| 3          | User Selected Options          |                               |               |                                                                       |        |
| 4          | Date/Time of Computation       | ProUCL 5.112/31/2019 3        | 3:58:18 PM    |                                                                       |        |
| 5          | From File                      | SED 0-0.15mbg Chemis          | try_input_v5  | xls                                                                   |        |
| 6          | Full Precision                 | OFF                           |               |                                                                       |        |
| 7          | Confidence Coefficient         | 95%                           |               |                                                                       |        |
| 8          | Number of Bootstrap Operations | 2000                          |               |                                                                       |        |
| 9          |                                |                               |               |                                                                       |        |
| 545        |                                | Maximum                       | 36            | Median                                                                | 21.5   |
| 546        |                                | SD                            | 4.931         | Std. Error of Mean                                                    | 1.051  |
| 547        |                                | Coefficient of Variation      | 0.22          | Skewness                                                              | 1.276  |
| 548        |                                | Mean of logged Data           | 3.091         | SD of logged Data                                                     | 0.204  |
| 549        |                                |                               |               |                                                                       |        |
| 550        |                                | <u> </u>                      |               | tion Free UCL Statistics                                              |        |
| 551        |                                | Data appear Gan               | nma Distribi  | uted at 5% Significance Level                                         |        |
| 552        |                                |                               |               |                                                                       |        |
| 553        |                                |                               | suming Nor    | mal Distribution                                                      |        |
| 554        | 95% No                         | ormal UCL                     |               | 95% UCLs (Adjusted for Skewness)                                      |        |
| 555        |                                | 95% Student's-t UCL           | 24.27         | 95% Adjusted-CLT UCL (Chen-1995)                                      | 24.49  |
| 556        |                                |                               |               | 95% Modified-t UCL (Johnson-1978)                                     | 24.32  |
| 557        |                                |                               |               |                                                                       |        |
| 558        |                                | ·                             |               | tribution Free UCLs                                                   |        |
| 559        |                                | 95% CLT UCL                   | 24.19         | 95% Jackknife UCL                                                     | 24.27  |
| 560        |                                | Standard Bootstrap UCL        | 24.15         | 95% Bootstrap-t UCL                                                   | 24.67  |
| 561        |                                | 5% Hall's Bootstrap UCL       | 24.84         | 95% Percentile Bootstrap UCL                                          | 24.23  |
| 562        |                                | 95% BCA Bootstrap UCL         | 24.34         |                                                                       |        |
| 563        |                                | ebyshev(Mean, Sd) UCL         | 25.61         | 95% Chebyshev(Mean, Sd) UCL                                           | 27.04  |
| 564        | 97.5% Ch                       | ebyshev(Mean, Sd) UCL         | 29.02         | 99% Chebyshev(Mean, Sd) UCL                                           | 32.92  |
| 565        |                                |                               |               |                                                                       |        |
| 566        |                                |                               |               | UCL to Use                                                            |        |
| 567        |                                | Data appear Gan               | nma, May w    | ant to try Gamma Distribution                                         |        |
| 568        |                                |                               |               |                                                                       |        |
| 569        |                                |                               |               | ovided to help the user to select the most appropriate 95% UCL        | •      |
| 570        |                                |                               | ·             | a size, data distribution, and skewness.                              |        |
| 571        |                                |                               |               | nulation studies summarized in Singh, Maichle, and Lee (2006).        |        |
| 572        | nowever, simulations result    | is will flot cover all Real W | ond data se   | ts; for additional insight the user may want to consult a statisticia | 311.   |
| 573        | Note: For highly paget         | hahr ekowad data, confid      | longo limite  | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                |        |
| 574        |                                |                               |               | de adjustments for positively skewed data sets.                       |        |
| 575        | Toliable.                      | onen a ana connacii a ine     | ulous provi   | ue aujustinenta foi positrely skewed data 366.                        |        |
| 576        | selenium                       |                               |               |                                                                       |        |
| 577        |                                |                               |               |                                                                       |        |
| 578        |                                |                               | General       | Statistics                                                            |        |
| 579        | Total                          | Number of Observations        | 22            | Number of Distinct Observations                                       | 5      |
| 580        |                                |                               |               | Number of Missing Observations                                        | 1      |
| 581        |                                | Number of Detects             | 5             | Number of Non-Detects                                                 | 17     |
| 582        | Nı                             | umber of Distinct Detects     | 4             | Number of Distinct Non-Detects                                        | 2      |
| 583        |                                | Minimum Detect                | 0.7           | Minimum Non-Detect                                                    | 0.5    |
| 584        |                                | Maximum Detect                | 1             | Maximum Non-Detect                                                    | 0.7    |
| 585<br>586 |                                | Variance Detects              | 0.0205        | Percent Non-Detects                                                   | 77.27% |
| 587        |                                | Mean Detects                  | 0.848         | SD Detects                                                            | 0.143  |
| 588        |                                | Median Detects                | 0.8           | CV Detects                                                            | 0.169  |
| 589        |                                | Skewness Detects              | 0.342         | Kurtosis Detects                                                      | -2.987 |
| 590        |                                | Mean of Logged Detects        | -0.176        | SD of Logged Detects                                                  | 0.168  |
|            |                                |                               |               |                                                                       |        |
| 591        |                                | Nonparame                     | tric Distribu | tion Free UCL Statistics                                              |        |
| 592        |                                | <u> </u>                      |               | stributed at 5% Significance Level                                    |        |
| 593        |                                |                               |               |                                                                       |        |

SLR Page 12 of 42

|                                                                                                                                                                                                         | A B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nonparametric UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Statistics for Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| 2                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 3                                                                                                                                                                                                       | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 4                                                                                                                                                                                                       | <u>'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 5                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SED 0-0.15mbg Chemist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | try_input_v5.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 6                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 7                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 8                                                                                                                                                                                                       | Number of Bootstrap Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 10                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 594                                                                                                                                                                                                     | Kenlen M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | leier (KM) Statistics usin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a Normal Critical V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alues and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| 595                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0377                                                              |
| 596                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                 |
| 597                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                 |
| 598                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                 |
| 599                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.743                                                               |
| 600                                                                                                                                                                                                     | 07.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.954                                                               |
| 601                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 602                                                                                                                                                                                                     | Statisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cs using KM estimates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on Logged Data and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 603                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.792                                                               |
| 604                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.562                                                               |
| 605                                                                                                                                                                                                     | KM Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.631                                                               |
| 606                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1931)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 607                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggested UCL to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     |
| 608                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Normal Distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
| 000                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |
| 609                                                                                                                                                                                                     | Note: Suggestions regardin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL are provided to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |
| 610                                                                                                                                                                                                     | Note: Suggestions regarding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | help the user to select the most appropriate 95% UCL ata distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     |
| 610<br>611                                                                                                                                                                                              | Note: Suggestions regardin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ecommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                   |
| 610<br>611<br>612                                                                                                                                                                                       | Note: Suggestions regarding Real These recommendations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
| 610<br>611<br>612<br>613                                                                                                                                                                                | Note: Suggestions regardir  Re These recommendations However, simulations results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.<br>tudies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 610<br>611<br>612<br>613<br>614                                                                                                                                                                         | Note: Suggestions regardir Re These recommendations However, simulations results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.<br>tudies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 610<br>611<br>612<br>613<br>614<br>615                                                                                                                                                                  | Note: Suggestions regardir  Re These recommendations However, simulations results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.<br>tudies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 610<br>611<br>612<br>613<br>614<br>615                                                                                                                                                                  | Note: Suggestions regardir Re These recommendations However, simulations results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.<br>tudies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 610<br>611<br>612<br>613<br>614<br>615<br>616                                                                                                                                                           | Note: Suggestions regardir Re These recommendations However, simulations results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.  tudies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617                                                                                                                                                    | Note: Suggestions regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ecommendations are bas<br>are based upon the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d<br>tts of the simulation s<br>orld data sets; for ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ata distribution, and skewness.  tudies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618                                                                                                                                             | Note: Suggestions regardir  Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecommendations are base<br>are based upon the resul<br>will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed upon data size, d Its of the simulation s orld data sets; for ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ata distribution, and skewness.  tudies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an.                                                                 |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>619                                                                                                                                      | Note: Suggestions regardir  Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecommendations are base<br>are based upon the resul<br>will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed upon data size, d Its of the simulation s orld data sets; for ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ata distribution, and skewness.  tudies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                                                  |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>619<br>620                                                                                                                               | Note: Suggestions regardir  Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecommendations are based upon the result will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ed upon data size, d Its of the simulation s orld data sets; for ad  General Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata distribution, and skewness.  Itudies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticial  S  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>1                                                             |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>619                                                                                                                                      | Note: Suggestions regardir  Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecommendations are base<br>are based upon the result<br>will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed upon data size, dits of the simulation sorld data sets; for ad  General Statistic  22  0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ata distribution, and skewness.  Intudies summarized in Singh, Maichle, and Lee (2006).  Iditional insight the user may want to consult a statisticial  S  Number of Distinct Observations  Number of Missing Observations  Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22<br>1<br>0.721                                                    |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623                                                                                                                 | Note: Suggestions regardir  Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ecommendations are base are based upon the result will not cover all Real W  Number of Observations  Minimum  Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed upon data size, d Its of the simulation s orld data sets; for ad  General Statistic 22  0.083 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ata distribution, and skewness.  Intudies summarized in Singh, Maichle, and Lee (2006).  Iditional insight the user may want to consult a statisticial  S  Number of Distinct Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22<br>1<br>0.721<br>0.379                                           |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624                                                                                                          | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecommendations are base are based upon the result will not cover all Real W  Number of Observations  Minimum  Maximum  SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ded upon data size, detts of the simulation sold data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additional data sets; for additi | ata distribution, and skewness.  Istudies summarized in Singh, Maichle, and Lee (2006).  Iditional insight the user may want to consult a statisticia  S  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>1<br>0.721<br>0.379<br>0.188                                  |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625                                                                                                   | Note: Suggestions regardir Re These recommendations: However, simulations results silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are base are based upon the result will not cover all Real W  Number of Observations  Minimum  Maximum  SD  Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General Statistic  22  0.083  3.3  0.881  1.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stata distribution, and skewness.  Istudies summarized in Singh, Maichle, and Lee (2006).  Iditional insight the user may want to consult a statisticia  State of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626                                                                                            | Note: Suggestions regardir Re These recommendations However, simulations results silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ecommendations are base are based upon the result will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will | General Statistic  22  0.083  3.3  0.881  1.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | studies summarized in Singh, Maichle, and Lee (2006). ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625                                                                                                   | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are base are based upon the result will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will | General Statistic  22  0.083 3.3 0.881 1.223 -0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | studies summarized in Singh, Maichle, and Lee (2006). ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628                                                                              | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are base are based upon the result will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will | General Statistic  22  0.083 3.3 0.881 1.223 -0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stata distribution, and skewness.  Intudies summarized in Singh, Maichle, and Lee (2006).  Iditional insight the user may want to consult a statisticial  Section 1. Section 1. Section 2. Section 3. Number of Distinct Observations 1. Number of Missing Observations 1. Mean 1. Median 1. Std. Error of Mean 1. Skewness 1. Sp. of logged Data 2. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3. Section 3.  | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627                                                                                            | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | General Statistic  22  0.083 3.3 0.881 1.223 -0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  B UCL Statistics  SW Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628                                                                              | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  B UCL Statistics  SW Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>629<br>630                                                                | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecommendations are base are based upon the result will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | studies summarized in Singh, Maichle, and Lee (2006). ditional insight the user may want to consult a statisticia  S  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  DUCL Statistics S% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22<br>1 0.721<br>0.379<br>0.188<br>2.171                            |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>629<br>630<br>631                                                         | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logne  Assermal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General Statistic  22  0.083  3.3  0.881  1.223  -0.856  tric Distribution Free formal Distributed at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  DUCL Statistics  5% Significance Level  ibution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>630<br>631<br>632                                                         | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logne  Assermal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General Statistic  22  0.083  3.3  0.881  1.223  -0.856  tric Distribution Free formal Distributed at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  DUCL Statistics  SW Significance Level  dibution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>630<br>631<br>632<br>633<br>634                                                                | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Statistic  22  0.083  3.3  0.881  1.223  -0.856  tric Distribution Free formal Distributed at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  DUCL Statistics S% Significance Level  dibution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>630<br>631<br>632<br>633<br>634<br>635                                                  | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | General Statistic  22  0.083  3.3  0.881  1.223  -0.856  tric Distribution Freedormal Distributed at suming Normal Distributed at 1.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  DUCL Statistics S% Significance Level  dibution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>630<br>631<br>632<br>633<br>634                                                                | Note: Suggestions regardir Re These recommendations: However, simulations results  silver  Total N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rumber of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General Statistic  22  0.083  3.3  0.881  1.223  -0.856  tric Distribution Freedormal Distributed at suming Normal Distribution  1.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  DUCL Statistics S% Significance Level  SUCL Statistics SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Level  SM Significance Le | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>630<br>631<br>632<br>633<br>634<br>635<br>636                                           | Note: Suggestions regardir Re These recommendations : However, simulations results  silver  Total N  95% Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL  95% Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at suming Normal Distribution 1.044  ametric Distribution 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  DUCL Statistics S% Significance Level  ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics ### Outline Statistics #### Outlin | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>623<br>624<br>625<br>626<br>627<br>628<br>630<br>631<br>632<br>633<br>634<br>635<br>636<br>637                             | Note: Suggestions regardir Re These recommendations However, simulations results  silver  Total N  95% Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL  95% Student's-t UCL  Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at suming Normal Distribution 1.034 1.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  DUCL Statistics  S% Significance Level  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics   | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>622<br>623<br>624<br>625<br>626<br>627<br>628<br>629<br>630<br>631<br>632<br>633<br>634<br>635<br>636<br>637<br>638<br>639 | Note: Suggestions regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regarding Regardin | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Logno  Ass  rmal UCL  95% Student's-t UCL  Standard Bootstrap UCL  Whall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at  8uming Normal Distributed at  1.044  ametric Distribution 1.03 1.024 1.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia   Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  DUCL Statistics  S% Significance Level  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics  ### Outline Statistics   | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017                   |
| 610<br>611<br>612<br>613<br>614<br>615<br>616<br>617<br>618<br>620<br>621<br>623<br>624<br>625<br>626<br>627<br>628<br>629<br>630<br>631<br>632<br>633<br>634<br>635<br>636<br>637<br>638               | Note: Suggestions regarding Research These recommendations and However, simulations results  silver  Total N  95% Note: Suggestions regarding the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Logno  Ass  rmal UCL 95% Student's-t UCL Standard Bootstrap UCL Standard Bootstrap UCL Standard Bootstrap UCL Standard Bootstrap UCL SW Hall's Bootstrap UCL SW BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | General Statistic  22  0.083 3.3 0.881 1.223 -0.856  tric Distribution Freedormal Distributed at suming Normal Distributed at 1.044  ametric Distribution 1.03 1.024 1.516 1.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ata distribution, and skewness.  studies summarized in Singh, Maichle, and Lee (2006).  ditional insight the user may want to consult a statisticia  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  9 UCL Statistics  5% Significance Level  ### Distinct Observations    Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22<br>1 0.721<br>0.379<br>0.188<br>2.171<br>1.017<br>1.123<br>1.058 |

SLR Page 13 of 42

|                                                                                                                                                               | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                                                                                                                                                                                                                                                                                                                       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1                                                                                                                                                             | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | parametric UC                                                                                                                                                                                                                                                                                                                                                                           | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 2                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 3                                                                                                                                                             | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 4                                                                                                                                                             | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 5                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .15mbg Chemis                                                                                                                                                                                                                                                                                                                                                                           | try_input_v5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |
| 6                                                                                                                                                             | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 7                                                                                                                                                             | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 8                                                                                                                                                             | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 9                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 643                                                                                                                                                           | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | annear I ognor                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ant to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| 644                                                                                                                                                           | Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | appear Logilor                                                                                                                                                                                                                                                                                                                                                                          | mai, may w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant to try Logitorinal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |
| 645                                                                                                                                                           | Note: Suggestions regarding the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lection of a 95%                                                                                                                                                                                                                                                                                                                                                                        | LICL are nr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ovided to help the user to select the most appropriate 95% UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 646                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ••                                               |
| 647                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 648                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an.                                              |
| 649                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| 650                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 651<br>652                                                                                                                                                    | sodium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 653<br>654                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 655                                                                                                                                                           | Total Number of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Observations                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                |
| 656                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                               |
| 657                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum                                                                                                                                                                                                                                                                                                                                                                                 | 209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300                                              |
| 658                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maximum                                                                                                                                                                                                                                                                                                                                                                                 | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 283                                              |
| 659                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD                                                                                                                                                                                                                                                                                                                                                                                      | 94.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38.54                                            |
| 660                                                                                                                                                           | Coefficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ent of Variation                                                                                                                                                                                                                                                                                                                                                                        | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.678                                            |
| 661                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of logged Data                                                                                                                                                                                                                                                                                                                                                                          | 5.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.308                                            |
| 662                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 663                                                                                                                                                           | Note: Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e size is small (                                                                                                                                                                                                                                                                                                                                                                       | e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f data are collected using ISM approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 663                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f data are collected using ISM approach JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
|                                                                                                                                                               | you ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C                                                                                                                                                                                                                                                                                                                                                                         | hebyshev l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 664                                                                                                                                                           | you ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C                                                                                                                                                                                                                                                                                                                                                                         | hebyshev l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| 664<br>665                                                                                                                                                    | you may<br>Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C<br>CL can be com<br>Nonparame                                                                                                                                                                                                                                                                                                                                           | thebyshev L<br>puted using<br>etric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options. tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| 664<br>665<br>666                                                                                                                                             | you may<br>Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C<br>CL can be com<br>Nonparame                                                                                                                                                                                                                                                                                                                                           | thebyshev L<br>puted using<br>stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 664<br>665<br>666<br>667                                                                                                                                      | you may<br>Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C<br>CL can be com<br>Nonparame<br>ata appear Nor                                                                                                                                                                                                                                                                                                                         | chebyshev L<br>puted using<br>etric Distribu<br>mal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options. tion Free UCL Statistics tted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 664<br>665<br>666<br>667<br>668                                                                                                                               | you may<br>Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y want to use C<br>CL can be com<br>Nonparame<br>ata appear Nor                                                                                                                                                                                                                                                                                                                         | chebyshev L<br>puted using<br>etric Distribu<br>mal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 664<br>665<br>666<br>667<br>668<br>669                                                                                                                        | you may Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y want to use C<br>CL can be com<br>Nonparame<br>ata appear Nor<br>Ass                                                                                                                                                                                                                                                                                                                  | thebyshev Uputed using<br>tric Distriburnal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |
| 664<br>665<br>666<br>667<br>668<br>669                                                                                                                        | you may Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y want to use C<br>CL can be com<br>Nonparame<br>ata appear Nor                                                                                                                                                                                                                                                                                                                         | chebyshev L<br>puted using<br>etric Distribu<br>mal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 374.8                                            |
| 664<br>665<br>666<br>667<br>668<br>669<br>670                                                                                                                 | you may Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y want to use C<br>CL can be com<br>Nonparame<br>ata appear Nor<br>Ass                                                                                                                                                                                                                                                                                                                  | thebyshev Uputed using<br>tric Distriburnal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 374.8<br>379.4                                   |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671                                                                                                          | you may Chebyshev U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y want to use C CL can be com Nonparame ata appear Nor As: L Student's-t UCL                                                                                                                                                                                                                                                                                                            | thebyshev Uputed using thric Distributinal Distributions Normal 277.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674                                                                                     | you may Chebyshev U  D  95% Normal UCI  95% S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y want to use C CL can be com  Nonparame rata appear Nor  As: L Student's-t UCL                                                                                                                                                                                                                                                                                                         | tric Distribution Normal Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics need at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 379.4                                            |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675                                                                              | you may Chebyshev U  D  95% Normal UCI  95% S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y want to use CCL can be com  Nonparame rata appear Nor  Ass L Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                                  | tric Distribution Normal Distribution Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal Normal | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ited at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 379.4                                            |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676                                                                       | you may Chebyshev Ui  D  95% Normal UCI  95% S  95% Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Nonparame tata appear Nor  Ass  L  Student's-t UCL  Nonpar  95% CLT UCL  Bootstrap UCL                                                                                                                                                                                                                                                                                                  | tric Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal Distribution Normal D | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ited at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 379.4<br>377.7<br>390.2                          |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676                                                                       | you may Chebyshev Ur  D  95% Normal UCI  95% S  95% Standard 95% Hall's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Nonparame sata appear Nor  Ass L Student's-t UCL  Nonpar  95% CLT UCL  Bootstrap UCL                                                                                                                                                                                                                                                                                                    | tric Distribumal Distribumal Distribuman Non 377.7  ametric Dis 363.4 357.3 364.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.  tion Free UCL Statistics ited at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 379.4                                            |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>677<br>678                                                         | you may Chebyshev Ui  95% Normal UCI 95% S  95% Standard 95% Standard 95% Hall's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nonparame sata appear Nor  Ass  Culture Nor  Nonparame  Ass  Culture Nor  Nonparame  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL                                                                                                                                                                                                                                           | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>677<br>678                                                         | you may Chebyshev Un  Property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property | Nonparame sata appear Nor  Ass  Culture Nor  Nonparame sata appear Nor  Ass  Culture Nor  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Mean, Sd) UCL                                                                                                                                                                                                               | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>679<br>680<br>681                                                  | you may Chebyshev Ui  95% Normal UCI 95% S  95% Standard 95% Standard 95% Hall's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nonparame sata appear Nor  Ass  Culture Nor  Nonparame sata appear Nor  Ass  Culture Nor  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Mean, Sd) UCL                                                                                                                                                                                                               | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>677<br>680<br>681                                                  | you may Chebyshev Un  Property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property | Nonparame sata appear Nor  Ass  Culture Nor  Nonparame sata appear Nor  Ass  Culture Nor  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Mean, Sd) UCL  Mean, Sd) UCL                                                                                                                                                                                                | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>680<br>681<br>682<br>683                                           | 95% Normal UCI 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nonparame sata appear Nor  Ass  Nonparame sata appear Nor  Ass  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Mean, Sd) UCL  Mean, Sd) UCL                                                                                                                                                                                                                          | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                           | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>680<br>681<br>682<br>683<br>684                                           | 95% Normal UCI 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Nonparame sata appear Nor  Ass  Nonparame sata appear Nor  Ass  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Mean, Sd) UCL  Mean, Sd) UCL                                                                                                                                                                                                                          | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                           | 379.4<br>377.7<br>390.2<br>358.7                 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>680<br>681<br>682<br>683<br>684<br>685                             | you may Chebyshev Un  95% Normal UCI 95% S  95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nonparame lata appear Nor  Nonparame lata appear Nor  As:  Nonpar  Student's-t UCL  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Wean, Sd) UCL  Wean, Sd) UCL                                                                                                                                                                                                      | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  ant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                            | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |
| 664<br>665<br>666<br>667<br>668<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>681<br>682<br>683<br>684<br>685                                           | 95% Normal UCI 95% Standard 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nonparame lata appear Nor  Nonparame lata appear Nor  As:  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Wean, Sd) UCL  Wean, Sd) UCL  Wean, Sd) UCL                                                                                                                                                                                                                | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                           | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>680<br>681<br>682<br>683<br>684<br>685<br>686                      | 95% Normal UCI 95% Standard 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nonparame lata appear Nor  Nonparame lata appear Nor  As:  Nonpar  95% CLT UCL  Bootstrap UCL  Bootstrap UCL  Bootstrap UCL  Wean, Sd) UCL  Wean, Sd) UCL  Veata appear Nor  Pata appear Nor  Rata appear Nor | puted using tric Distribu mal Distribu suming Non 377.7  ametric Dis 363.4 357.3 364.5 360.7 415.6 540.7  Suggested mal, May w  UCL are pr sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JCL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  ted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  ant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                  | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>680<br>681<br>682<br>683<br>684<br>685<br>686<br>687               | 95% Normal UCI 95% Standard 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N PORTION OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE S | Nonparame rata appear Nor  Nonparame rata appear Nor  As:  Student's-t UCL  Nonpar 95% CLT UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor                                                                                             | puted using tric Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distri | the Nonparametric and All UCL Options.  Ithe Nonparametric and All UCL (Chen-1995)  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  Ithibution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  OUCL to Use  ant to try Normal Distribution  Involved to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness. | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>677<br>680<br>681<br>682<br>683<br>684<br>685<br>686<br>687<br>688 | 95% Normal UCI 95% Standard 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N PORTION OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE S | Nonparame rata appear Nor  Nonparame rata appear Nor  As:  Student's-t UCL  Nonpar 95% CLT UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor                                                                                             | puted using tric Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distri | ICL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  aulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                  | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |
| 664<br>665<br>666<br>667<br>668<br>669<br>670<br>671<br>672<br>673<br>674<br>675<br>676<br>681<br>682<br>683<br>684<br>685<br>686<br>687                      | 95% Normal UCI 95% Standard 95% Standard 95% Hall's 95% BCA 90% Chebyshev(N 97.5% Chebyshev(N PORTION OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE SET OF THE S | Nonparame rata appear Nor  Nonparame rata appear Nor  As:  Student's-t UCL  Nonpar 95% CLT UCL Bootstrap UCL Bootstrap UCL Bootstrap UCL Mean, Sd) UCL Mean, Sd) UCL  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor  rata appear Nor                                                                                             | puted using tric Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distribution and Distri | ICL to estimate EPC (ITRC, 2012).  the Nonparametric and All UCL Options.  tion Free UCL Statistics  and Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  aulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                  | 379.4<br>377.7<br>390.2<br>358.7<br>468<br>683.4 |

SLR Page 14 of 42

City of Hamilton Ecological Risk Assessment - Chedoke Creek SLR Project No.: 209.40666 January 2020

|                                                                                                                            | A B C                                                                                                                      | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F G                                                                                                                                                            | H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                  |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1                                                                                                                          |                                                                                                                            | Nonparametric UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Statistics for Data                                                                                                                                            | a Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
| 2                                                                                                                          |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 3                                                                                                                          | User Selected Options                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 4                                                                                                                          | Date/Time of Computation Pr                                                                                                | roUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :58:18 PM                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 5                                                                                                                          |                                                                                                                            | ED 0-0.15mbg Chemist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ry_input_v5.xls                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 6                                                                                                                          |                                                                                                                            | FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 7                                                                                                                          | Confidence Coefficient 95                                                                                                  | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 8                                                                                                                          | Number of Bootstrap Operations 20                                                                                          | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 10                                                                                                                         | thallium                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 692                                                                                                                        | thailium                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 693                                                                                                                        |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General Statistic                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 694                                                                                                                        | Total Nu                                                                                                                   | umber of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                             | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                 | 15                                                 |
| 695                                                                                                                        | Total Nu                                                                                                                   | arriber of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                             | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                  |
| 696                                                                                                                        |                                                                                                                            | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.08                                                                                                                                                           | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.158                                              |
| 697                                                                                                                        |                                                                                                                            | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.06                                                                                                                                                           | Median                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.135                                              |
| 698                                                                                                                        |                                                                                                                            | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.203                                                                                                                                                          | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.133                                              |
| 699                                                                                                                        |                                                                                                                            | Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.338                                                                                                                                                          | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.554                                              |
| 700                                                                                                                        |                                                                                                                            | Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1.902                                                                                                                                                         | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.337                                              |
| 701                                                                                                                        |                                                                                                                            | Wearr or logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.502                                                                                                                                                         | OD or logged Data                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.557                                              |
| 702                                                                                                                        |                                                                                                                            | Nonnarame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tric Distribution Fre                                                                                                                                          | a LICL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 703                                                                                                                        | D                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                | ted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
| 704                                                                                                                        |                                                                                                                            | ata appear Approxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to Normal Distribut                                                                                                                                            | ica at 070 Olgrinication Ecver                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
|                                                                                                                            |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 705                                                                                                                        |                                                                                                                            | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uming Normal Dist                                                                                                                                              | tribution                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 706                                                                                                                        | 95% Norm                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suming Normal Dist                                                                                                                                             | tribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 706<br>707                                                                                                                 | 95% Norm                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suming Normal Dist                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.178                                              |
| 706<br>707<br>708                                                                                                          | 95% Norm                                                                                                                   | nal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                | 0.178<br>0.177                                     |
| 706<br>707<br>708<br>709                                                                                                   | 95% Norm                                                                                                                   | nal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 706<br>707<br>708<br>709<br>710                                                                                            | 95% Norm                                                                                                                   | 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                             |                                                    |
| 706<br>707<br>708<br>709<br>710<br>711                                                                                     | 95% Norm                                                                                                                   | 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.177                                                                                                                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                             |                                                    |
| 706<br>707<br>708<br>709<br>710<br>711<br>712                                                                              |                                                                                                                            | nal UCL<br>95% Student's-t UCL<br>Nonpara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.177                                                                                                                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                             | 0.177                                              |
| 706<br>707<br>708<br>709<br>710<br>711                                                                                     | 95% Sta                                                                                                                    | 95% Student's-t UCL  Nonpare 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.177  ametric Distribution 0.176                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                                              | 0.177                                              |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713                                                                       | 95% Sta<br>95%                                                                                                             | Nonpare 95% CLT UCL andard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.177  ametric Distribution 0.176 0.176                                                                                                                        | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                          | 0.177<br>0.177<br>0.179                            |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714                                                                | 95% Sta<br>95%<br>95%                                                                                                      | Nonpare 95% CLT UCL andard Bootstrap UCL Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.177  ametric Distribution 0.176 0.176 0.178                                                                                                                  | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                          | 0.177<br>0.177<br>0.179                            |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715                                                         | 95% Sta<br>95%<br>95%<br>959<br>90% Cheby                                                                                  | Nonpara 95% CLT UCL andard Bootstrap UCL Hall's Bootstrap UCL BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.177  ametric Distribution 0.176 0.176 0.178 0.177                                                                                                            | 95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  1 Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                        | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716                                                  | 95% Sta<br>95%<br>95%<br>959<br>90% Cheby                                                                                  | Nonpara 95% Student's-t UCL  Nonpara 95% CLT UCL andard Bootstrap UCL Hall's Bootstrap UCL BCA Bootstrap UCL yshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192                                                                                                      | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  n Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                 | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716                                                  | 95% Sta<br>95%<br>95%<br>959<br>90% Cheby                                                                                  | Nonpara 95% Student's-t UCL  Nonpara 95% CLT UCL andard Bootstrap UCL Hall's Bootstrap UCL Shev(Mean, Sd) UCL yshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192                                                                                                      | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                     | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717                                           | 95% Sta<br>95%<br>95%<br>959<br>90% Cheby                                                                                  | Nonpare 95% Student's-t UCL  Nonpare 95% CLT UCL andard Bootstrap UCL Hall's Bootstrap UCL BCA Bootstrap UCL yshev(Mean, Sd) UCL yshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                     | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719                             | 95% Sta<br>95%<br>95%<br>95%<br>90% Cheby<br>97.5% Cheby                                                                   | Nonpare 95% Student's-t UCL  Nonpare 95% CLT UCL andard Bootstrap UCL BCA Bootstrap UCL When BCA Bootstrap UCL yeshev(Mean, Sd) UCL yeshev(Mean, Sd) UCL  Data appear None 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use y Normal Distribution                                                                                                                                                                           | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720                      | 95% Sta<br>95%<br>95%<br>95%<br>90% Cheby<br>97.5% Cheby                                                                   | Nonpare 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL andard Bootstrap UCL 6 Hall's Bootstrap UCL 96 BCA Bootstrap UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                         | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721               | 95% Sta<br>95%<br>95%<br>95%<br>90% Cheby<br>97.5% Cheby                                                                   | Nonpare 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL andard Bootstrap UCL 6 Hall's Bootstrap UCL 96 BCA Bootstrap UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev(Mean, Sd) UCL 97 Shev | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use y Normal Distribution                                                                                                                                                                           | 0.177<br>0.177<br>0.179<br>0.176                   |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721               | 95% Sta<br>95%<br>95%<br>96%<br>90% Cheby<br>97.5% Cheby<br>Note: Suggestions regarding<br>Rec<br>These recommendations ar | Nonpare 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL andard Bootstrap UCL 6 Hall's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UC | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr  UCL are provided t ed upon data size, of the simulation | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 39% Vormal Distribution  o help the user to select the most appropriate 95% UCL. data distribution, and skewness. studies summarized in Singh, Maichle, and Lee (2006). | 0.177<br>0.177<br>0.179<br>0.176<br>0.207<br>0.271 |
| 706<br>707<br>708<br>709<br>710<br>711<br>712<br>713<br>714<br>715<br>716<br>717<br>718<br>719<br>720<br>721<br>722<br>723 | 95% Sta<br>95%<br>95%<br>96%<br>90% Cheby<br>97.5% Cheby<br>Note: Suggestions regarding<br>Rec<br>These recommendations ar | Nonpare 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL andard Bootstrap UCL 6 Hall's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UC | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr  UCL are provided t ed upon data size, of the simulation | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL Use y Normal Distribution o help the user to select the most appropriate 95% UCL. data distribution, and skewness.                                                      | 0.177<br>0.177<br>0.179<br>0.176<br>0.207<br>0.271 |
| 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724                                                | 95% Sta<br>95%<br>95%<br>96%<br>90% Cheby<br>97.5% Cheby<br>Note: Suggestions regarding<br>Rec<br>These recommendations ar | Nonpare 95% Student's-t UCL 95% Student's-t UCL 95% CLT UCL andard Bootstrap UCL 6 Hall's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hell's Bootstrap UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UCL 95 Hev (Mean, Sd) UC | 0.177  ametric Distribution 0.176 0.176 0.178 0.177 0.192 0.229  Suggested UCL to mal, May want to tr  UCL are provided t ed upon data size, of the simulation | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  1 Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 39% Vormal Distribution  o help the user to select the most appropriate 95% UCL. data distribution, and skewness. studies summarized in Singh, Maichle, and Lee (2006). | 0.177<br>0.177<br>0.179<br>0.176<br>0.207<br>0.271 |

SLR Page 15 of 42

|              | A B C                          | D E  Nonparametric UC       | F<br>I Statistics | G<br>for Data Sate | H H             | )<br>Natacte | J             |            | K          | L      |
|--------------|--------------------------------|-----------------------------|-------------------|--------------------|-----------------|--------------|---------------|------------|------------|--------|
| 1            |                                | Nonparameure oci            | L Statistics      | ioi Data Sets      | WILLINOII-L     | relects      |               |            |            |        |
| 2            | User Selected Options          |                             |                   |                    |                 |              |               |            |            |        |
| 3            |                                | ProUCL 5.112/31/2019 3      | 2-52-12 DM        |                    |                 |              |               |            |            |        |
| 4            | From File                      | SED 0-0.15mbg Chemist       |                   | vle                |                 |              |               |            |            |        |
| 5            | Full Precision                 | OFF                         | uy_mput_vo        | 5                  |                 |              |               |            |            |        |
| 6            |                                | 95%                         |                   |                    |                 |              |               |            |            |        |
| 7            | Number of Bootstrap Operations | 2000                        |                   |                    |                 |              |               |            |            |        |
| 8<br>9<br>10 | Number of Bootstrap Operations |                             |                   |                    |                 |              |               |            |            |        |
| 728          | tin                            |                             |                   |                    |                 |              |               |            |            |        |
| 729          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 730          |                                |                             | General           | Statistics         |                 |              |               |            |            |        |
| 731          | Total                          | Number of Observations      | 6                 |                    |                 | Numb         | er of Distino | t Observ   | ations     | 6      |
| 732          |                                |                             |                   |                    |                 | Numbe        | er of Missin  | g Observ   | ations     | 17     |
| 733          |                                | Minimum                     | 1.36              |                    |                 |              |               | -          | Mean       | 3.605  |
| 734          |                                | Maximum                     | 6.31              |                    |                 |              |               | N          | /ledian    | 3.64   |
| 735          |                                | SD                          | 1.963             |                    |                 |              | Std           | . Error of | Mean       | 0.802  |
| 736          |                                | Coefficient of Variation    | 0.545             |                    |                 |              |               | Ske        | wness      | 0.154  |
| 737          |                                | Mean of logged Data         | 1.134             |                    |                 |              | SD            | of logged  | d Data     | 0.624  |
| 738          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 739          | Not                            | e: Sample size is small (   | e.g., <10), i     | f data are co      | llected using   | ISM app      | roach         |            |            |        |
| 740          |                                | you may want to use C       | hebyshev l        | JCL to estima      | ate EPC (ITI    | RC, 2012)    |               | -          |            |        |
| 741          | Chet                           | byshev UCL can be com       | puted using       | the Nonpara        | metric and      | All UCL O    | ptions.       |            |            |        |
| 742          |                                |                             |                   |                    |                 |              |               | -          |            |        |
| 743          |                                | Nonparame                   | tric Distribu     | tion Free UC       | L Statistics    |              |               |            |            |        |
| 744          |                                | Data appear Nor             | mal Distribu      | ited at 5% Si      | gnificance L    | .evel        |               | -          |            |        |
| 745          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 746          |                                | Ass                         | suming Nor        | mal Distributi     | on              |              |               |            |            |        |
| 747          | 95% No                         | ormal UCL                   |                   |                    | 95%             | UCLs (Ad     | justed for S  | kewnes     | s)         |        |
| 748          |                                | 95% Student's-t UCL         | 5.22              |                    | 9               | 5% Adjust    | ed-CLT UC     | L (Chen-   | -1995)     | 4.977  |
| 749          |                                |                             |                   |                    |                 | 95% Modif    | ied-t UCL (   | Johnson-   | -1978)     | 5.229  |
| 750          |                                |                             |                   |                    |                 |              |               | -          |            |        |
| 751          |                                | Nonpar                      | ametric Dis       | tribution Free     | UCLs            |              |               | -          |            | -      |
| 752          |                                | 95% CLT UCL                 | 4.923             |                    |                 |              | 95%           | Jackknife  | e UCL      | 5.22   |
| 753          | 95% \$                         | Standard Bootstrap UCL      | 4.825             |                    |                 |              | 95% E         | Bootstrap- | t UCL      | 5.342  |
| 754          | 95                             | 5% Hall's Bootstrap UCL     | 4.792             |                    |                 | 95%          | Percentile    | Bootstrap  | p UCL      | 4.778  |
| 755          | 9                              | 95% BCA Bootstrap UCL       | 4.822             |                    |                 |              |               |            |            |        |
| 756          | 90% Che                        | ebyshev(Mean, Sd) UCL       | 6.01              |                    |                 | 95% C        | hebyshev(I    | Mean, Sd   | I) UCL     | 7.099  |
| 757          | 97.5% Che                      | ebyshev(Mean, Sd) UCL       | 8.61              |                    |                 | 99% C        | hebyshev(I    | Mean, Sd   | I) UCL     | 11.58  |
| 758          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 759          |                                |                             | Suggested         | UCL to Use         |                 |              |               |            |            |        |
| 760          |                                | Data appear Nor             | mal, May w        | ant to try No      | rmal Distribu   | ıtion        |               | -          |            |        |
| 761          |                                |                             |                   |                    |                 |              |               | -          |            |        |
| 762          | Note: Suggestions regardi      | ng the selection of a 95%   | UCL are pr        | ovided to help     | the user to     | select the   | most appro    | priate 95  | 5% UCL     |        |
| 763          | R                              | ecommendations are bas      | ed upon dat       | a size, data d     | listribution, a | nd skewn     | ess.          | -          |            | -      |
| 764          | These recommendations          | are based upon the result   | Its of the sin    | nulation studie    | es summariz     | ed in Singl  | h, Maichle,   | and Lee    | (2006).    |        |
| 765          | However, simulations results   | s will not cover all Real W | orld data se      | ts; for addition   | nal insight th  | e user ma    | y want to co  | onsult a s | tatisticia | an.    |
| 766          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 767          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 768          | titanium                       |                             |                   |                    |                 |              |               |            |            |        |
| 769          |                                |                             |                   |                    |                 |              |               |            |            |        |
| 770          |                                |                             | General           | Statistics         |                 |              |               |            |            |        |
| 771          | Total                          | Number of Observations      | 6                 |                    |                 | Numb         | er of Distino | t Observ   | ations     | 6      |
| 772          |                                |                             |                   |                    |                 | Numbe        | er of Missin  | g Observ   | ations     | 17     |
| 773          |                                | Minimum                     | 101               |                    |                 |              |               |            | Mean       | 126.8  |
| 774          |                                | Maximum                     | 150               |                    |                 |              |               | N          | /ledian    | 125    |
| 775          |                                | SD                          | 16.7              |                    |                 |              | Std           | . Error of | Mean       | 6.819  |
|              |                                | Coefficient of Variation    | 0.132             |                    |                 |              |               |            | wness      | -0.208 |
| 776          |                                |                             |                   |                    |                 |              |               |            | -          |        |

SLR Page 16 of 42

|            | A B C                          | D E                                   | F             | G H I J K                                                                                                | L      |
|------------|--------------------------------|---------------------------------------|---------------|----------------------------------------------------------------------------------------------------------|--------|
| 1          | •                              | Nonparametric UCI                     | _ Statistics  | for Data Sets with Non-Detects                                                                           |        |
| 2          |                                |                                       |               |                                                                                                          |        |
| 3          | User Selected Options          |                                       |               |                                                                                                          |        |
| 4          | Date/Time of Computation       | ProUCL 5.112/31/2019 3                |               |                                                                                                          |        |
| 5          | From File                      | SED 0-0.15mbg Chemist                 | ry_input_v5   | i.xls                                                                                                    |        |
| 6          | Full Precision                 | OFF                                   |               |                                                                                                          |        |
| 7          | Confidence Coefficient         | 95%                                   |               |                                                                                                          |        |
| 8          | Number of Bootstrap Operations | 2000                                  |               |                                                                                                          |        |
| 10         |                                | Mean of logged Data                   | 4.835         | SD of logged Data                                                                                        | 0.135  |
| 777        |                                | Wealt of logged Data                  | 4.000         | 3D of logged Data                                                                                        | 0.133  |
| 778        | Not                            | re: Sample size is small (            | e.a <10).     | f data are collected using ISM approach                                                                  |        |
| 779        |                                |                                       |               | JCL to estimate EPC (ITRC, 2012).                                                                        |        |
| 780        | Chel                           | · · · · · · · · · · · · · · · · · · · |               | the Nonparametric and All UCL Options.                                                                   |        |
| 781        |                                |                                       |               | •                                                                                                        |        |
| 782        |                                | Nonparame                             | tric Distribu | tion Free UCL Statistics                                                                                 |        |
| 783<br>784 |                                | Data appear Nor                       | mal Distribu  | uted at 5% Significance Level                                                                            |        |
| 785        |                                |                                       |               |                                                                                                          |        |
| 786        |                                | Ass                                   | uming Nor     | mal Distribution                                                                                         |        |
| 787        | 95% No                         | ormal UCL                             |               | 95% UCLs (Adjusted for Skewness)                                                                         |        |
| 788        |                                | 95% Student's-t UCL                   | 140.6         | 95% Adjusted-CLT UCL (Chen-1995)                                                                         | 137.4  |
| 789        |                                |                                       |               | 95% Modified-t UCL (Johnson-1978)                                                                        | 140.5  |
| 790        |                                |                                       |               |                                                                                                          |        |
| 791        |                                | Nonpar                                | ametric Dis   | tribution Free UCLs                                                                                      |        |
| 792        |                                | 95% CLT UCL                           | 138           | 95% Jackknife UCL                                                                                        | 140.6  |
| 793        | 95%                            | Standard Bootstrap UCL                | 136.9         | 95% Bootstrap-t UCL                                                                                      | 141    |
| 794        |                                | 5% Hall's Bootstrap UCL               | 144.5         | 95% Percentile Bootstrap UCL                                                                             | 136.2  |
| 795        | g                              | 95% BCA Bootstrap UCL                 | 137.3         |                                                                                                          |        |
| 796        |                                | ebyshev(Mean, Sd) UCL                 | 147.3         | 95% Chebyshev(Mean, Sd) UCL                                                                              | 156.6  |
| 797        | 97.5% Ch                       | ebyshev(Mean, Sd) UCL                 | 169.4         | 99% Chebyshev(Mean, Sd) UCL                                                                              | 194.7  |
| 798        |                                |                                       |               |                                                                                                          |        |
| 799        |                                |                                       |               | UCL to Use                                                                                               |        |
| 800        |                                | Data appear Nor                       | mai, May w    | rant to try Normal Distribution                                                                          |        |
| 801        | Notes Cumpostions regard       | ing the colonting of a OE9/           | LICI are no   | revisided to help the year to calcut the most appropriate OFW LICE                                       |        |
| 802        |                                |                                       |               | ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. |        |
| 803        |                                |                                       |               | nulation studies summarized in Singh, Maichle, and Lee (2006).                                           |        |
| 804        |                                | <u> </u>                              |               | ts; for additional insight the user may want to consult a statisticia                                    | an     |
| 805        | Trowever, diminations results  | 5 Will flot cover all floar VV        | ond data oc   | to, for additional moight the ager may want to consult a stational                                       | an.    |
| 806        | Note: For highly negati        | velv-skewed data, confid              | ence limits   | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                   |        |
| 807        |                                |                                       |               | ide adjustments for positvely skewed data sets.                                                          |        |
| 808<br>809 |                                |                                       | •             | · · · · · · · · · · · · · · · · · · ·                                                                    |        |
| 810        |                                |                                       |               |                                                                                                          |        |
| 811        | uranium                        |                                       |               |                                                                                                          |        |
| 812        |                                |                                       |               |                                                                                                          |        |
| 813        |                                |                                       | General       | Statistics                                                                                               |        |
| 814        | Total                          | Number of Observations                | 22            | Number of Distinct Observations                                                                          | 19     |
| 815        |                                |                                       |               | Number of Missing Observations                                                                           | 1      |
| 816        |                                | Minimum                               | 0.46          | Mean                                                                                                     | 0.645  |
| 817        |                                | Maximum                               | 0.886         | Median                                                                                                   | 0.645  |
| 818        |                                | SD                                    | 0.118         | Std. Error of Mean                                                                                       | 0.0252 |
| 819        |                                | Coefficient of Variation              | 0.183         | Skewness                                                                                                 | 0.525  |
| 820        |                                | Mean of logged Data                   | -0.455        | SD of logged Data                                                                                        | 0.181  |
| 821        |                                |                                       |               |                                                                                                          |        |
| 822        |                                |                                       |               | tion Free UCL Statistics                                                                                 |        |
| 823        |                                | Data appear Non                       | mal Distribu  | uted at 5% Significance Level                                                                            |        |
| 824        |                                |                                       |               |                                                                                                          |        |

SLR Page 17 of 42

|                                                                                                                                                                                                         | A B C                                                                                                 | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G                                                                                                                     | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | K                                                                                                                                                                                                    | 1                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1                                                                                                                                                                                                       | N   5   0                                                                                             | Nonparametric UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                    |                                                                     |
| 2                                                                                                                                                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 3                                                                                                                                                                                                       | User Selected Options                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 4                                                                                                                                                                                                       | Date/Time of Computation                                                                              | ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3:58:18 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 5                                                                                                                                                                                                       | From File                                                                                             | SED 0-0.15mbg Chemis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | try_input_v5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i.xls                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 6                                                                                                                                                                                                       | Full Precision                                                                                        | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 7                                                                                                                                                                                                       | Confidence Coefficient                                                                                | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 8                                                                                                                                                                                                       | Number of Bootstrap Operations                                                                        | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 9                                                                                                                                                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 825                                                                                                                                                                                                     | OFO( N                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | suming Nori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mal Distributi                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1101 - (4.1) - 1 - 1 (-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                      |                                                                     |
| 826                                                                                                                                                                                                     | 95% No                                                                                                | rmal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCLs (Adjusted for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                      | 0.000                                                               |
| 827                                                                                                                                                                                                     |                                                                                                       | 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Adjusted-CLT U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                    | 0.689                                                               |
| 828                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Modified-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Johnson-1978)                                                                                                                                                                                       | 0.688                                                               |
| 829                                                                                                                                                                                                     |                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 830                                                                                                                                                                                                     |                                                                                                       | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tribution Free                                                                                                        | UCLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 05/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0/ 1 11 1/ 1101                                                                                                                                                                                      | 0.000                                                               |
| 831                                                                                                                                                                                                     |                                                                                                       | 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Jackknife UCL                                                                                                                                                                                      | 0.688                                                               |
| 832                                                                                                                                                                                                     |                                                                                                       | Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bootstrap-t UCL                                                                                                                                                                                      | 0.693                                                               |
| 833                                                                                                                                                                                                     |                                                                                                       | 5% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Percentil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | le Bootstrap UCL                                                                                                                                                                                     | 0.686                                                               |
| 834                                                                                                                                                                                                     |                                                                                                       | 5% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0E9/ Ob-b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /Maan C-1/11C1                                                                                                                                                                                       | 0.754                                                               |
| 835                                                                                                                                                                                                     |                                                                                                       | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ` '                                                                                                                                                                                                  | 0.754                                                               |
| 836                                                                                                                                                                                                     | 97.5% Che                                                                                             | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99% Chebyshev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v(Mean, Sd) UCL                                                                                                                                                                                      | 0.895                                                               |
| 837                                                                                                                                                                                                     |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Quancie d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IICI to lier                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
| 1                                                                                                                                                                                                       |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL to Use                                                                                                            | mal Distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - ston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                     |
| 838                                                                                                                                                                                                     |                                                                                                       | Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | таі, мау w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant to try No                                                                                                         | mai Distribi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                     |
| 838<br>839                                                                                                                                                                                              |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                     |
|                                                                                                                                                                                                         | Note: Cuggestions recordi                                                                             | ng the coloction of a OE9/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IICI ara nr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ouided to belo                                                                                                        | a the week to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a cleat the most one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | repriete 0E9/ LICI                                                                                                                                                                                   |                                                                     |
| 839                                                                                                                                                                                                     | Note: Suggestions regarding                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | propriate 95% UCL                                                                                                                                                                                    |                                                                     |
| 839<br>840<br>841<br>842                                                                                                                                                                                | Re                                                                                                    | ecommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      |                                                                     |
| 839<br>840<br>841<br>842<br>843                                                                                                                                                                         | Ro<br>These recommendations                                                                           | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843                                                                                                                                                                         | Re                                                                                                    | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843<br>844<br>844                                                                                                                                                           | Ro<br>These recommendations                                                                           | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843<br>844<br>843<br>847                                                                                                                                                    | Real These recommendations However, simulations results                                               | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>847                                                                                                                                                    | Real These recommendations However, simulations results                                               | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat<br>Its of the sim<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta size, data d                                                                                                       | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843<br>844<br>845<br>847<br>848<br>849                                                                                                                                      | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas<br>are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sed upon dat<br>Its of the sim<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.<br>red in Singh, Maichle<br>he user may want to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e, and Lee (2006).                                                                                                                                                                                   |                                                                     |
| 839<br>840<br>841<br>842<br>843<br>844<br>843<br>847<br>847<br>848<br>849                                                                                                                               | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas<br>are based upon the resu<br>s will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eed upon dat<br>Its of the sim<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e, and Lee (2006).<br>consult a statisticia                                                                                                                                                          | an.                                                                 |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>847<br>848<br>849<br>850<br>851                                                                                                                        | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas<br>are based upon the resu<br>s will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | eed upon dat<br>Its of the sim<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e, and Lee (2006). consult a statisticia                                                                                                                                                             | an.<br>11                                                           |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>849<br>850<br>851                                                                                                                               | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the resu s will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | deed upon datalits of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simp | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e, and Lee (2006).  consult a statisticion  nct Observations ing Observations                                                                                                                        | 11<br>8                                                             |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>849<br>850<br>851<br>852<br>853                                                                                                                 | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the resu s will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | deed upon data and the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple  | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  ted in Singh, Maichle te user may want to  Number of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e, and Lee (2006).  consult a statisticia  nct Observations ing Observations Mean                                                                                                                    | 11<br>8<br>19.33                                                    |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>849<br>850<br>851<br>852<br>853                                                                                                                 | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the results will not cover all Real Will Number of Observations  Minimum Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General 15 13 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  ted in Singh, Maichle te user may want to  Number of Disti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e, and Lee (2006).  consult a statisticia  nct Observations ing Observations Mean Median                                                                                                             | 11<br>8<br>19.33                                                    |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855                                                                                                          | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the results will not cover all Real Will Number of Observations  Minimum  Maximum  SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General 15 13 28.7 4.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nct Observations ing Observations Mean Median td. Error of Mean                                                                                                                                      | 11<br>8<br>19.33<br>18<br>1.114                                     |
| 839<br>840<br>841<br>842<br>843<br>847<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856                                                                                            | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas<br>are based upon the resu<br>s will not cover all Real W<br>Number of Observations  Minimum  Maximum  SD  Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | General 15 13 28.7 4.313 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ta size, data c<br>nulation studie<br>ts; for addition                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nct Observations ing Observations Mean Median td. Error of Mean Skewness                                                                                                                             | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>847<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857                                                                                            | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas are based upon the resu s will not cover all Real W  Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General 15 13 28.7 4.313 0.223 2.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ta size, data c<br>nulation studie<br>ts; for addition                                                                | distribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nct Observations ing Observations Mean Median td. Error of Mean Skewness                                                                                                                             | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858                                                                                     | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are bas are based upon the resu s will not cover all Real W  Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General 15 13 28.7 4.313 0.223 2.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ta size, data of nulation studie ts; for addition Statistics                                                          | distribution, as summarize summarize in sight the summarize in sight the summarize in sight the summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in  | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi  Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nct Observations ing Observations Mean Median td. Error of Mean Skewness                                                                                                                             | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859                                                                                     | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the results are based upon the resul | General 15 13 28.7 4.313 0.223 2.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ta size, data of nulation studie ts; for addition Statistics                                                          | distribution, as summarize summarize in sight the summarize in sight the summarize in sight the summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in summarize in  | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi  Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nct Observations ing Observations Mean Median td. Error of Mean Skewness                                                                                                                             | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859                                                                                     | Ro These recommendations However, simulations results  vanadium                                       | ecommendations are base are based upon the resu is will not cover all Real Will Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General 15 13 28.7 4.313 0.223 2.939 stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ta size, data of nulation studie ts; for addition Statistics                                                          | distribution, as summarizes summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insight the summarized insigh | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi  Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nct Observations ing Observations Mean Median td. Error of Mean Skewness                                                                                                                             | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859<br>860<br>861                                                                | These recommendations However, simulations results  vanadium  Total I                                 | ecommendations are base are based upon the resu is will not cover all Real Will Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General 15 13 28.7 4.313 0.223 2.939 stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ta size, data of nulation studie ts; for addition Statistics  Statistics  tion Free UC ated at 5% Si                  | distribution, as summarizes summarized insight the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line in the summarized line i | and skewness.  red in Singh, Maichle he user may want to  Number of Distin  Number of Missi  Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                                                            | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859                                                                                     | These recommendations However, simulations results  vanadium  Total I                                 | ecommendations are base are based upon the resu is will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Wil | General 15 13 28.7 4.313 0.223 2.939 stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ta size, data of nulation studie ts; for addition Statistics  Statistics  tion Free UC ated at 5% Si                  | distribution, as summarizes summarized insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summarized land insight the summari | and skewness.  red in Singh, Maichle he user may want to  Number of Disti  Number of Missi  Si  Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e, and Lee (2006).  consult a statisticia  nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                 | 11<br>8<br>19.33<br>18<br>1.114<br>0.489                            |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859<br>860<br>861<br>862                                                         | These recommendations However, simulations results  vanadium  Total I                                 | ecommendations are base are based upon the resulations are based upon the resulation will not cover all Real Williams Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Nor Assumed UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General 15 13 28.7 4.313 0.223 2.939 stric Distribu mal Distribu suming Nore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data of nulation studie ts; for addition Statistics  Statistics  tion Free UC ated at 5% Si                  | distribution, as summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insig | And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And skewness.  And sk | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                                                            | 11<br>8<br>19.33<br>18<br>1.114<br>0.489<br>0.223                   |
| 839<br>840<br>841<br>843<br>844<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859<br>860<br>861<br>862<br>863                                                  | These recommendations However, simulations results  vanadium  Total I                                 | ecommendations are base are based upon the resulations are based upon the resulation will not cover all Real Williams Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Nor Assumed UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General 15 13 28.7 4.313 0.223 2.939 stric Distribu mal Distribu suming Nore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ta size, data of nulation studie ts; for addition Statistics  Statistics  tion Free UC ated at 5% Si                  | distribution, as summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insig | Number of Disti<br>Number of Missi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                                                            | 11<br>8<br>19.33<br>18<br>1.114<br>0.489<br>0.223                   |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>856<br>857<br>856<br>857<br>856<br>857<br>858<br>859<br>860<br>861<br>862<br>863        | These recommendations However, simulations results  vanadium  Total I                                 | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor  Ass  rmal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General 15 13 28.7 4.313 0.223 2.939 ctric Distributional Distributional None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ta size, data of nulation studie ts; for addition Statistics  Statistics  tion Free UC ated at 5% Si                  | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | Number of Disti<br>Number of Missi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                                                            | 11<br>8<br>19.33<br>18<br>1.114<br>0.489<br>0.223                   |
| 839<br>840<br>841<br>842<br>843<br>844<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>860<br>861<br>862<br>863<br>864                                                         | These recommendations However, simulations results  vanadium  Total I                                 | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor  Ass  rmal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General 15 13 28.7 4.313 0.223 2.939 ctric Distributional Distributional None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | And skewness.  Ited in Singh, Maichle in the user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be u | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data                                                                                                            | 11<br>8<br>19.33<br>18<br>1.114<br>0.489<br>0.223                   |
| 839<br>840<br>841<br>842<br>843<br>844<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>866<br>861<br>862<br>863<br>864<br>865<br>866                                                                | Roman These recommendations However, simulations results vanadium  Total I  95% No                    | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor  Ass  rmal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General 15 13 28.7 4.313 0.223 2.939 tric Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | Number of Distin Number of Missing Signature (Adjusted for Disk Adjusted for Disk Adjusted for Disk Adjusted for Disk Modified t UCL Signature (Adjusted for Disk Adjusted for Disk Modified for | e, and Lee (2006).  consult a statisticia  nct Observations ing Observations Median td. Error of Mean Skewness D of logged Data  r Skewness)  JCL (Chen-1995) L (Johnson-1978)                       | an.  11  8  19.33  18  1.114  0.489  0.223  21.32  21.32            |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>860<br>861<br>862<br>863<br>864<br>863<br>864<br>863                                    | Roman These recommendations However, simulations results vanadium  Total I  95% No                    | Number of Observations  Minimum  Maximum  SD  Coefficient of Variation  Mean of logged Data  Nonparame  Data appear Nor  Assermal UCL  95% Student's-t UCL  Nonparame  95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General 15 13 28.7 4.313 0.223 2.939 stric Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution D | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | And skewness.  Ited in Singh, Maichle in the user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be u | e, and Lee (2006).  consult a statisticia  nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data  **Skewness**  JCL (Chen-1995)  JCL (Chen-1997)  (Johnson-1978) | 11<br>8<br>19.33<br>18<br>1.114<br>0.489<br>0.223<br>21.32<br>21.32 |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>860<br>861<br>862<br>863<br>864<br>865<br>866<br>867<br>868                      | Roman These recommendations However, simulations results vanadium  Total I  95% No  95% S  95% \$     | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Nor  Ass  rmal UCL 95% Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General 15 13 28.7 4.313 0.223 2.939 stric Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution D | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | And skewness.  Ited in Singh, Maichle in the user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be user may want to be u | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data  T Skewness)  JCL (Chen-1995)  JCL (Chen-1978)                                                             | 21.32<br>21.32<br>21.32<br>21.38                                    |
| 839<br>840<br>841<br>842<br>843<br>844<br>847<br>848<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>859<br>860<br>861<br>862<br>863<br>864<br>865<br>864<br>865<br>866<br>867<br>868 | Ric These recommendations However, simulations results vanadium  Total I  95% No  95% S  95% 9        | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Nor  Ass  rmal UCL 95% Student's-t UCL  Standard Bootstrap UCL SW Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | General 15 13 28.7 4.313 0.223 2.939 ctric Distribution Norm 21.29 cametric Distribution 21.17 21.11 21.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | Number of Distin Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Missing Number of Number of Missing Number of Number of Missing Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Num | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data  T Skewness)  JCL (Chen-1995)  JCL (Chen-1978)                                                             | 21.32<br>21.32<br>21.32<br>21.38                                    |
| 839<br>840<br>841<br>842<br>843<br>847<br>848<br>849<br>850<br>851<br>852<br>853<br>854<br>855<br>856<br>857<br>858<br>860<br>861<br>862<br>863<br>864<br>865<br>866<br>867<br>868<br>868               | These recommendations However, simulations results  vanadium  Total I  95% No  95% S  95  95  90% Che | Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Nor  Ass  rmal UCL 95% Student's-t UCL  Standard Bootstrap UCL 5% Hall's Bootstrap UCL 5% BCA Bootstrap UCL 5% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General 15 13 28.7 4.313 0.223 2.939 ctric Distribution Norm 21.29 cametric Distribution 21.17 21.11 21.65 21.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta size, data of nulation studie tts; for addition statistics  Statistics  ttion Free UC tted at 5% Si mal Distributi | distribution, as summarizes summarizes summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and insight the summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized and summarized a | Number of Disti Number of Missi  Si  Level  UCLs (Adjusted for Disti Adjusted for Disti Adjusted -CLT U Disti Modified -t UCL Disti Modified -t UCL Disti Modified -t UCL Disti Modified -t UCL Disti Modified -t UCL Disti Modified -t UCL Disti Modified -t UCL Distinct District Modified -t UCL District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District District | nct Observations ing Observations Mean Median td. Error of Mean Skewness D of logged Data  T Skewness)  JCL (Chen-1995)  JCL (Chen-1978)  Johnson-1978)                                              | 21.32<br>21.32<br>21.32<br>21.38<br>21.15                           |

SLR Page 18 of 42

|       | A B C                                                                                                                    | D E                       | F<br>  Statistics | G                                                                      | L     |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|------------------------------------------------------------------------|-------|--|--|--|--|
| 1     |                                                                                                                          | Nonparametric 00          | L Otatiotics      | Ior Data Gets with Non-Detects                                         |       |  |  |  |  |
| 2     | Lleav Calastad Ontions                                                                                                   |                           |                   |                                                                        |       |  |  |  |  |
| 3     | User Selected Options                                                                                                    | ProUCL 5.112/31/2019 3    |                   |                                                                        |       |  |  |  |  |
| 4     |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 5     |                                                                                                                          | SED 0-0.15mbg Chemis      | try_input_vt      | D.XIS                                                                  |       |  |  |  |  |
| 6     |                                                                                                                          | )FF                       |                   |                                                                        |       |  |  |  |  |
| 7     |                                                                                                                          | 15%                       |                   |                                                                        |       |  |  |  |  |
| 8     | Number of Bootstrap Operations 2                                                                                         | 2000                      |                   |                                                                        |       |  |  |  |  |
| 10    |                                                                                                                          |                           | 0                 | HOLA- H                                                                |       |  |  |  |  |
| 874   |                                                                                                                          |                           |                   | UCL to Use                                                             |       |  |  |  |  |
| 875   |                                                                                                                          | Data appear Nor           | таі, мау ч        | rant to try Normal Distribution                                        |       |  |  |  |  |
| 876   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 877   |                                                                                                                          | =                         |                   | rovided to help the user to select the most appropriate 95% UCL.       |       |  |  |  |  |
| 878   | Recommendations are based upon data size, data distribution, and skewness.                                               |                           |                   |                                                                        |       |  |  |  |  |
| 879   | These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). |                           |                   |                                                                        |       |  |  |  |  |
| 880   | However, simulations results                                                                                             | will not cover all Real W | orld data se      | ts; for additional insight the user may want to consult a statisticial | n.    |  |  |  |  |
| 881   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 882   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 883   | zinc                                                                                                                     |                           |                   |                                                                        |       |  |  |  |  |
| 884   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 885   |                                                                                                                          |                           | General           | Statistics                                                             |       |  |  |  |  |
| 886   | Total N                                                                                                                  | umber of Observations     | 22                | Number of Distinct Observations                                        | 19    |  |  |  |  |
| 887   |                                                                                                                          |                           |                   | Number of Missing Observations                                         | 0     |  |  |  |  |
| 888   |                                                                                                                          | Minimum                   | 167               | Mean                                                                   | 309.9 |  |  |  |  |
| 889   |                                                                                                                          | Maximum                   | 532               | Median                                                                 | 286.5 |  |  |  |  |
| 890   |                                                                                                                          | SD                        | 108.8             | Std. Error of Mean                                                     | 23.19 |  |  |  |  |
| 891   |                                                                                                                          | Coefficient of Variation  | 0.351             | Skewness                                                               | 0.688 |  |  |  |  |
| 892   |                                                                                                                          | Mean of logged Data       | 5.68              | SD of logged Data                                                      | 0.341 |  |  |  |  |
|       |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 893   |                                                                                                                          | Nonparame                 | tric Distribu     | tion Free UCL Statistics                                               |       |  |  |  |  |
| 894   |                                                                                                                          |                           |                   | uted at 5% Significance Level                                          |       |  |  |  |  |
| 895   |                                                                                                                          | <b></b>                   |                   |                                                                        |       |  |  |  |  |
| 896   |                                                                                                                          | Ass                       | sumina Nor        | mal Distribution                                                       |       |  |  |  |  |
| 897   | 95% Non                                                                                                                  |                           |                   | 95% UCLs (Adjusted for Skewness)                                       |       |  |  |  |  |
| 898   | 55,5116.1                                                                                                                | 95% Student's-t UCL       | 349.8             | 95% Adjusted-CLT UCL (Chen-1995)                                       | 351.7 |  |  |  |  |
| 899   |                                                                                                                          | 30% Gladones e GOE        | 010.0             | 95% Modified-t UCL (Johnson-1978)                                      | 350.4 |  |  |  |  |
| 900   |                                                                                                                          |                           |                   | 3376 Wildined-t OOL (BUTHSON-1376)                                     | 330.4 |  |  |  |  |
| 901   |                                                                                                                          | Nonnor                    | omotrio Dio       | tribution Free UCLs                                                    |       |  |  |  |  |
| 902   |                                                                                                                          | 95% CLT UCL               | 348               |                                                                        | 349.8 |  |  |  |  |
| 903   | 050/ 04                                                                                                                  |                           |                   | 95% Jackknife UCL                                                      |       |  |  |  |  |
| 904   |                                                                                                                          | tandard Bootstrap UCL     | 347.3             |                                                                        | 356.4 |  |  |  |  |
| 905   |                                                                                                                          | % Hall's Bootstrap UCL    | 351.1             | 95% Percentile Bootstrap UCL                                           | 348   |  |  |  |  |
| 906   |                                                                                                                          | % BCA Bootstrap UCL       | 349.3             | 050.01                                                                 | 444   |  |  |  |  |
| 907   |                                                                                                                          | byshev(Mean, Sd) UCL      | 379.5             | , , , ,                                                                | 411   |  |  |  |  |
| 908   | 97.5% Cheb                                                                                                               | yshev(Mean, Sd) UCL       | 454.7             | 99% Chebyshev(Mean, Sd) UCL                                            | 540.6 |  |  |  |  |
| 909   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 910   |                                                                                                                          |                           |                   | UCL to Use                                                             |       |  |  |  |  |
| 911   |                                                                                                                          | Data appear Nor           | mal, May w        | ant to try Normal Distribution                                         |       |  |  |  |  |
| 912   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| 913   | Note: Suggestions regarding                                                                                              | g the selection of a 95%  | UCL are p         | rovided to help the user to select the most appropriate 95% UCL.       |       |  |  |  |  |
| 914   |                                                                                                                          |                           |                   | ta size, data distribution, and skewness.                              |       |  |  |  |  |
| 915   | These recommendations a                                                                                                  | re based upon the resu    | lts of the sin    | nulation studies summarized in Singh, Maichle, and Lee (2006).         |       |  |  |  |  |
| 916   | However, simulations results                                                                                             | will not cover all Real W | orld data se      | ts; for additional insight the user may want to consult a statisticial | n.    |  |  |  |  |
| 917   |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |
| V 1 / |                                                                                                                          |                           |                   |                                                                        |       |  |  |  |  |

SLR Page 19 of 42

| $\vdash$   | A B                      | С             | Nonparametric UCI                          | F<br>L Statistics 1 | G<br>for Data Sets | H<br>s with Non-I                       | Detects      | J              | K                 |               | L              |
|------------|--------------------------|---------------|--------------------------------------------|---------------------|--------------------|-----------------------------------------|--------------|----------------|-------------------|---------------|----------------|
| 1          |                          |               | - Nonparamount Co.                         |                     | - Data 00th        | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                |                   |               |                |
| 3          | User Select              | ted Options   |                                            |                     |                    |                                         |              |                |                   |               |                |
| 4          | Date/Time of Cor         | nputation     | ProUCL 5.112/31/2019 3                     | :58:18 PM           |                    |                                         |              |                |                   |               |                |
| 5          | 1                        | From File     | SED 0-0.15mbg Chemist                      | try_input_v5        | .xls               |                                         |              |                |                   |               |                |
| 6          | Full                     | Precision     | OFF                                        |                     |                    |                                         |              |                |                   |               |                |
| 7          | Confidence C             | oefficient    | 95%                                        |                     |                    |                                         |              |                |                   | -             |                |
| 8          | Number of Bootstrap O    | perations     | 2000                                       |                     |                    |                                         |              |                |                   |               |                |
| 9          |                          |               | -                                          |                     |                    |                                         |              |                |                   | _             |                |
| 918        | acenaphthylene           |               |                                            |                     |                    |                                         |              |                |                   |               |                |
| 919        |                          |               |                                            | General             | Statistics         |                                         |              |                |                   |               |                |
| 920        |                          | Total         | Number of Observations                     | 22                  | Otationics         |                                         | Numbe        | er of Distinct | Observa           | tions         | 9              |
| 921        |                          |               | Trainber of Observations                   |                     |                    |                                         |              | er of Missing  |                   |               | 1              |
| 922        |                          |               | Number of Detects                          | 8                   |                    |                                         |              | Number of      |                   |               | 14             |
| 923        | Number of Distinct Detec |               |                                            | 8                   |                    |                                         | Numb         | er of Distinct |                   |               | 1              |
| 924        | Minimum Dete             |               |                                            | 0.011               |                    |                                         |              |                | m Non-D           |               | 0.1            |
| 925        |                          |               | Maximum Detect                             | 0.18                |                    |                                         |              |                | m Non-D           |               | 0.1            |
| 926<br>927 |                          |               | Variance Detects                           | 0.00396             |                    |                                         |              | Percent        | t Non-De          | etects        | 63.64%         |
| 927        |                          |               | Mean Detects                               | 0.0479              |                    |                                         |              |                | SD De             | etects        | 0.0629         |
| 928        |                          |               | Median Detects                             | 0.018               |                    |                                         |              |                | CV De             | etects        | 1.314          |
| 930        |                          |               | Skewness Detects                           | 1.787               |                    |                                         |              | Ku             | rtosis De         | tects         | 2.258          |
| 931        |                          |               | Mean of Logged Detects                     | -3.639              |                    |                                         |              | SD of Lo       | gged De           | tects         | 1.068          |
| 932        |                          |               |                                            |                     |                    |                                         |              |                |                   |               |                |
| 933        |                          |               | Nonparame                                  | tric Distribut      | tion Free UC       | L Statistics                            |              |                |                   |               |                |
| 934        |                          |               | Data do not follow a Dis                   | scernible Di        | stribution at      | 5% Signific                             | ance Leve    | l              |                   |               |                |
| 935        |                          |               |                                            |                     |                    |                                         |              |                |                   |               |                |
| 936        |                          | Kaplan-l      | Meier (KM) Statistics usin                 | g Normal C          | ritical Values     | and other                               | Nonparam     | etric UCLs     |                   |               |                |
| 937        |                          |               | Mean                                       | 0.0273              |                    |                                         |              | Standard I     | Error of N        | vlean         | 0.00895        |
| 938        |                          |               | SD                                         | 0.0389              |                    |                                         |              | 95% KI         | M (BCA)           | UCL           | 0.0423         |
| 939        |                          |               | 95% KM (t) UCL                             | 0.0427              |                    |                                         | 95% KM (F    | Percentile Bo  |                   |               | 0.0429         |
| 940        |                          |               | 95% KM (z) UCL                             | 0.042               |                    |                                         |              | 95% KM Bo      |                   |               | 0.101          |
| 941        |                          |               | 00% KM Chebyshev UCL                       | 0.0541              |                    |                                         |              | 95% KM Ch      |                   |               | 0.0663         |
| 942        |                          | 97            | .5% KM Chebyshev UCL                       | 0.0832              | <u> </u>           |                                         |              | 99% KM Ch      | ebyshev           | UCL           | 0.116          |
| 943        |                          | 0             |                                            |                     |                    |                                         |              |                |                   |               |                |
| 944        |                          | Statis        | tics using KM estimates of                 |                     | Jata and Ass       | uming Logi                              |              |                | -l (IZNA          | 1>            | 2.10           |
| 945        |                          |               | KM SD (logged)                             | -3.994              |                    |                                         | 95%          | Critical H Va  | (M Geo M          | ٠,            | 2.19<br>0.0184 |
| 946        | ı                        | KM Standa     | KM Mean (logged) rd Error of Mean (logged) | 0.177               |                    |                                         |              | 95% H-U        |                   |               | 0.0164         |
| 947        | ,                        | - Staridar    | a Lifer of Mean (logged)                   | 0.177               |                    |                                         |              | 95 /6 11-0     | CL (IXIVI         | ·Lug)         | 0.0323         |
| 948        |                          |               |                                            | Suggested           | UCL to Use         |                                         |              |                |                   |               |                |
| 949        |                          | 95            | i% KM (Chebyshev) UCL                      | 0.0663              |                    |                                         |              |                |                   | $\neg$        | ·              |
| 950        | Note: Suggesti           |               | ling the selection of a 95%                |                     | ovided to help     | p the user to                           | select the   | most approp    | riate 95°         | % UCI         | L.             |
| 951        |                          |               | Recommendations are base                   |                     |                    |                                         |              |                |                   |               |                |
| 952<br>953 | These recom              | mendations    | s are based upon the resul                 | Its of the sim      | ulation studie     | es summariz                             | zed in Singl | n, Maichle, ar | nd Lee (:         | 2006).        |                |
| 954        | However, simula          | ations result | ts will not cover all Real W               | orld data set       | ts; for addition   | nal insight th                          | ne user may  | want to cor    | nsult a st        | atistici      | an.            |
| 955        |                          |               |                                            |                     |                    |                                         |              |                |                   |               |                |
| 956        | acenaphthene             |               |                                            |                     |                    |                                         |              |                | -                 |               |                |
| 957        |                          |               |                                            |                     |                    |                                         |              |                |                   | -             |                |
| 958        |                          |               |                                            | General             | Statistics         |                                         |              |                |                   |               |                |
| 959        |                          | Total         | Number of Observations                     | 22                  |                    |                                         | Numbe        | er of Distinct | Observa           | tions         | 11             |
| 960        |                          |               |                                            |                     |                    |                                         | Numbe        | er of Missing  | Observa           | itions        | 1              |
| 961        |                          |               | Number of Detects                          | 11                  |                    |                                         |              | Number of      |                   |               | 11             |
| 962        |                          | N             | umber of Distinct Detects                  | 10                  |                    |                                         | Numb         | er of Distinct |                   |               | 1              |
| 963        |                          |               | Minimum Detect                             | 0.03                |                    |                                         |              |                | m Non-D           |               | 0.1            |
| 964        |                          |               | Maximum Detect                             | 1.49                |                    |                                         |              | Maximur        | m Non-D           | etect         | 0.1            |
| 00.        |                          |               |                                            |                     |                    |                                         |              |                |                   | $\overline{}$ |                |
| 965        |                          |               | Variance Detects  Mean Detects             | 0.201<br>0.329      |                    |                                         |              | Percent        | t Non-De<br>SD De |               | 50%<br>0.448   |

SLR Page 20 of 42

| -                                                                                                                                                                                  | A B C                                                                             | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                                                                             |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 1                                                                                                                                                                                  |                                                                                   | Nonparametric UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |  |  |  |  |  |  |  |  |  |
| 2                                                                                                                                                                                  |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 3                                                                                                                                                                                  | User Selected Options                                                             | - 1101 F 1101010010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 10 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 4                                                                                                                                                                                  | Date/Time of Computation                                                          | ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 5                                                                                                                                                                                  | From File<br>Full Precision                                                       | SED 0-0.15mbg Chemist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ry_input_v5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |  |  |  |  |  |  |  |  |  |
| 6                                                                                                                                                                                  | Confidence Coefficient                                                            | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 7                                                                                                                                                                                  | Number of Bootstrap Operations                                                    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 8<br>9                                                                                                                                                                             | Number of Bootstrap Operations                                                    | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 967                                                                                                                                                                                |                                                                                   | Median Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CV Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.364                                                                         |  |  |  |  |  |  |  |  |  |
| 968                                                                                                                                                                                |                                                                                   | Skewness Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kurtosis Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.514                                                                         |  |  |  |  |  |  |  |  |  |
| 969                                                                                                                                                                                |                                                                                   | Mean of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -1.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.302                                                                         |  |  |  |  |  |  |  |  |  |
| 970                                                                                                                                                                                |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                               |  |  |  |  |  |  |  |  |  |
| 971                                                                                                                                                                                |                                                                                   | Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |  |  |  |  |  |  |  |  |  |
| 972                                                                                                                                                                                |                                                                                   | Detected Data appear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gamma Di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | stributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |  |  |  |  |  |  |  |  |  |
| 973                                                                                                                                                                                |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 974                                                                                                                                                                                | Kaplan-I                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ritical Values and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |  |  |  |  |  |  |  |  |  |
| 975                                                                                                                                                                                |                                                                                   | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0747                                                                        |  |  |  |  |  |  |  |  |  |
| 976                                                                                                                                                                                |                                                                                   | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.341                                                                         |  |  |  |  |  |  |  |  |  |
| 977                                                                                                                                                                                |                                                                                   | 95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.327                                                                         |  |  |  |  |  |  |  |  |  |
| 978                                                                                                                                                                                |                                                                                   | 95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.583                                                                         |  |  |  |  |  |  |  |  |  |
| 979                                                                                                                                                                                |                                                                                   | 0% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.515                                                                         |  |  |  |  |  |  |  |  |  |
| 980                                                                                                                                                                                | 97.                                                                               | 5% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.932                                                                         |  |  |  |  |  |  |  |  |  |
| 981                                                                                                                                                                                | Challe                                                                            | ties weige KAA estimentes s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date and Accoming Lagranged Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |  |  |  |  |  |  |  |  |  |
| 982                                                                                                                                                                                | Statis                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Data and Assuming Lognormal Distribution  95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.714                                                                         |  |  |  |  |  |  |  |  |  |
| 983                                                                                                                                                                                |                                                                                   | KM SD (logged) KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -2.469                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Chilical in Value (KM-Log)  KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0846                                                                        |  |  |  |  |  |  |  |  |  |
| 984                                                                                                                                                                                | KM Standar                                                                        | rd Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0646                                                                        |  |  |  |  |  |  |  |  |  |
| 985                                                                                                                                                                                | Kivi Staridai                                                                     | d Lifer of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93 % TI-OCE (KWI -LOG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.234                                                                         |  |  |  |  |  |  |  |  |  |
| 986                                                                                                                                                                                |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LICI to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |  |  |  |  |  |  |  |  |  |
| 987                                                                                                                                                                                |                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Suggested LICL to Lice                                                        |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                    |                                                                                   | Data appear Gar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mma. Mav v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |  |  |  |  |  |  |  |  |  |
| 988                                                                                                                                                                                | Note: Suggestions regard                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vant to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |  |  |  |  |  |  |  |  |  |
| 989                                                                                                                                                                                |                                                                                   | ing the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | want to try Gamma Distribution ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990                                                                                                                                                                         | F                                                                                 | ing the selection of a 95% decommendations are base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vant to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991                                                                                                                                                                  | These recommendations                                                             | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are pro<br>ed upon dat<br>ts of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | want to try Gamma Distribution  by ovided to help the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992                                                                                                                                                           | These recommendations                                                             | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are pro<br>ed upon dat<br>ts of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vant to try Gamma Distribution  by by the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991                                                                                                                                                                  | These recommendations                                                             | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are pro<br>ed upon dat<br>ts of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vant to try Gamma Distribution  by by the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993                                                                                                                                                    | These recommendations However, simulations result                                 | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are pro<br>ed upon dat<br>ts of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vant to try Gamma Distribution  by by the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994                                                                                                                                             | These recommendations However, simulations result                                 | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are proved upon date ts of the simond data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vant to try Gamma Distribution  by by the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995                                                                                                                                      | These recommendations However, simulations result anthracene                      | ing the selection of a 95% decommendations are base are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UCL are proved upon date ts of the simond data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                      | n.<br>11                                                                      |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996                                                                                                                               | These recommendations However, simulations result anthracene                      | ing the selection of a 95% elecommendations are basis are based upon the results will not cover all Real Wellington to the selection of Observations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UCL are pro- ed upon dat ts of the sim- orld data set  General 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                       | 11<br>1                                                                       |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996                                                                                                                               | These recommendations However, simulations result anthracene Total                | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Wellington Mumber of Observations  Number of Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | UCL are proved upon data ts of the simorld data set  General 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Number of Non-Detects                                                                                                                                                                                                                | 11<br>1<br>6                                                                  |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997                                                                                                                        | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Well Number of Observations  Number of Detects umber of Distinct Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are proved upon data ts of the simorld data set  General 22 16 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Number of Non-Detects  Number of Distinct Non-Detects                                                                                                                                                                                | 11<br>1<br>6<br>1                                                             |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998                                                                                                                 | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Well Number of Observations  Number of Detects umber of Distinct Detects  Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are proved upon data to of the simoral data set  General 22  16 11 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Number of Non-Detects  Number of Distinct Non-Detects  Minimum Non-Detect                                                                                                                                                            | 11<br>1<br>6<br>1<br>0.1                                                      |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001                                                                                          | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Well Number of Observations  Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General 22 16 11 0.08 4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  sulation studies summarized in Singh, Maichle, and Lee (2006). tis; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect                                                                                                                                   | 11<br>1<br>6<br>1<br>0.1                                                      |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003                                                                          | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Williams and the selection of Observations.  Number of Observations.  Number of Detects umber of Distinct Detects.  Minimum Detect.  Maximum Detect.  Variance Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | General 22 16 11 0.08 4.69 1.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  fullation studies summarized in Singh, Maichle, and Lee (2006).  tis; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations  Number of Missing Observations  Number of Distinct Non-Detects  Number of Distinct Non-Detects  Minimum Non-Detect  Maximum Non-Detect  Percent Non-Detects                                                                                                     | 11<br>1 6<br>1 0.1<br>0.1<br>27.27%                                           |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004                                                                  | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% decommendations are based are based upon the results in the selection of a 95% decommendation are based are based upon the results in the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection o | General 22 16 11 0.08 4.69 1.279 0.556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Number of Distinct Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects SD Detects                                                                                            | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131                            |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005                                                                 | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% decommendations are base are based upon the results will not cover all Real Williams and the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select o | UCL are proved upon data to of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Number of Distinct Non-Detects Number of Distinct Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects                                                                                                     | 11<br>1 6<br>1 0.1<br>0.1<br>27.27%<br>1.131<br>2.035                         |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006                                                  | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Williams and the select will not cover all Real Williams and the select will not cover all Real Williams and the select will not cover all Real Williams and the select will not cover all Real Williams and the select will not cover all Real Williams and the select will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all real will not cover all Real Williams and the selection of the selection will not cover all Real Williams and the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selec | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  fullation studies summarized in Singh, Maichle, and Lee (2006). as; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations  Number of Missing Observations  Number of Distinct Non-Detects  Number of Distinct Non-Detects  Minimum Non-Detect  Maximum Non-Detect  Percent Non-Detects  SD Detects  CV Detects  Kurtosis Detects                                                              | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007                                          | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% decommendations are base are based upon the results will not cover all Real Williams and the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select of the select o | UCL are proved upon data to of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of the simple of | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Number of Distinct Non-Detects Number of Distinct Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects CV Detects                                                                                                     | 11<br>1 6<br>1 0.1<br>0.1<br>27.27%<br>1.131<br>2.035                         |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>995<br>996<br>997<br>998<br>999<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008                                         | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Williams and the selection of Observations.  Number of Observations.  Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects  Median Detects  Skewness Detects  Mean of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | want to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006). as; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects                                                            | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009                                 | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Work and the selection of Observations.  Number of Observations.  Number of Detects and the selection of Detects.  Minimum Detect Maximum Detect Variance Detects.  Median Detects Skewness Detects.  Mean of Logged Detects.  Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006). as; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects  tion Free UCL Statistics                                  | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009<br>1010                         | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Work and the selection of Observations.  Number of Observations.  Number of Detects and the selection of Detects.  Minimum Detect Maximum Detect Variance Detects.  Median Detects Skewness Detects.  Mean of Logged Detects.  Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | want to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006). as; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects                                                            | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009<br>1010<br>1010<br>1010         | These recommendations However, simulations result anthracene  Total               | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384 tric Distributs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects  stribution at 5% Significance Level | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009<br>1010<br>1011<br>1011<br>1012 | These recommendations However, simulations result anthracene  Total  No           | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384 tric Distributs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006). as; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects  tion Free UCL Statistics                                  | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12          |  |  |  |  |  |  |  |  |  |
| 989<br>990<br>991<br>992<br>993<br>994<br>995<br>996<br>997<br>998<br>1000<br>1001<br>1002<br>1003<br>1004<br>1005<br>1006<br>1007<br>1008<br>1009<br>1010<br>1010<br>1010         | These recommendations However, simulations result anthracene  Total  No  Kaplan-I | ing the selection of a 95% elecommendations are base are based upon the results will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real Work will not cover all Real | General 22 16 11 0.08 4.69 1.279 0.556 0.155 3.687 -1.384 tric Distributions of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the  | vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL.  a size, data distribution, and skewness.  pulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Mon-Detects Number of Distinct Non-Detects Number of Distinct Non-Detect Maximum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects  Intitical Values and other Nonparametric UCLs           | 11<br>1<br>6<br>1<br>0.1<br>0.1<br>27.27%<br>1.131<br>2.035<br>14.12<br>1.074 |  |  |  |  |  |  |  |  |  |

SLR Page 21 of 42

|              | A B C                              | D E                          | F               | G H I J K                                                             | L              |
|--------------|------------------------------------|------------------------------|-----------------|-----------------------------------------------------------------------|----------------|
| 1            |                                    | Nonparametric UCI            | _ Statistics    | for Data Sets with Non-Detects                                        |                |
| 2            |                                    | 1                            |                 |                                                                       |                |
| 3            | User Selected Options              | ProUCL 5.112/31/2019 3       | -E0:10 DM       |                                                                       |                |
| 4            | Date/Time of Computation From File |                              |                 | yla.                                                                  |                |
| 5            | Full Precision                     | SED 0-0.15mbg Chemist        | iy_iriput_və    | .xis                                                                  |                |
| 6            | Confidence Coefficient             | 95%                          |                 |                                                                       |                |
| 7            | Number of Bootstrap Operations     | 2000                         |                 |                                                                       |                |
| 8<br>9<br>10 | Transport of Bookstap operations   | 2000                         |                 |                                                                       |                |
| 1016         |                                    | 95% KM (z) UCL               | 0.773           | 95% KM Bootstrap t UCL                                                | 2.153          |
| 1017         | 9                                  | 00% KM Chebyshev UCL         | 1.058           | 95% KM Chebyshev UCL                                                  | 1.345          |
| 1018         | 97.                                | .5% KM Chebyshev UCL         | 1.742           | 99% KM Chebyshev UCL                                                  | 2.523          |
| 1019         |                                    |                              |                 |                                                                       |                |
| 1020         | Statis                             |                              |                 | Data and Assuming Lognormal Distribution                              |                |
| 1021         |                                    | KM SD (logged)               | 1.022           | 95% Critical H Value (KM-Log)                                         | 2.614          |
| 1022         | 1010                               | KM Mean (logged)             | -1.696          | KM Geo Mean                                                           | 0.183          |
| 1023         | KM Standar                         | rd Error of Mean (logged)    | 0.225           | 95% H-UCL (KM -Log)                                                   | 0.555          |
| 1024         |                                    |                              | Currented       | LICI to Line                                                          |                |
| 1025         | 05                                 | % KM (Chebyshev) UCL         | 1.345           | UCL to Use                                                            |                |
| 1026         |                                    |                              |                 | ovided to help the user to select the most appropriate 95% UCL        |                |
| 1027         |                                    |                              |                 | a size, data distribution, and skewness.                              | •              |
| 1028         |                                    |                              |                 | nulation studies summarized in Singh, Maichle, and Lee (2006).        |                |
| 1029<br>1030 | However, simulations result        | s will not cover all Real We | orld data set   | ts; for additional insight the user may want to consult a statisticia | ın.            |
| 1030         | <u> </u>                           |                              |                 | · · · · · · · · · · · · · · · · · · ·                                 |                |
| 1031         |                                    |                              |                 |                                                                       |                |
|              | benz(a)anthracene                  |                              |                 |                                                                       |                |
| 1034         |                                    |                              |                 |                                                                       |                |
| 1035         |                                    |                              | General         | Statistics                                                            |                |
| 1036         | Total                              | Number of Observations       | 22              | Number of Distinct Observations                                       | 19             |
| 1037         |                                    |                              |                 | Number of Missing Observations                                        | 1              |
| 1038         |                                    | Minimum                      | 0.18            | Mean                                                                  | 1.133          |
| 1039         |                                    | Maximum                      | 6.6             | Median                                                                | 0.645          |
| 1040         |                                    | SD SD                        | 1.395           | Std. Error of Mean                                                    | 0.297          |
| 1041         |                                    | Coefficient of Variation     | 1.232<br>-0.271 | Skewness Skewness                                                     | 3.208<br>0.822 |
| 1042         |                                    | Mean of logged Data          | -0.271          | SD of logged Data                                                     | 0.022          |
| 1043         |                                    | Nonnarame                    | tric Distribut  | tion Free UCL Statistics                                              |                |
| 1044         |                                    |                              |                 | outed at 5% Significance Level                                        |                |
| 1045         |                                    | Date appear 10g.             |                 |                                                                       |                |
| 1046<br>1047 |                                    | Ass                          | uming Norr      | mal Distribution                                                      |                |
| 1047         | 95% No                             | ormal UCL                    |                 | 95% UCLs (Adjusted for Skewness)                                      |                |
| 1048         |                                    | 95% Student's-t UCL          | 1.645           | 95% Adjusted-CLT UCL (Chen-1995)                                      | 1.839          |
| 1050         |                                    |                              |                 | 95% Modified-t UCL (Johnson-1978)                                     | 1.678          |
| 1051         |                                    | I                            |                 |                                                                       |                |
| 1052         |                                    | Nonpara                      | ametric Dist    | tribution Free UCLs                                                   |                |
| 1053         |                                    | 95% CLT UCL                  | 1.622           | 95% Jackknife UCL                                                     | 1.645          |
| 1054         |                                    | Standard Bootstrap UCL       | 1.612           | 95% Bootstrap-t UCL                                                   | 2.313          |
| 1055         |                                    | 5% Hall's Bootstrap UCL      | 3.555           | 95% Percentile Bootstrap UCL                                          | 1.653          |
| 1056         |                                    | 95% BCA Bootstrap UCL        | 1.83            |                                                                       |                |
| 1057         |                                    | ebyshev(Mean, Sd) UCL        | 2.025           | 95% Chebyshev(Mean, Sd) UCL                                           | 2.429          |
| 1058         | 97.5% Ch                           | ebyshev(Mean, Sd) UCL        | 2.99            | 99% Chebyshev(Mean, Sd) UCL                                           | 4.092          |
| 1059         |                                    |                              | Cuancata d      | LICI to Lies                                                          |                |
| 1060         |                                    |                              |                 | UCL to Use                                                            |                |
| 1061         |                                    | Data appear Lognor           | ınaı, May W     | ant to try Lognormal Distribution                                     |                |
| 1062         | Note: Suggestions record           | ing the selection of a 0E%   | LICL are pr     | ovided to help the user to select the most appropriate 95% UCL        |                |
| 1063         |                                    |                              |                 | a size, data distribution, and skewness.                              | •              |
| 1064         |                                    | Coommendations are Das       | ou upon udi     | a 5120, adia distribution, and showitess.                             |                |

SLR Page 22 of 42

|                      | A B C D                              | Е                   | F              | G H I J K                                                             | L       |
|----------------------|--------------------------------------|---------------------|----------------|-----------------------------------------------------------------------|---------|
| 1                    | No                                   | onparametric UCL    | . Statistics f | for Data Sets with Non-Detects                                        |         |
| 2                    |                                      |                     |                |                                                                       |         |
| 3                    | User Selected Options                | - 110 io 1 io 10    | 50 10 511      |                                                                       |         |
| 4                    |                                      | L 5.112/31/2019 3   |                |                                                                       |         |
| 5                    |                                      | 0.15mbg Chemist     | ry_input_v5.   | .xls                                                                  |         |
| 6                    | Full Precision OFF                   |                     |                |                                                                       |         |
| 7                    | Confidence Coefficient 95%           |                     |                |                                                                       |         |
| 8<br>9               | Number of Bootstrap Operations 2000  |                     |                |                                                                       |         |
|                      | These recommendations are bas        | sed upon the result | ts of the sim  | nulation studies summarized in Singh, Maichle, and Lee (2006).        |         |
| 1065                 |                                      |                     |                | ts; for additional insight the user may want to consult a statisticia | an.     |
| 1066                 | <u> </u>                             |                     |                | · · · · · · · · · · · · · · · · · · ·                                 |         |
| 1067<br>1068         |                                      |                     |                |                                                                       |         |
|                      | benzo(b)fluoranthene                 |                     |                |                                                                       |         |
| 1070                 |                                      |                     |                |                                                                       |         |
| 1070                 |                                      |                     | General        | Statistics                                                            |         |
| 1071                 | Total Number                         | of Observations     | 22             | Number of Distinct Observations                                       | 18      |
| 1072                 |                                      |                     |                | Number of Missing Observations                                        | 1       |
| 1073                 | Minimu                               |                     | 0.32           | Mean                                                                  | 1.593   |
| 1074                 |                                      | Maximum             | 8.37           | Median                                                                | 1       |
| 1075                 |                                      | SD                  | 1.728          | Std. Error of Mean                                                    | 0.368   |
| 1077                 | Coeffi                               | cient of Variation  | 1.085          | Skewness                                                              | 3.171   |
| 1077                 | Mea                                  | n of logged Data    | 0.145          | SD of logged Data                                                     | 0.748   |
| 1079                 |                                      |                     |                |                                                                       |         |
| 1080                 |                                      | Nonparamet          | ric Distribu   | tion Free UCL Statistics                                              |         |
| 1081                 | D                                    | ata appear Logno    | rmal Distrit   | buted at 5% Significance Level                                        |         |
| 1081                 |                                      |                     |                |                                                                       |         |
| 1083                 |                                      | Ass                 | uming Norr     | mal Distribution                                                      |         |
| 1084                 | 95% Normal UG                        | CL                  |                | 95% UCLs (Adjusted for Skewness)                                      |         |
| 1085                 | 95%                                  | Student's-t UCL     | 2.227          | 95% Adjusted-CLT UCL (Chen-1995)                                      | 2.465   |
| 1086                 |                                      |                     |                | 95% Modified-t UCL (Johnson-1978)                                     | 2.268   |
| 1087                 |                                      | I.                  |                | <u> </u>                                                              |         |
| 1088                 |                                      | Nonpara             | ametric Dist   | tribution Free UCLs                                                   |         |
| 1089                 |                                      | 95% CLT UCL         | 2.199          | 95% Jackknife UCL                                                     | 2.227   |
| 1090                 | 95% Standar                          | d Bootstrap UCL     | 2.2            | 95% Bootstrap-t UCL                                                   | 2.95    |
| 1091                 | 95% Hall'                            | s Bootstrap UCL     | 4.64           | 95% Percentile Bootstrap UCL                                          | 2.262   |
| 1092                 | 95% BC/                              | A Bootstrap UCL     | 2.517          |                                                                       |         |
| 1093                 | 90% Chebyshev                        | (Mean, Sd) UCL      | 2.698          | 95% Chebyshev(Mean, Sd) UCL                                           | 3.199   |
| 1094                 | 97.5% Chebyshev                      | (Mean, Sd) UCL      | 3.894          | 99% Chebyshev(Mean, Sd) UCL                                           | 5.259   |
| 1095                 |                                      |                     |                |                                                                       |         |
| 1096                 |                                      |                     | Suggested      | UCL to Use                                                            |         |
| 1097                 | Dat                                  | ta appear Lognori   | mal, May w     | ant to try Lognormal Distribution                                     |         |
| 1098                 |                                      |                     | <del>_</del>   |                                                                       |         |
| 1099                 |                                      |                     |                | ovided to help the user to select the most appropriate 95% UCL        |         |
| 1100                 |                                      |                     | <u>'</u>       | a size, data distribution, and skewness.                              |         |
| 1101                 | These recommendations are bas        | sed upon the result | ts of the sim  | nulation studies summarized in Singh, Maichle, and Lee (2006).        |         |
| 1102<br>1103<br>1104 | However, simulations results will no | t cover all Real Wo | orld data set  | ts; for additional insight the user may want to consult a statisticia | an.     |
| 1103                 | h                                    |                     |                |                                                                       |         |
| 1105                 | benzo(b+j)fluoranthenes              |                     |                |                                                                       |         |
| 1106                 |                                      |                     | Cananal        | Chalinting                                                            |         |
| 1107                 | Total Number                         | of Observations     | 6              | Statistics  Number of Distinct Observations                           | 5       |
| 1108                 | ı otal Number                        | or Observations     | U              |                                                                       | 5<br>17 |
| 1109                 |                                      | Minimum             | 0.9            | Number of Missing Observations  Mean                                  | 1.163   |
| 1110                 |                                      | Maximum             | 1.4            | Median Median                                                         | 1.163   |
| 1111                 |                                      | SD                  | 0.2            | Std. Error of Mean                                                    | 0.0817  |
| 1112                 | 0#                                   | cient of Variation  | 0.2            | Std. Error of Mean Skewness                                           | -0.236  |
| Laure 1              | COETI                                |                     |                |                                                                       |         |
| 1113                 |                                      | n of logged Data    | 0.172          | SD of logged Data                                                     | 0.177   |

SLR Page 23 of 42

|              | A                              | D E                         | F             |                                                                      |       |
|--------------|--------------------------------|-----------------------------|---------------|----------------------------------------------------------------------|-------|
| 1            | A B C                          |                             |               | G H I J K Or Data Sets with Non-Detects                              |       |
| $\vdash$     |                                | ·                           |               |                                                                      |       |
| 2            | User Selected Options          |                             |               |                                                                      |       |
| 3            | ,                              | ProUCL 5.112/31/2019 3      | :58:18 PM     |                                                                      |       |
| 4            | ,                              | SED 0-0.15mbg Chemist       |               | xls                                                                  |       |
| 5            |                                | OFF                         | .,,           |                                                                      |       |
| 6            |                                | 95%                         |               |                                                                      |       |
| 7            |                                | 2000                        |               |                                                                      |       |
| 8<br>9<br>10 | Number of Bootstrap Operations | 2000                        |               |                                                                      |       |
|              |                                |                             |               |                                                                      |       |
| 1115         | Not                            | e: Sample size is small (   | e.g., <10), i | data are collected using ISM approach                                |       |
| 1116         |                                |                             |               | CL to estimate EPC (ITRC, 2012).                                     |       |
| 1117         | Chet                           |                             |               | the Nonparametric and All UCL Options.                               |       |
| 1118         |                                | .,                          |               |                                                                      |       |
| 1119         |                                | Nonparame                   | tric Distribu | ion Free UCL Statistics                                              |       |
| 1120         |                                | <u> </u>                    |               | ted at 5% Significance Level                                         |       |
| 1121         |                                | Data appear res             |               |                                                                      |       |
| 1122         |                                | Δοσ                         | uming Nor     | nal Distribution                                                     |       |
| 1123         | 95% No                         | rmal UCL                    | dilling Hon   | 95% UCLs (Adjusted for Skewness)                                     |       |
| 1124         | 3070110                        | 95% Student's-t UCL         | 1.328         | 95% Adjusted-CLT UCL (Chen-1995)                                     | 1.289 |
| 1125         |                                | 95 % Student 9-t OCL        | 1.520         | 95% Modified-t UCL (Johnson-1978)                                    | 1.327 |
| 1126         |                                |                             |               | 95% Modified-t OCE (Johnson-1978)                                    | 1.327 |
| 1127         |                                | Nonnon                      | omotrio Dist  | ribution Erro LICLo                                                  |       |
| 1128         |                                |                             |               | ribution Free UCLs                                                   | 1 220 |
| 1129         | 050/                           | 95% CLT UCL                 | 1.298         | 95% Jackknife UCL                                                    | 1.328 |
| 1130         |                                | Standard Bootstrap UCL      | 1.285         | 95% Bootstrap-t UCL                                                  | 1.316 |
| 1131         |                                | 5% Hall's Bootstrap UCL     | 1.265         | 95% Percentile Bootstrap UCL                                         | 1.283 |
| 1132         |                                | 5% BCA Bootstrap UCL        | 1.267         | 25% 20 1 1 2 2 2 2 2 2 2                                             | 4.50  |
| 1133         |                                | ebyshev(Mean, Sd) UCL       | 1.408         | 95% Chebyshev(Mean, Sd) UCL                                          | 1.52  |
| 1134         | 97.5% Che                      | ebyshev(Mean, Sd) UCL       | 1.674         | 99% Chebyshev(Mean, Sd) UCL                                          | 1.976 |
| 1135         |                                |                             |               |                                                                      |       |
| 1136         |                                |                             | Suggested     |                                                                      |       |
| 1137         |                                | Data appear Nor             | mal, May w    | ant to try Normal Distribution                                       |       |
| 1138         |                                |                             |               |                                                                      |       |
| 1139         |                                |                             |               | ovided to help the user to select the most appropriate 95% UCL.      |       |
| 1140         |                                |                             |               | a size, data distribution, and skewness.                             |       |
| 1141         | These recommendations          | are based upon the resul    | ts of the sim | ulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 1142         | However, simulations results   | s will not cover all Real W | orld data set | s; for additional insight the user may want to consult a statisticia | n.    |
| 1143         |                                |                             |               |                                                                      |       |
| 1144         | Note: For highly negative      | vely-skewed data, confid    | ence limits   | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be               |       |
| 1145         | reliable. C                    | hen's and Johnson's me      | thods provi   | de adjustments for positvely skewed data sets.                       |       |
| 1146         |                                |                             |               |                                                                      |       |
| 1147         |                                |                             |               |                                                                      |       |
| 1148         | benzo(g,h,i)perylene           |                             |               |                                                                      |       |
| 1149         |                                |                             |               |                                                                      |       |
| 1150         |                                |                             | General       | Statistics                                                           |       |
| 1151         | Total                          | Number of Observations      | 22            | Number of Distinct Observations                                      | 20    |
| 1152         |                                |                             |               | Number of Missing Observations                                       | 1     |
| 1153         |                                | Minimum                     | 0.13          | Mean                                                                 | 0.699 |
| 1154         |                                | Maximum                     | 4.36          | Median                                                               | 0.435 |
| 1155         |                                | SD                          | 0.874         | Std. Error of Mean                                                   | 0.186 |
| 1156         |                                | Coefficient of Variation    | 1.251         | Skewness                                                             | 3.822 |
| 1157         |                                | Mean of logged Data         | -0.701        | SD of logged Data                                                    | 0.747 |
| 1158         |                                | L                           |               |                                                                      |       |
| 1159         |                                | Nonparame                   | tric Distribu | ion Free UCL Statistics                                              |       |
| 1160         |                                | Data appear Approxima       | te Gamma I    | Distributed at 5% Significance Level                                 |       |
| 1161         |                                |                             |               |                                                                      |       |
| 1161         |                                |                             |               |                                                                      |       |

SLR Page 24 of 42

|                                                                                                                                              | A B C                          | D E                                                                                                                                                                                                                                                                                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                            |                                | Nonparametric UC                                                                                                                                                                                                                                                                         | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                    |
| 2                                                                                                                                            | User Selected Options          | I                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 3                                                                                                                                            | Date/Time of Computation       | ProUCL 5.112/31/2019 3                                                                                                                                                                                                                                                                   | 8·58·18 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 4                                                                                                                                            | From File                      | SED 0-0.15mbg Chemis                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| 5                                                                                                                                            | Full Precision                 | OFF                                                                                                                                                                                                                                                                                      | ,put_10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 6<br>7                                                                                                                                       | Confidence Coefficient         | 95%                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 8                                                                                                                                            | Number of Bootstrap Operations | 2000                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 9                                                                                                                                            |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 1162                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          | suming Nori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |
| 1163                                                                                                                                         | 95% No                         | ormal UCL                                                                                                                                                                                                                                                                                | 1.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 100                                                                                                              |
| 1164                                                                                                                                         |                                | 95% Student's-t UCL                                                                                                                                                                                                                                                                      | 1.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.168                                                                                                              |
| 1165                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.045                                                                                                              |
| 1166                                                                                                                                         |                                | Nonnar                                                                                                                                                                                                                                                                                   | ametric Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    |
| 1167                                                                                                                                         |                                | 95% CLT UCL                                                                                                                                                                                                                                                                              | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.019                                                                                                              |
| 1168                                                                                                                                         | 95% Standard Bootstrap UC      |                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.542                                                                                                              |
| 1169<br>1170                                                                                                                                 | 95% Hall's Bootstrap UC        |                                                                                                                                                                                                                                                                                          | 2.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.051                                                                                                              |
| 1171                                                                                                                                         | 9                              | 95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                    | 1.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 1172                                                                                                                                         | 90% Ch                         | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                    | 1.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.511                                                                                                              |
| 1173                                                                                                                                         | 97.5% Ch                       | ebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                    | 1.863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.553                                                                                                              |
| 1174                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |
| 1175                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    |
| 1176                                                                                                                                         |                                | Data appear Approxima                                                                                                                                                                                                                                                                    | te Gamma,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | May want to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                  |
| 1177                                                                                                                                         | Neter Commentions are and      | : 4b 14i 4 - 0.50/                                                                                                                                                                                                                                                                       | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 1178                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |
| 1179                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                    |
| 1180                                                                                                                                         |                                | <u> </u>                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.                                                                                                                 |
| 1181<br>1182                                                                                                                                 | ,                              |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                    |
| 1183                                                                                                                                         | benzo(k)fluoranthene           |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 1184                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |
| 1185                                                                                                                                         |                                |                                                                                                                                                                                                                                                                                          | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    |
| 1186                                                                                                                                         | Total                          |                                                                                                                                                                                                                                                                                          | donora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Otationos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |
| 1187                                                                                                                                         |                                | Number of Observations                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16                                                                                                                 |
| المحجول                                                                                                                                      |                                |                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                  |
| 1188                                                                                                                                         |                                | Number of Detects                                                                                                                                                                                                                                                                        | 22<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of Distinct Observations  Number of Missing Observations  Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 5                                                                                                                |
| 1188<br>1189                                                                                                                                 | Nu                             | Number of Detects umber of Distinct Detects                                                                                                                                                                                                                                              | 22<br>17<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>5<br>1                                                                                                        |
| 1189<br>1190                                                                                                                                 | Ne                             | Number of Detects<br>umber of Distinct Detects<br>Minimum Detect                                                                                                                                                                                                                         | 22<br>17<br>15<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>5<br>1<br>0.2                                                                                                 |
| 1189<br>1190<br>1191                                                                                                                         | No                             | Number of Detects<br>umber of Distinct Detects<br>Minimum Detect<br>Maximum Detect                                                                                                                                                                                                       | 17<br>15<br>0.23<br>2.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>5<br>1<br>0.2<br>0.2                                                                                          |
| 1189<br>1190<br>1191<br>1192                                                                                                                 | No                             | Number of Detects<br>umber of Distinct Detects<br>Minimum Detect                                                                                                                                                                                                                         | 22<br>17<br>15<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>5<br>1<br>0.2                                                                                                 |
| 1189<br>1190<br>1191<br>1192<br>1193                                                                                                         | Nu                             | Number of Detects<br>umber of Distinct Detects<br>Minimum Detect<br>Maximum Detect<br>Variance Detects                                                                                                                                                                                   | 17<br>15<br>0.23<br>2.29<br>0.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%                                                                                |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194                                                                                                 | No                             | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects                                                                                                                                                                                  | 17<br>15<br>0.23<br>2.29<br>0.284<br>0.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533                                                                       |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195                                                                                         |                                | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects                                                                                                                                                                   | 17<br>15<br>0.23<br>2.29<br>0.284<br>0.606<br>0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879                                                              |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194                                                                                                 |                                | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects                                                                                                                                                  | 17<br>15<br>0.23<br>2.29<br>0.284<br>0.606<br>0.41<br>2.328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964                                                     |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196                                                                                 |                                | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects                                                                                                                           | 17<br>15<br>0.23<br>2.29<br>0.284<br>0.606<br>0.41<br>2.328<br>-0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964                                                     |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197                                                                         |                                | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects Nonparame                                                                                                                 | 17<br>15<br>0.23<br>2.29<br>0.284<br>0.606<br>0.41<br>2.328<br>-0.748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964                                                     |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198                                                                 | Dete                           | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame                                                                                                              | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  partic Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects To Free UCL Statistics SD Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964                                                     |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199                                                         | Dete                           | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Median Detects Skewness Detects Mean of Logged Detects Nonparame ected Data appear Appro                                                                                       | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  oximate Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects CV Detects SD of Logged Detects CV Detects SD of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201<br>1202                                 | Dete                           | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usin                                                                          | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  httic Distribu eximate Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects To Free UCL Statistics The Distributed at 5% Significance Level Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202                                                                        | Dete                           | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usin                                                                          | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  htric Distribut eximate Gan 0.514 0.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects Critical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201<br>1202<br>1203<br>1204                 | Dete                           | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usin Mean SD 95% KM (t) UCL                                                   | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  stric Distribution oximate Gan 0.514 0.485 0.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Stat | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1200<br>1201<br>1202<br>1203<br>1204<br>1205                 | Dete<br>Kaplan-I               | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL                                    | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  otric Distribution oximate Gan 0.514 0.485 0.697 0.689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects  Critical Values and other Nonparametric UCLs Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1200<br>1201<br>1202<br>1203<br>1204<br>1205<br>1206         | Dete<br>Kaplan-t               | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usin Mean SD 95% KM (t) UCL                                                   | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  stric Distribution oximate Gan 0.514 0.485 0.697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Statistics The UCL Stat | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67                                             |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1200<br>1201<br>1202<br>1203<br>1204<br>1205<br>1206<br>1207 | Dete<br>Kaplan-t               | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL                                    | 17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  stric Distribution of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects SD of Logged Detects ST Observation Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67<br>0.107<br>0.71<br>0.688<br>0.864<br>0.978 |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1200<br>1201<br>1202<br>1203<br>1204<br>1205<br>1206<br>1207<br>1208 | Dete<br>Kaplan-N               | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Mean Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL 100% KM Chebyshev UCL | 22  17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  stric Distribu eximate Gan 0.514 0.485 0.697 0.689 0.833 1.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects SD Observations Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Bootstrap t UCL 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67<br>0.107<br>0.71<br>0.688<br>0.864<br>0.978 |
| 1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1200<br>1201<br>1202<br>1203<br>1204<br>1205<br>1206<br>1207         | Dete<br>Kaplan-N               | Number of Detects umber of Distinct Detects Minimum Detect Maximum Detect Variance Detects Median Detects Skewness Detects Mean of Logged Detects  Nonparame ected Data appear Appro Meier (KM) Statistics usir Mean SD 95% KM (t) UCL 95% KM (z) UCL 10% KM Chebyshev UCL               | 22  17 15 0.23 2.29 0.284 0.606 0.41 2.328 -0.748  stric Distribu eximate Gan 0.514 0.485 0.697 0.689 0.833 1.179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Non-Detects Number of Distinct Non-Detects Minimum Non-Detect Maximum Non-Detect Percent Non-Detects SD Detects CV Detects Kurtosis Detects SD of Logged Detects SD of Logged Detects SD Observations Standard Error of Mean 95% KM (BCA) UCL 95% KM (Percentile Bootstrap) UCL 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>5<br>1<br>0.2<br>0.2<br>22.73%<br>0.533<br>0.879<br>5.964<br>0.67<br>0.107<br>0.71<br>0.688<br>0.864<br>0.978 |

SLR Page 25 of 42

|              | A B C                          | D E                        |               | G H I J K                                                             | 1     |
|--------------|--------------------------------|----------------------------|---------------|-----------------------------------------------------------------------|-------|
| 1            | АВС                            |                            | L Statistics  | or Data Sets with Non-Detects                                         | L     |
| 2            |                                | <u> </u>                   |               |                                                                       |       |
| 3            | User Selected Options          |                            |               |                                                                       |       |
| 4            | Date/Time of Computation       | ProUCL 5.112/31/2019 3     | :58:18 PM     |                                                                       |       |
| 5            | From File                      | SED 0-0.15mbg Chemist      | try_input_v5  | xls                                                                   |       |
| 6            | Full Precision                 | OFF                        |               |                                                                       |       |
| 7            | Confidence Coefficient         | 95%                        |               |                                                                       |       |
| 8            | Number of Bootstrap Operations | 2000                       |               |                                                                       |       |
| 9            |                                | IZMAN (I IV)               | 0.044         | W40 M                                                                 | 0.000 |
| 1211         | I/M Ohara dans                 | KM Mean (logged)           | -0.944        | KM Geo Mean                                                           | 0.389 |
| 1212         | KINI Standard                  | Error of Mean (logged)     | 0.149         | 95% H-UCL (KM -Log)                                                   | 0.674 |
| 1213         |                                |                            | Suggested     | IICI to liee                                                          |       |
| 1214         |                                |                            |               | vant to try Gamma Distribution                                        |       |
| 1215         | Note: Suggestions regarding    |                            |               | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 1216         |                                |                            |               | a size, data distribution, and skewness.                              |       |
| 1217         |                                |                            |               | ulation studies summarized in Singh, Maichle, and Lee (2006).         |       |
| 1218<br>1219 |                                | <u> </u>                   |               | s; for additional insight the user may want to consult a statisticiar | 1.    |
| 1220         |                                |                            |               |                                                                       |       |
| 1221         |                                |                            |               |                                                                       |       |
| 1222         | benzo(a)pyrene                 |                            |               |                                                                       |       |
| 1223         |                                |                            |               |                                                                       |       |
| 1224         |                                |                            | General       | Statistics                                                            |       |
| 1225         | Total N                        | Number of Observations     | 22            | Number of Distinct Observations                                       | 19    |
| 1226         |                                |                            |               | Number of Missing Observations                                        | 1     |
| 1227         |                                | Minimum                    | 0.18          | Mean                                                                  | 1.068 |
| 1228         |                                | Maximum                    | 6.01          | Median                                                                | 0.69  |
| 1229         |                                | SD                         | 1.231         | Std. Error of Mean                                                    | 0.262 |
| 1230         |                                | Coefficient of Variation   | 1.153         | Skewness                                                              | 3.391 |
| 1231         |                                | Mean of logged Data        | -0.274        | SD of logged Data                                                     | 0.767 |
| 1232         |                                |                            |               |                                                                       |       |
| 1233         |                                | <u> </u>                   |               | ion Free UCL Statistics                                               |       |
| 1234         |                                | Data appear Logno          | ormai Distrit | outed at 5% Significance Level                                        |       |
| 1235         |                                | ٨٥٥                        | numina Nor    | nal Distribution                                                      |       |
| 1236         | 95% No                         | rmal UCL                   | sulling Non   | 95% UCLs (Adjusted for Skewness)                                      |       |
| 1237         | 3070110                        | 95% Student's-t UCL        | 1.519         | 95% Adjusted-CLT UCL (Chen-1995)                                      | 1.702 |
| 1238         |                                | 00% 014401110 1 002        |               | 95% Modified-t UCL (Johnson-1978)                                     | 1.551 |
| 1239<br>1240 |                                |                            |               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                               |       |
| 1240         |                                | Nonpar                     | ametric Dist  | ribution Free UCLs                                                    |       |
| 1241         |                                | 95% CLT UCL                | 1.499         | 95% Jackknife UCL                                                     | 1.519 |
| 1243         | 95% 5                          | Standard Bootstrap UCL     | 1.484         | 95% Bootstrap-t UCL                                                   | 2.119 |
| 1244         | 95                             | % Hall's Bootstrap UCL     | 3.209         | 95% Percentile Bootstrap UCL                                          | 1.56  |
| 1245         | 9.                             | 5% BCA Bootstrap UCL       | 1.712         |                                                                       |       |
| 1246         | 90% Che                        | byshev(Mean, Sd) UCL       | 1.855         | 95% Chebyshev(Mean, Sd) UCL                                           | 2.212 |
| 1247         | 97.5% Che                      | byshev(Mean, Sd) UCL       | 2.706         | 99% Chebyshev(Mean, Sd) UCL                                           | 3.679 |
| 1248         |                                |                            |               |                                                                       |       |
| 1249         |                                |                            | Suggested     |                                                                       |       |
| 1250         |                                | Data appear Lognor         | mal, May w    | ant to try Lognormal Distribution                                     |       |
| 1251         | N. O                           |                            | 1101          |                                                                       |       |
| 1252         | 99                             |                            |               | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 1253         |                                |                            |               | a size, data distribution, and skewness.                              |       |
| 1254         |                                |                            |               | ulation studies summarized in Singh, Maichle, and Lee (2006).         |       |
| 1255         | nowever, simulations results   | will flot cover all Real W | oriu data set | s; for additional insight the user may want to consult a statisticiar | l.    |
| 1256         |                                |                            |               |                                                                       |       |
| 1257         |                                |                            |               |                                                                       |       |

SLR Page 26 of 42

|        | A B C                          | D E Nonparametric UC         | F<br>I Statistics | G<br>for Data Sate | H Non-D         | etecte       | J             | K          |          | L      |
|--------|--------------------------------|------------------------------|-------------------|--------------------|-----------------|--------------|---------------|------------|----------|--------|
| 1      |                                | 140riparametric 00r          | L Otatiotics      | ioi Data Gets      | Willi Noil-D    | GIGCIS       |               |            |          |        |
| 2      | User Selected Options          |                              |                   |                    |                 |              |               |            |          |        |
| 3      | Date/Time of Computation       | ProUCL 5.112/31/2019 3       | R-58-18 DM        |                    |                 |              |               |            |          |        |
| 4      | From File                      | SED 0-0.15mbg Chemist        |                   | vle                |                 |              |               |            |          |        |
| 5      | Full Precision                 | OFF                          | uy_iiiput_vo      | 7.815              |                 |              |               |            |          |        |
| 6      | Confidence Coefficient         | 95%                          |                   |                    |                 |              |               |            |          |        |
| 7      | Number of Bootstrap Operations | 2000                         |                   |                    |                 |              |               |            |          |        |
| 8<br>9 | Number of Bootstrap Operations | 2000                         |                   |                    |                 |              |               |            |          |        |
| 1258   | chrysene                       |                              |                   |                    |                 |              |               |            |          |        |
| 1259   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1260   |                                |                              | General           | Statistics         |                 |              |               |            |          |        |
| 1261   | Total                          | Number of Observations       | 22                |                    |                 | Number       | of Distinct ( | Observati  | ions     | 22     |
| 1262   |                                |                              |                   |                    |                 | Number       | of Missing (  | Observati  | ions     | 1      |
| 1263   |                                | Minimum                      | 0.26              |                    |                 |              |               | М          | lean     | 1.379  |
| 1264   |                                | Maximum                      | 7.15              |                    |                 |              |               | Med        | dian     | 0.875  |
| 1265   |                                | SD                           | 1.467             |                    |                 |              | Std. E        | rror of M  | ean      | 0.313  |
| 1266   |                                | Coefficient of Variation     | 1.064             |                    |                 |              |               | Skewn      | iess     | 3.209  |
| 1267   |                                | Mean of logged Data          | 0.00898           |                    |                 |              | SD of         | logged D   | Data     | 0.749  |
| 1268   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1269   |                                | Nonparame                    | tric Distribu     | tion Free UC       | L Statistics    |              |               |            |          |        |
| 1270   |                                | Data appear Gan              | nma Distrib       | uted at 5% Si      | gnificance L    | evel         |               |            |          |        |
| 1271   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1272   |                                | Ass                          | suming Nor        | mal Distribution   | on              |              |               |            |          |        |
| 1273   | 05% N                          | ormal UCL                    |                   |                    | 95% L           | JCLs (Adju   | sted for Ske  | wness)     |          |        |
| 1274   |                                | 95% Student's-t UCL          | 1.917             |                    | 95              | 5% Adjuste   | d-CLT UCL     | (Chen-19   | 95)      | 2.122  |
| 1275   |                                |                              |                   |                    | 9               | 5% Modifie   | d-t UCL (Jo   | hnson-19   | 378)     | 1.952  |
| 1276   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1277   |                                | Nonpar                       | ametric Dis       | tribution Free     | UCLs            |              |               |            |          |        |
| 1278   |                                | 95% CLT UCL                  | 1.893             |                    |                 |              | 95% Ja        | ickknife l | JCL      | 1.917  |
| 1279   | Ω5%                            | Standard Bootstrap UCL       | 1.896             |                    |                 |              | 95% Boo       | tstrap-t l | JCL      | 2.574  |
| 1280   |                                | 95% Hall's Bootstrap UCL     | 4.157             |                    |                 | 95% F        | Percentile Bo | otstrap (  | JCL      | 1.945  |
| 1281   |                                | 95% BCA Bootstrap UCL        | 2.155             |                    |                 |              |               |            |          | -      |
| 1282   | 00% Ch                         | nebyshev(Mean, Sd) UCL       | 2.317             |                    |                 | 95% Ch       | ebyshev(Me    | an, Sd) l  | JCL      | 2.742  |
| 1283   | 07.5% Ch                       | nebyshev(Mean, Sd) UCL       | 3.332             |                    |                 | 99% Ch       | ebyshev(Me    | an, Sd) l  | JCL      | 4.49   |
| 1284   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1285   |                                |                              | Suggested         | UCL to Use         |                 |              |               |            |          |        |
| 1286   |                                | Data appear Gam              | nma, May w        | ant to try Gar     | mma Distribu    | ıtion        |               |            |          |        |
| 1287   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1288   | Note: Suggestions regard       | ding the selection of a 95%  | UCL are pr        | ovided to help     | the user to     | select the n | nost appropr  | iate 95%   | UCL      |        |
| 1289   | F                              | Recommendations are bas      | ed upon dat       | ta size, data d    | istribution, ar | nd skewnes   | SS.           |            |          |        |
| 1290   | These recommendations          | s are based upon the resul   | Its of the sin    | nulation studie    | s summarize     | ed in Singh, | Maichle, an   | d Lee (2)  | 006).    |        |
| 1291   | However simulations result     | ts will not cover all Real W | orld data se      | ts; for addition   | nal insight the | user may     | want to cons  | sult a sta | tisticia | ın.    |
| 1292   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1293   | dihenz/a h\anthracene          |                              |                   |                    |                 |              |               |            |          |        |
| 1294   |                                |                              |                   |                    |                 |              |               |            |          |        |
| 1295   |                                |                              |                   | Statistics         |                 |              |               |            |          |        |
| 1296   | Total                          | Number of Observations       | 22                |                    | ·               |              | of Distinct ( |            |          | 11     |
| 1297   |                                |                              |                   |                    |                 | Number       | of Missing (  |            |          | 1      |
| 1298   |                                | Number of Detects            | 13                |                    |                 |              | Number of     |            |          | 9      |
| 1299   | N                              | umber of Distinct Detects    | 11                |                    |                 | Numbe        | r of Distinct |            |          | 1      |
| 1300   |                                | Minimum Detect               | 0.1               |                    |                 |              | Minimum       |            |          | 0.1    |
| 1301   |                                | Maximum Detect               | 0.79              |                    |                 |              | Maximum       | Non-De     | tect     | 0.1    |
| 1302   |                                | Variance Detects             | 0.0348            |                    |                 |              | Percent       | Non-Dete   | ects     | 40.91% |
| 1303   |                                | Mean Detects                 | 0.222             |                    |                 |              |               | SD Det     | ects     | 0.187  |
| 1304   |                                | Median Detects               | 0.16              |                    |                 |              |               | CV Det     | ects     | 0.843  |
| 1305   |                                | Skewness Detects             | 2.723             |                    |                 |              | Kurl          | tosis Det  | ects     | 8.07   |
| 1306   |                                | Mean of Logged Detects       | -1.703            |                    |                 |              | SD of Log     | ged Det    | ects     | 0.58   |
|        |                                |                              |                   | •                  |                 |              |               |            |          |        |

SLR Page 27 of 42

|                                                                                                                                                                                                      | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Е                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1                                                                                                                                                                                                    | Nonpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arametric UCI                                                                                                                                                                                     | L Statistics f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| 2                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 3                                                                                                                                                                                                    | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110/21/2010 2                                                                                                                                                                                     | .E0.10 DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 4                                                                                                                                                                                                    | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 112/31/2019 3                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 5                                                                                                                                                                                                    | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5mbg Chemist                                                                                                                                                                                      | iry_iriput_vo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 6                                                                                                                                                                                                    | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 7                                                                                                                                                                                                    | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 8<br>9                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1307                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1308                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nonparame                                                                                                                                                                                         | tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 1309                                                                                                                                                                                                 | Detected Data a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | appear Appro                                                                                                                                                                                      | ximate Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nma Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 1310                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1311                                                                                                                                                                                                 | Kaplan-Meier (KM) \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ritical Values and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000                                              |
| 1312                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mean                                                                                                                                                                                              | 0.172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0333                                              |
| 1313                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD / KM (4) LICI                                                                                                                                                                                  | 0.15<br>0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.242                                               |
| 1314                                                                                                                                                                                                 | 05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 KM (t) UCL<br>6 KM (z) UCL                                                                                                                                                                      | 0.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM (Percentile Bootstrap) UCL<br>95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.225                                               |
| 1315                                                                                                                                                                                                 | 00% KM Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                   | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.317                                               |
| 1316                                                                                                                                                                                                 | 07.5% KM Cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                 | 0.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.504                                               |
| 1317                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55,01101 002                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | con tum emesyener eez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.001                                               |
| 1318                                                                                                                                                                                                 | Statistics using K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M estimates of                                                                                                                                                                                    | on Logged D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pata and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 1319<br>1320                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SD (logged)                                                                                                                                                                                       | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.016                                               |
| 1321                                                                                                                                                                                                 | KM M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lean (logged)                                                                                                                                                                                     | -1.948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.143                                               |
| 1321                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 050/ 111101 ((04.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.205                                               |
| 1322                                                                                                                                                                                                 | KM Standard Error of M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lean (logged)                                                                                                                                                                                     | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 1322<br>1323                                                                                                                                                                                         | KM Standard Error of M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lean (logged)                                                                                                                                                                                     | 0.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 1323                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 55 /                                                                                                                                                                                            | 0.115 Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
|                                                                                                                                                                                                      | Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                   | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 1323<br>1324                                                                                                                                                                                         | Dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ta appear Gar                                                                                                                                                                                     | Suggested I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 1323<br>1324<br>1325                                                                                                                                                                                 | Dat  Note: Suggestions regarding the selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ta appear Gar<br>ction of a 95%<br>ations are bas                                                                                                                                                 | Suggested Imma, May w UCL are pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 1323<br>1324<br>1325<br>1326                                                                                                                                                                         | Dat  Note: Suggestions regarding the selec  Recommendations are based to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use vant to try Gamma Distribution byided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327                                                                                                                                                                 | Dat  Note: Suggestions regarding the selec  Recommendations are based to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330                                                                                                                                         | Note: Suggestions regarding the select Recommendations are based the However, simulations results will not contribute the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Reco | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use vant to try Gamma Distribution byided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330                                                                                                                                         | Note: Suggestions regarding the selectors are suggestions are based of the selectors are based of the selectors are based of the selectors are based of the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selectors are suggested as a selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and the selector and  | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use vant to try Gamma Distribution byided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331                                                                                                                                 | Note: Suggestions regarding the select Recommendations are based the However, simulations results will not contribute the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are select Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are selected Recommendation are s | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use vant to try Gamma Distribution byided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333                                                                                                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul                                                                                                                               | Suggested Imma, May w UCL are pro ed upon data its of the sim orld data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL  a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                              |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333                                                                                                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul<br>ver all Real W                                                                                                             | Suggested Imma, May w UCL are pro ed upon data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL  a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                              |                                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335                                                                                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul<br>ver all Real W                                                                                                             | Suggested of mma, May we UCL are produced upon data lits of the sim orld data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UCL to Use  Vant to try Gamma Distribution  povided to help the user to select the most appropriate 95% UCL  a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                             | an.                                                 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335                                                                                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul<br>ver all Real W                                                                                                             | Suggested of mma, May we UCL are produced upon data lits of the sim orld data set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UCL to Use  vant to try Gamma Distribution  poided to help the user to select the most appropriate 95% UCL  a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                                 | 22                                                  |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1339<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337                                                                                         | Note: Suggestions regarding the selectors recommended and these recommendations are based to However, simulations results will not confident fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ta appear Gai<br>ction of a 95%<br>ations are bas<br>upon the resul<br>wer all Real W                                                                                                             | Suggested Imma, May w UCL are proceed upon data its of the sim orld data set  General 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                   | 22<br>1                                             |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335                                                                                                 | Note: Suggestions regarding the selectors are suggestions are based of the selectors are based of the selectors are based of the selectors are based of the selectors are based of the selectors are based of the selectors are suggested as a selector are selectors. Total Number of the selectors are selectors are selectors are selectors are selectors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ta appear Gai ction of a 95% ations are bas upon the resul wer all Real W.  Observations  Minimum                                                                                                 | Suggested Imma, May w UCL are proceed upon data its of the sim orld data set  General 3 22 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL to Use  Vant to try Gamma Distribution  Divided to help the user to select the most appropriate 95% UCL  a size, data distribution, and skewness.  Ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean                                                                                                                                                                                                                                         | 22<br>1<br>3.49                                     |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1339<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338                                                                                 | Note: Suggestions regarding the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed of the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on the selectors are passed on th | ta appear Gai ction of a 95% ations are bas upon the resul wer all Real W                                                                                                                         | Suggested If mma, May we UCL are project upon data lits of the sim orld data set  General S 22 0.59 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UCL to Use  Vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                     | 22<br>1<br>3.49<br>1.955                            |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1338                                                                         | Note: Suggestions regarding the selectors are passed in the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the se | ta appear Gai ction of a 95% ations are bas upon the resul wer all Real W  Observations  Minimum  Maximum  SD                                                                                     | Suggested Imma, May w UCL are proceed upon data its of the sim orld data set  General S 22  0.59 24.5 5.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                 | 22<br>1<br>3.49<br>1.955<br>1.078                   |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340                                                         | Note: Suggestions regarding the selectors are passed in the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the selector of the se | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real W  Observations  Minimum  Maximum  SD  It of Variation f logged Data                                                      | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                    | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783          |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1340<br>1341                                                         | Note: Suggestions regarding the selection Recommendations are based of However, simulations results will not confident and the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of th | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real W  Observations  Minimum  Maximum  SD  It of Variation logged Data                                                        | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                         | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783          |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1339<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342                                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are selected as the select Recommendation and the selected Recommendations are selected as the selected Recommendation and the selected Recommendation are selected as the selected Recommendation and the selected Recommendation and the selected Recommendation are selected as the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and the selected Recommendation and  | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real W  Observations  Minimum  Maximum  SD  It of Variation logged Data                                                        | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                    | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783          |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1339<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342<br>1343                                         | Note: Suggestions regarding the select Recommenda: These recommendations are based to However, simulations results will not confident and the select simulations results will not confident and the select simulations results will not confident and the select simulations results will not confident and the select simulations results will not confident and the select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are based to select simulations are select simulations are select simulations. The select simulations are select simulations are select simulations are select simulations are select simulations. The select simulations are select simulations are select simulations are select simulations are select simulations. The select simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected simulations are selected simulations are selected simulations are selected simulations. The selected si | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real Wi Observations  Minimum Maximum SD at of Variation f logged Data  Nonparame appear Logno                                 | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness SD of logged Data  dion Free UCL Statistics  outed at 5% Significance Level                                                                                                            | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783          |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1328<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346                                         | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to the select Recommendation are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to th | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real Wi Observations  Minimum Maximum SD at of Variation f logged Data  Nonparame appear Logno                                 | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  vant to try Gamma Distribution  poided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  clion Free UCL Statistics  puted at 5% Significance Level                                                                                                                              | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783          |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347                                 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the sele | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real Wi  Observations  Minimum  Maximum  SD at of Variation f logged Data  Nonparame appear Logno                              | Suggested Imma, May w UCL are pro- ed upon data its of the sim- orld data set  General 3 22  0.59 24.5 5.055 1.449 0.816  tric Distribut ormal Distribut suming Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UCL to Use  vant to try Gamma Distribution  voided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  dion Free UCL Statistics  puted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                            | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783<br>0.818 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348                         | Note: Suggestions regarding the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendation of Coefficient Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommend | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real Wi Observations  Minimum Maximum SD at of Variation f logged Data  Nonparame appear Logno                                 | Suggested IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL to Use  Vant to try Gamma Distribution  voided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  cion Free UCL Statistics  puted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                           | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783<br>0.818 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348                         | Note: Suggestions regarding the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are select Recommendations are selected as the select Recommendation and the select Recommendations are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are sel | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real Wi  Observations  Minimum  Maximum  SD at of Variation f logged Data  Nonparame appear Logno                              | Suggested Imma, May w UCL are pro- ed upon data its of the sim- orld data set  General 3 22  0.59 24.5 5.055 1.449 0.816  tric Distribut ormal Distribut suming Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | UCL to Use  vant to try Gamma Distribution  voided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  dion Free UCL Statistics  puted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                            | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783<br>0.818 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348<br>1349<br>1350 | Note: Suggestions regarding the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are based of the select Recommendations are select Recommendations are selected as the select Recommendation and the select Recommendations are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are selected as the selected Recommendation are sel | ta appear Gai ction of a 95% ations are bas upon the resul wer all Real W  Observations  Minimum  Maximum  SD  It of Variation f logged Data  Nonparame appear Logno  Ass                         | Suggested Imma, May would be made and set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of t | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  dion Free UCL Statistics  outed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978) | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783<br>0.818 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1339<br>1331<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348<br>1349<br>1350<br>1351 | Note: Suggestions regarding the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to However, simulations results will not confident and the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendations are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to the select Recommendation are based to  | ta appear Gai ction of a 95% ations are bas upon the resul wer all Real W  Observations  Minimum  Maximum  SD  It of Variation f logged Data  Nonparame appear Logno  Ass                         | Suggested Imma, May would be made and set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of t | UCL to Use  Vant to try Gamma Distribution  voided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  cion Free UCL Statistics  puted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                           | 22<br>1<br>3.49<br>1.955<br>1.078<br>3.783<br>0.818 |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348<br>1349<br>1350<br>1351         | Note: Suggestions regarding the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of However, simulations results will not confident and the select Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are based of Recommendations are  | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real W  Observations  Minimum  Maximum  SD  It of Variation If logged Data  Nonparame appear Logno  Ass  Ident's-t UCL  Nonpar | Suggested Imma, May would be made and a set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of | UCL to Use  vant to try Gamma Distribution  voided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  dion Free UCL Statistics  puted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978) | 22<br>1 3.49<br>1.955<br>1.078<br>3.783<br>0.818    |
| 1323<br>1324<br>1325<br>1326<br>1327<br>1338<br>1339<br>1331<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348<br>1349<br>1350<br>1351 | Note: Suggestions regarding the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selection of the selectio | ta appear Gai ction of a 95% ations are bas upon the resul ver all Real W  Observations  Minimum  Maximum  SD  It of Variation flogged Data  Nonparame appear Logno  Ass  Ident's-t UCL  Nonpar   | Suggested Is mma, May we UCL are project of upon data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim orld data set of the sim or | UCL to Use  vant to try Gamma Distribution  ovided to help the user to select the most appropriate 95% UCL a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  clion Free UCL Statistics  outed at 5% Significance Level  nal Distribution  95% UCLs (Adjusted for Skewness) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs  95% Jackknife UCL  | 22<br>1 3.49<br>1.955<br>1.078<br>3.783<br>0.818    |

SLR Page 28 of 42

| 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.187  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Date/Time of Computation   ProUCL 5.112/31/2019 3.58:18 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| From File   SED 0-0.15mbg Chemistry_input_v5.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF   Section   OFF    |        |
| Number of Bootstrap Operations   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000   2000 |        |
| Number of Bootstrap Operations   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| 1356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 1357   97.5% Chebyshev(Mean, Sd) UCL   10.22   99% Chebyshev(Mean, Sd) UCL   1388   1359   Suggested UCL to Use   1360   Data appear Lognormal, May want to try Lognormal Distribution   1361   Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL   1363   Recommendations are based upon data size, data distribution, and skewness.   1364   These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).   1365   However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.   1366   1367   fluorene   1376   Murmber of District Observations   1370   Total Number of Observations   22   Number of Distinct Observations   1371   Number of District Detects   13   Number of Non-Detects   1372   Number of District Detects   13   Number of District Non-Detects   1374   Murmber of District Detects   13   Number of District Non-Detects   1374   Minimum Detect   1.76   Maximum Non-Detect   1375   Maximum Detect   1.76   Maximum Non-Detect   1376   Variance Detects   0.232   Percent Non-Detects   1377   Mean Detects   0.343   SD Detects   1378   Median Detects   0.343   SD Detects   1379   Skewness Detects   0.11   CV Detects   1379   Skewness Detects   0.11   CV Detects   1379   Skewness Detects   0.11   CV Detects   1380   Mean of Logged Detects   -1.733   SD of Logged Detects   1381   Nonperametric Distribution Free UCL Statistics   1384   Nonperametric Distribution Free UCL Statistics   1386   Mean of Logged Detects   0.382   95% KM (PCA) UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   95% KM () UCL   0.375   95% KM () CPC () UCL   1388   100.000000000000000000000000000000000                     | 4.21   |
| Suggested UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| 1359   Data appear Lognormal, May want to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Note: Suggestions regarding the selection of a 95% UCL. are provided to help the user to select the most appropriate 95% UCL.  Recommendations are based upon data size, data distribution, and skewness.  These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).  However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  General Statistics  General Statistics  Total Number of Observations  Number of Distinct Observations  Number of Missing Observations  Number of Detects  Number of Detects  Number of Distinct Non-Detects  Number of Distinct Non-Detects  Number of Distinct Detects  Number of Distinct Detects  Number of Distinct Non-Detects  Number of Detects  Number of Maining Number of Detects  Number of Maining Number of Detects  Number of Detects  Number of Detects  Number of Detects  Number of Missing Number of Number of Number number to Detects  Number of Missing Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Num |        |
| Recommendations are based upon data size, data distribution, and skewness.  These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).  However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Recommendation studies summarized in Singh, Maichle, and Lee (2006).  Recommendations results want to consult a statistician.  Report Statistics  Recommendation studies summarized in Singh, Maich of Distribution and Statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation studies statistics.  Recommendation statistics.  Recommendation studies statistics.  Recommenda |        |
| These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).  However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  General Statistics  Total Number of Deservations Total Number of Deservations Number of Distinct Observations Number of Missing Observations Number of Non-Detects Number of Distinct Detects Number of Detects Number of D |        |
| However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.  Real Morror of Descriptions of Statistics  Total Number of Observations of Statistics  Total Number of Descriptions of Number of Missing Observations of Number of Missing Observations of Number of Descriptions of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number of Number  |        |
| 1366   1367   1368   1369   General Statistics   1370   Total Number of Observations   22   Number of Distinct Observations   1371   Number of Distinct Detects   13   Number of Missing Observations   1372   Number of Distinct Detects   13   Number of Distinct Non-Detects   1374   Minimum Detect   1.76   Maximum Non-Detect   1375   Maximum Detect   1.76   Maximum Non-Detect   1376   Variance Detects   0.232   Percent Non-Detects   1377   Mean Detects   0.343   SD Detects   1378   Median Detects   0.343   SD Detects   1379   Median Detects   0.11   CV Detects   1379   Skewness Detects   2.493   Kurtosis Detects   1380   Mean of Logged Detects   -1.733   SD of Logged Detects   1381   Nonparametric Distribution Free UCL Statistics   1381   Nonparametric Distribution Free UCL Statistics   1384   SD Detected Data appear Gamma Distributed at 5% Significance Level   1385   Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs   1387   SD 0.382   SS KM (BCA) UCL   1388   SP 0.382   SS KM (Percentile Bootstrap) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM (CRA) UCL   1388   SS KM    |        |
| 1367   1368   1369   General Statistics   1370   Total Number of Observations   22   Number of Distinct Observations   1371   Number of Detects   13   Number of Missing Observations   1372   Number of Distinct Detects   13   Number of Distinct Non-Detects   1373   Number of Distinct Detects   13   Number of Distinct Non-Detects   1374   Minimum Detect   0.047   Minimum Non-Detect   1375   Maximum Detect   0.047   Minimum Non-Detect   1375   Maximum Detect   0.047   Maximum Non-Detect   1376   Variance Detects   0.232   Percent Non-Detects   0.232   Percent Non-Detects   0.237   Percent Non-Detects   0.238   Percent Non-Detects   0.239   Percent Non-Detects   0.249   Percent   0.2   |        |
| 1368   1369   General Statistics   1370   Total Number of Observations   22   Number of Distinct Observations   1371   Number of Detects   13   Number of Missing Observations   1372   Number of Distinct Detects   13   Number of Distinct Non-Detects   1373   Number of Distinct Detects   13   Number of Distinct Non-Detects   1374   Minimum Detect   0.047   Minimum Non-Detect   1375   Maximum Detect   1.76   Maximum Non-Detect   1376   Variance Detects   0.232   Percent Non-Detects   1377   Mean Detects   0.232   Percent Non-Detects   1378   Median Detects   0.343   SD Detects   1378   Median Detects   0.11   CV Detects   1379   Skewness Detects   2.493   Kurtosis Detects   1380   Mean of Logged Detects   -1.733   SD of Logged Detects   1381   SD of Logged Detects   1382   Nonparametric Distribution Free UCL Statistics   1383   Detected Data appear Gamma Distributed at 5% Significance Level   1384   1385   Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs   1386   Mean   0.229   Standard Error of Mean   0.238   95% KM (Exceptible Bootstrap) UCL   1388   95% KM (C) UCL   0.375   95% KM (Percentile Bootstrap) UCL   1388   95% KM (C) UCL   0.375   95% KM (Percentile Bootstrap) UCL   1388   95% KM (C) UCL   0.375   95% KM (Percentile Bootstrap) UCL   1388   1388   95% KM (C) UCL   0.375   95% KM (Percentile Bootstrap) UCL   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   1388   138   |        |
| 1369   Total Number of Observations   122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 1370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3      |
| Number of Detects   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1      |
| 1373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9      |
| 1374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1      |
| 1375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1    |
| 1376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1    |
| 1377   Mean Detects   0.343   SD Detects     1378   Median Detects   0.11   CV Detects     1379   Skewness Detects   2.493   Kurtosis Detects     1380   Mean of Logged Detects   -1.733   SD of Logged Detects     1381     1382   Nonparametric Distribution Free UCL Statistics     1383   Detected Data appear Gamma Distributed at 5% Significance Level     1384     1385   Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs     1386   Mean   0.229   Standard Error of Mean     1387   SD   0.382   95% KM (BCA) UCL     1388   95% KM (t) UCL   0.375   95% KM (Percentile Bootstrap) UCL     1388   95% KM (t) UCL   0.375   95% KM (Percentile Bootstrap) UCL     1389   O.600   O.   | 0.91%  |
| 1378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.482  |
| 1380   Mean of Logged Detects   -1.733   SD of Logged Detects     1381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.405  |
| 1381   Nonparametric Distribution Free UCL Statistics     1383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.637  |
| 1382   Nonparametric Distribution Free UCL Statistics     1383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.144  |
| 1382   Detected Data appear Gamma Distributed at 5% Significance Level   1384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| 1384           1385         Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs           1386         Mean         0.229         Standard Error of Mean         0.230           1387         SD         0.382         95% KM (BCA) UCL           1388         95% KM (t) UCL         0.375         95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| 1385         Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs           1386         Mean         0.229         Standard Error of Mean         0.239           1387         SD         0.382         95% KM (BCA) UCL           1388         95% KM (t) UCL         0.375         95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| 1386   Mean   0.229   Standard Error of Mean   0.387   SD   0.382   95% KM (BCA) UCL   1388   95% KM (t) UCL   0.375   95% KM (Percentile Bootstrap) UCL   0.375   95% KM (Percentile Bootstrap) UCL   0.375   0.387   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   0.388   |        |
| 1380 1387 SD 0.382 95% KM (BCA) UCL 1388 95% KM (t) UCL 0.375 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0847 |
| 1388 95% KM (t) UCL 0.375 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.395  |
| 050/ KAA (~) HOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.383  |
| 113021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.67   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.598  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.072  |
| 1392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| 1394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.585  |
| 1395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.115  |
| 1396 KM Standard Error of Mean (logged) 0.229 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.334  |
| 1397 Suggested LICL to Lieu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Suggested UCL to Use  Data appear Gamma, May want to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Note: Suggestions regarding the colection of a 0.5% LICL are provided to help the user to colect the most appropriate 0.5% LICL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| Percommondations are based upon data size, data distribution, and skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
| These recommendations are based upon the results of the simulation studies summarized in Singh Maighle and Lee (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| However, simulations results will not cover all Peal World data sets; for additional insight the user may want to consult a statistician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| 1403 However, simulations results will not cover all near world data sets, for additional insight the user may want to consult a statistical.  1403 1403 1403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |

SLR Page 29 of 42

|              | A B C                                           | D E                       | F               | G H I J K                                                             | L              |
|--------------|-------------------------------------------------|---------------------------|-----------------|-----------------------------------------------------------------------|----------------|
| 1            |                                                 | Nonparametric UC          | L Statistics    | for Data Sets with Non-Detects                                        |                |
| 2            | Harri Calanta di Ontiana                        |                           |                 |                                                                       |                |
| 3            | User Selected Options  Date/Time of Computation | ProUCL 5.112/31/2019 3    | 0-E0-10 DM      |                                                                       |                |
| 4            | ,                                               | SED 0-0.15mbg Chemisi     |                 | vle                                                                   |                |
| 5            |                                                 | OFF                       | uy_iiiput_vo    | .Alo                                                                  |                |
| 6            |                                                 | 95%                       |                 |                                                                       |                |
| 7            |                                                 | 2000                      |                 |                                                                       |                |
| 8<br>9<br>10 |                                                 |                           |                 |                                                                       |                |
|              | indeno(1,2,3-cd)pyrene                          |                           |                 |                                                                       |                |
| 1407         |                                                 |                           |                 |                                                                       |                |
| 1408         |                                                 |                           |                 | Statistics                                                            |                |
| 1409         | Total N                                         | Number of Observations    | 22              | Number of Distinct Observations                                       | 19             |
| 1410         |                                                 |                           |                 | Number of Missing Observations                                        | 1              |
| 1411         |                                                 | Minimum                   | 0.11            | Mean                                                                  | 0.603          |
| 1412         |                                                 | Maximum                   | 3.45            | Median                                                                | 0.42           |
| 1413         |                                                 | SD SD                     | 0.698           | Std. Error of Mean                                                    | 0.149          |
| 1414         |                                                 | Coefficient of Variation  | 1.157<br>-0.835 | Skewness<br>SD of legged Date                                         | 3.547<br>0.754 |
| 1415         |                                                 | Mean of logged Data       | -0.635          | SD of logged Data                                                     | 0.754          |
| 1416         |                                                 | Nonnarama                 | trio Diotribu   | tion Free UCL Statistics                                              |                |
| 1417         |                                                 | <u> </u>                  |                 | Distributed at 5% Significance Level                                  |                |
| 1418         |                                                 | Data appeal Approxima     | ite dallilla    | Distributed at 5% Oigninicance Level                                  |                |
| 1419         |                                                 | Ass                       | sumina Nori     | mal Distribution                                                      |                |
| 1420         | 95% No                                          | rmal UCL                  | Julining Hori   | 95% UCLs (Adjusted for Skewness)                                      |                |
| 1421         |                                                 | 95% Student's-t UCL       | 0.859           | 95% Adjusted-CLT UCL (Chen-1995)                                      | 0.968          |
| 1422         |                                                 |                           |                 | 95% Modified-t UCL (Johnson-1978)                                     | 0.878          |
| 1423         |                                                 |                           |                 | (                                                                     |                |
| 1424         |                                                 | Nonpar                    | ametric Dis     | tribution Free UCLs                                                   |                |
| 1425<br>1426 |                                                 | 95% CLT UCL               | 0.848           | 95% Jackknife UCL                                                     | 0.859          |
| 1427         | 95% S                                           | Standard Bootstrap UCL    | 0.843           | 95% Bootstrap-t UCL                                                   | 1.234          |
| 1428         | 95                                              | % Hall's Bootstrap UCL    | 1.859           | 95% Percentile Bootstrap UCL                                          | 0.857          |
| 1429         | 9.                                              | 5% BCA Bootstrap UCL      | 0.997           |                                                                       |                |
| 1430         | 90% Che                                         | byshev(Mean, Sd) UCL      | 1.049           | 95% Chebyshev(Mean, Sd) UCL                                           | 1.252          |
| 1431         | 97.5% Che                                       | byshev(Mean, Sd) UCL      | 1.532           | 99% Chebyshev(Mean, Sd) UCL                                           | 2.083          |
| 1432         |                                                 |                           |                 |                                                                       |                |
| 1433         |                                                 |                           | Suggested       | UCL to Use                                                            |                |
| 1434         |                                                 | Data appear Approxima     | te Gamma,       | May want to try Gamma Distribution                                    |                |
| 1435         |                                                 |                           |                 |                                                                       |                |
| 1436         |                                                 |                           |                 | ovided to help the user to select the most appropriate 95% UCL        |                |
| 1437         |                                                 |                           | <u> </u>        | ta size, data distribution, and skewness.                             |                |
| 1438         |                                                 | <u> </u>                  |                 | nulation studies summarized in Singh, Maichle, and Lee (2006).        |                |
| 1439         | However, simulations results                    | will not cover all Real W | orid data se    | ts; for additional insight the user may want to consult a statisticia | an.            |
| 1440         | methylpenhthelene 1                             |                           |                 |                                                                       |                |
| 1441         | methylnaphthalene, 1-                           |                           |                 |                                                                       |                |
| 1442         |                                                 |                           | General         | Statistics                                                            |                |
| 1443         | Total 1                                         | Number of Observations    | 16              | Number of Distinct Observations                                       | 3              |
| 1444         | Totali                                          |                           |                 | Number of Missing Observations                                        | 7              |
| 1445         |                                                 | Number of Detects         | 2               | Number of Non-Detects                                                 | 14             |
| 1446         | Nu                                              | mber of Distinct Detects  | 2               | Number of Distinct Non-Detects                                        | 1              |
| 1447         |                                                 | Minimum Detect            | 0.15            | Minimum Non-Detect                                                    | 0.1            |
| 1448         |                                                 | Maximum Detect            | 0.2             | Maximum Non-Detect                                                    | 0.1            |
| 1449         |                                                 | Variance Detects          | 0.00125         | Percent Non-Detects                                                   | 87.5%          |
| 1450<br>1451 |                                                 | Mean Detects              | 0.175           | SD Detects                                                            | 0.0354         |
|              |                                                 | Median Detects            | 0.175           | CV Detects                                                            | 0.202          |
| 1452         |                                                 | Skewness Detects          | N/A             | Kurtosis Detects                                                      | N/A            |
| 1453         |                                                 | Mean of Logged Detects    | -1.753          | SD of Logged Detects                                                  | 0.203          |
| 1454         | יו                                              |                           | , 55            | OD of Logged Detects                                                  | 3.200          |

SLR Page 30 of 42

|      | A B C                          | D E                         | F             | G H I J K I                                                           | 1       |
|------|--------------------------------|-----------------------------|---------------|-----------------------------------------------------------------------|---------|
| 1    | Α Β Ο                          |                             |               | for Data Sets with Non-Detects                                        |         |
| 2    |                                |                             |               |                                                                       |         |
| 3    | User Selected Options          |                             |               |                                                                       |         |
| 4    | Date/Time of Computation       | ProUCL 5.112/31/2019 3      | 3:58:18 PM    |                                                                       |         |
| 5    | From File                      | SED 0-0.15mbg Chemis        | try_input_v5  | xls                                                                   |         |
| 6    | Full Precision                 | OFF                         |               |                                                                       |         |
| 7    | Confidence Coefficient         | 95%                         |               |                                                                       |         |
| 8    | Number of Bootstrap Operations | 2000                        |               |                                                                       |         |
| ÿ    |                                |                             |               |                                                                       |         |
| 1455 |                                |                             |               |                                                                       |         |
| 1456 |                                |                             |               | only 2 Detected Values.                                               |         |
| 1457 | Th                             | is is not enough to comp    | ute meanin    | gful or reliable statistics and estimates.                            |         |
| 1458 |                                |                             |               |                                                                       |         |
| 1459 |                                |                             |               |                                                                       |         |
| 1460 |                                | <u> </u>                    |               | tion Free UCL Statistics                                              |         |
| 1461 |                                | Data do not follow a Di     | scernible D   | stribution at 5% Significance Level                                   |         |
| 1462 |                                |                             |               |                                                                       |         |
| 1463 | Kaplan-N                       |                             |               | ritical Values and other Nonparametric UCLs                           |         |
| 1464 |                                | Mean                        | 0.109         | Standard Error of Mean                                                | 0.00931 |
| 1465 |                                | SD                          | 0.0263        | 95% KM (BCA) UCL                                                      | N/A     |
| 1466 |                                | 95% KM (t) UCL              | 0.126         | 95% KM (Percentile Bootstrap) UCL                                     | N/A     |
| 1467 |                                | 95% KM (z) UCL              | 0.125         | 95% KM Bootstrap t UCL                                                | N/A     |
| 1468 |                                | 0% KM Chebyshev UCL         | 0.137         | 95% KM Chebyshev UCL                                                  | 0.15    |
| 1469 | 97.                            | 5% KM Chebyshev UCL         | 0.168         | 99% KM Chebyshev UCL                                                  | 0.202   |
| 1470 |                                |                             |               |                                                                       |         |
| 1471 | Statis                         |                             |               | Data and Assuming Lognormal Distribution                              |         |
| 1472 |                                | KM SD (logged)              | 0.189         | 95% Critical H Value (KM-Log)                                         | 1.793   |
| 1473 |                                | KM Mean (logged)            | -2.234        | KM Geo Mean                                                           | 0.107   |
| 1474 | KM Standar                     | d Error of Mean (logged)    | 0.0667        | 95% H-UCL (KM -Log)                                                   | 0.119   |
| 1475 |                                |                             |               |                                                                       |         |
| 1476 |                                |                             |               | UCL to Use                                                            |         |
| 1477 |                                | 95% KM (t) UCL              | 0.126         | KM H-UCL                                                              | 0.119   |
| 1478 |                                | 95% KM (BCA) UCL            | N/A           |                                                                       |         |
| 1479 |                                |                             |               | mended UCL(s) not available!                                          |         |
| 1480 |                                |                             |               | ovided to help the user to select the most appropriate 95% UCL        |         |
| 1481 |                                |                             | <u> </u>      | a size, data distribution, and skewness.                              |         |
| 1482 |                                | <u> </u>                    |               | nulation studies summarized in Singh, Maichle, and Lee (2006).        |         |
| 1483 | However, simulations result    | s will not cover all Real W | orid data se  | ts; for additional insight the user may want to consult a statisticia | an.     |
| 1484 | methylperhebelese 2            |                             |               |                                                                       |         |
| 1485 | methylnaphthalene, 2-          |                             |               |                                                                       |         |
| 1486 |                                |                             | Conoral       | Ctatistica                                                            |         |
| 1487 | Tatal                          | Number of Observations      | 22            | Statistics  Number of Distinct Observations                           | 8       |
| 1488 | i Olai                         | reminer of Onservations     |               | Number of Missing Observations                                        | 1       |
| 1489 |                                | Number of Detects           | 9             | Number of Non-Detects                                                 | 13      |
| 1490 | NI.                            | umber of Detects            | 8             | Number of Non-Detects  Number of Distinct Non-Detects                 | 1       |
| 1491 | INC                            | Minimum Detect              | 0.0096        | Minimum Non-Detects                                                   | 0.1     |
| 1492 |                                | Maximum Detect              | 0.0090        | Maximum Non-Detect                                                    | 0.1     |
| 1493 |                                | Variance Detects            | 0.0142        | Percent Non-Detects                                                   | 59.09%  |
| 1494 |                                | Mean Detects                | 0.0142        | SD Detects                                                            | 0.119   |
| 1495 |                                | Median Detects              | 0.034         | CV Detects                                                            | 1.244   |
| 1496 |                                | Skewness Detects            | 1.382         | Kurtosis Detects                                                      | 0.255   |
| 1497 |                                | Mean of Logged Detects      | -3.083        | SD of Logged Detects                                                  | 1.315   |
| 1498 |                                | can or Logged Delects       | 0.000         | OD OI LOGGED DELECTS                                                  | 1.010   |
| 1499 |                                | Nonnarama                   | tric Dietribu | tion Free UCL Statistics                                              |         |
| 1500 | Dot                            |                             |               | mal Distributed at 5% Significance Level                              |         |
| 1501 | Det                            | osou pala appeal Appli      | minate NUI    | S. Salbatoa at 070 Significanto E040                                  |         |
| 1502 |                                |                             |               |                                                                       |         |

SLR Page 31 of 42

City of Hamilton Ecological Risk Assessment - Chedoke Creek SLR Project No.: 209.40666 January 2020

|              | A B C                            | D E                               | F            | G                  | Н               | I         | J             | K         | $\Box$  | L      |
|--------------|----------------------------------|-----------------------------------|--------------|--------------------|-----------------|-----------|---------------|-----------|---------|--------|
| 1            | <del>-</del>                     | Nonparametric UC                  | L Statistics | for Data Sets w    | ith Non-Detec   | ts        |               |           |         |        |
| 2            |                                  |                                   |              |                    |                 |           |               |           |         |        |
| 3            | User Selected Options            |                                   |              |                    |                 |           |               |           |         |        |
| 4            | Date/Time of Computation P       | ProUCL 5.112/31/2019 3            | :58:18 PM    |                    |                 |           |               |           |         |        |
| 5            | From File S                      | ED 0-0.15mbg Chemist              | try_input_v5 | .xls               |                 |           |               |           |         |        |
| 6            | Full Precision C                 | )FF                               |              |                    |                 |           |               |           |         |        |
| 7            | Confidence Coefficient 9         | 5%                                |              |                    |                 |           |               |           |         |        |
| 8            | Number of Bootstrap Operations 2 | 000                               |              |                    |                 |           |               |           |         |        |
| 9            |                                  |                                   |              |                    |                 |           |               |           | =       |        |
| 1503         | Kaplan-Me                        | eier (KM) Statistics usin         |              | ritical Values a   | nd other Nonp   |           |               |           |         |        |
| 1504         |                                  | Mean                              | 0.0554       |                    |                 | S         | Standard Er   |           |         | 0.0193 |
| 1505         |                                  | SD                                | 0.0809       |                    |                 |           | 95% KM        | , ,       |         | 0.0877 |
| 1506         |                                  | 95% KM (t) UCL                    | 0.0886       |                    | 95%             | •         | centile Boo   |           |         | 0.0886 |
| 1507         |                                  | 95% KM (z) UCL                    | 0.0871       |                    |                 |           | % KM Boo      |           |         | 0.117  |
| 1508         |                                  | % KM Chebyshev UCL                | 0.113        |                    |                 |           | % KM Chel     |           |         | 0.139  |
| 1509         | 97.59                            | % KM Chebyshev UCL                | 0.176        |                    |                 | 999       | % KM Chel     | oyshev I  | JCL     | 0.247  |
| 1510         |                                  |                                   |              |                    |                 |           |               |           |         |        |
| 1511         | Statistic                        | s using KM estimates              |              | Data and Assun     | ning Lognorma   |           |               |           |         |        |
| 1512         |                                  | KM SD (logged)                    | 1.018        |                    |                 | 95% Crit  | tical H Valu  | `         | ٠,      | 2.607  |
| 1513         |                                  | KM Mean (logged)                  | -3.53        |                    |                 |           |               | /I Geo N  |         | 0.0293 |
| 1514         | KM Standard                      | Error of Mean (logged)            | 0.311        |                    |                 |           | 95% H-UC      | L (KM -   | ∟og)    | 0.0878 |
| 1515         |                                  |                                   |              |                    |                 |           |               |           |         |        |
| 1516         |                                  |                                   |              | UCL to Use         |                 |           |               |           |         |        |
| 1517         |                                  | Data appear No                    |              |                    |                 |           |               |           |         |        |
| 1518         | Note: Suggestions regarding      |                                   |              |                    |                 |           | st appropri   | ate 95%   | , UCL   |        |
| 1519         |                                  | commendations are bas             |              |                    |                 |           |               |           |         |        |
| 1520         | These recommendations a          |                                   |              |                    |                 | •         |               | ,         |         |        |
| 1521         | However, simulations results     | will not cover all Real W         | orld data se | ts; for additional | insight the use | er may wa | ant to cons   | ult a sta | tistici | an.    |
| 1522         |                                  |                                   |              |                    |                 |           |               |           |         |        |
| 1523         | naphthalene                      |                                   |              |                    |                 |           |               |           |         |        |
| 1524         |                                  |                                   |              | 0                  |                 |           |               |           |         |        |
| 1525         |                                  |                                   |              | Statistics         |                 |           | <u> </u>      |           |         |        |
| 1526         | I otal N                         | umber of Observations             | 22           |                    |                 |           | f Distinct O  |           |         | 11     |
| 1527         |                                  |                                   |              |                    | N               |           | f Missing O   |           |         | 1      |
| 1528         |                                  | Number of Detects                 | 11           |                    |                 |           | lumber of N   |           |         | 11     |
| 1529         | Num                              | nber of Distinct Detects          | 10           |                    |                 | Number o  | of Distinct N |           |         | 1      |
| 1530         |                                  | Minimum Detect                    | 0.0089       |                    |                 |           | Minimum       |           |         | 0.1    |
| 1531         |                                  | Maximum Detect                    | 0.98         |                    |                 |           | Maximum       |           |         | 0.1    |
| 1532         |                                  | Variance Detects                  | 0.0782       |                    |                 |           | Percent N     |           |         | 50%    |
| 1533         |                                  | Mean Detects  Median Detects      | 0.177        |                    |                 |           |               | SD Det    |         | 0.28   |
| 1534         |                                  | 0.13                              |              |                    |                 |           | CV Det        |           | 1.578   |        |
| 1535         | 1.1                              | Skewness Detects                  | 2.779        |                    |                 |           |               | osis Det  |         | 8.388  |
| 1536         | M <sub>1</sub>                   | ean of Logged Detects             | -2.676       |                    |                 |           | SD of Log     | gea Det   | ects    | 1.506  |
| 1            |                                  |                                   |              |                    |                 |           |               |           |         |        |
| 1537         |                                  | M                                 | Min Direct   |                    | Danalnalı -     |           |               |           |         |        |
| 1537<br>1538 |                                  | •                                 |              | tion Free UCL      |                 |           |               |           |         |        |
|              |                                  | Nonparame<br>Detected Data appear |              |                    |                 | Level     |               |           |         |        |

SLR Page 32 of 42

| 1                                                                                                                                                                    | А В С                          | D E                                                                                                                                                                                                                       | F (                                                                                                                                    | G H I J K                                                                                                                                                                                                                                                                                                                                        | L                                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                      | ,                              | Nonparametric UCI                                                                                                                                                                                                         | L Statistics for Date                                                                                                                  | ta Sets with Non-Detects                                                                                                                                                                                                                                                                                                                         |                                                                                             |  |  |  |  |
| 2                                                                                                                                                                    |                                |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 3                                                                                                                                                                    | User Selected Options          |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 4                                                                                                                                                                    | Date/Time of Computation       |                                                                                                                                                                                                                           | UCL 5.112/31/2019 3:58:18 PM                                                                                                           |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 5                                                                                                                                                                    | From File                      | SED 0-0.15mbg Chemist                                                                                                                                                                                                     | ry_input_v5.xls                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 6                                                                                                                                                                    | Full Precision                 | OFF                                                                                                                                                                                                                       |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 7                                                                                                                                                                    | Confidence Coefficient         | 95%                                                                                                                                                                                                                       |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 8<br>9                                                                                                                                                               | Number of Bootstrap Operations | 2000                                                                                                                                                                                                                      |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
|                                                                                                                                                                      | Kaplan-N                       | Meier (KM) Statistics usin                                                                                                                                                                                                | a Normal Critical                                                                                                                      | Values and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                              |                                                                                             |  |  |  |  |
| 1541<br>1542                                                                                                                                                         |                                | Mean                                                                                                                                                                                                                      | 0.0975                                                                                                                                 | Standard Error of Mean                                                                                                                                                                                                                                                                                                                           | 0.0458                                                                                      |  |  |  |  |
| 1543                                                                                                                                                                 |                                | SD                                                                                                                                                                                                                        | 0.205                                                                                                                                  | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                 | 0.191                                                                                       |  |  |  |  |
| 1544                                                                                                                                                                 |                                | 95% KM (t) UCL                                                                                                                                                                                                            | 0.176                                                                                                                                  | 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                | 0.181                                                                                       |  |  |  |  |
| 1545                                                                                                                                                                 |                                | 95% KM (z) UCL                                                                                                                                                                                                            | 0.173                                                                                                                                  | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                           | 0.305                                                                                       |  |  |  |  |
| 1546                                                                                                                                                                 | 9                              | 0% KM Chebyshev UCL                                                                                                                                                                                                       | 0.235                                                                                                                                  | 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                             | 0.297                                                                                       |  |  |  |  |
| 1547                                                                                                                                                                 | 97.                            | 5% KM Chebyshev UCL                                                                                                                                                                                                       | 0.384                                                                                                                                  | 99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                             | 0.553                                                                                       |  |  |  |  |
| 1548                                                                                                                                                                 |                                | -                                                                                                                                                                                                                         | '                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1549                                                                                                                                                                 | Statis                         | tics using KM estimates o                                                                                                                                                                                                 | on Logged Data a                                                                                                                       | nd Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                               |                                                                                             |  |  |  |  |
| 1550                                                                                                                                                                 |                                | KM SD (logged)                                                                                                                                                                                                            | 1.279                                                                                                                                  | 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                    | 2.992                                                                                       |  |  |  |  |
| 1551                                                                                                                                                                 |                                | KM Mean (logged)                                                                                                                                                                                                          | -3.395                                                                                                                                 | KM Geo Mean                                                                                                                                                                                                                                                                                                                                      | 0.0335                                                                                      |  |  |  |  |
| 1552                                                                                                                                                                 | KM Standar                     | d Error of Mean (logged)                                                                                                                                                                                                  | 0.309                                                                                                                                  | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                              | 0.175                                                                                       |  |  |  |  |
| 1553                                                                                                                                                                 |                                |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1554                                                                                                                                                                 |                                |                                                                                                                                                                                                                           | Suggested UCL to                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1555                                                                                                                                                                 | N . 0                          |                                                                                                                                                                                                                           |                                                                                                                                        | o try Gamma Distribution                                                                                                                                                                                                                                                                                                                         |                                                                                             |  |  |  |  |
| 1556                                                                                                                                                                 | •                              | •                                                                                                                                                                                                                         |                                                                                                                                        | to help the user to select the most appropriate 95% UCL., data distribution, and skewness.                                                                                                                                                                                                                                                       | •                                                                                           |  |  |  |  |
| 1557                                                                                                                                                                 |                                |                                                                                                                                                                                                                           |                                                                                                                                        | n studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                          |                                                                                             |  |  |  |  |
| 1558                                                                                                                                                                 |                                |                                                                                                                                                                                                                           |                                                                                                                                        | additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                    | ın                                                                                          |  |  |  |  |
| 1559                                                                                                                                                                 | Trowever, difficultions result | o wiii not cover all recar vi                                                                                                                                                                                             | 0110 0010, 101 0                                                                                                                       | additional moight the doct may want to consult a statistical                                                                                                                                                                                                                                                                                     |                                                                                             |  |  |  |  |
| 1560                                                                                                                                                                 |                                |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1561<br>1562                                                                                                                                                         | phenanthrene                   |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
|                                                                                                                                                                      |                                |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1563                                                                                                                                                                 |                                |                                                                                                                                                                                                                           |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1563<br>1564                                                                                                                                                         |                                |                                                                                                                                                                                                                           | General Statist                                                                                                                        | tics                                                                                                                                                                                                                                                                                                                                             |                                                                                             |  |  |  |  |
| 1564                                                                                                                                                                 | Total                          | Number of Observations                                                                                                                                                                                                    | General Statist                                                                                                                        | tics  Number of Distinct Observations                                                                                                                                                                                                                                                                                                            | 21                                                                                          |  |  |  |  |
|                                                                                                                                                                      | Total                          | Number of Observations                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  | 21                                                                                          |  |  |  |  |
| 1564<br>1565                                                                                                                                                         | Total                          | Number of Observations  Minimum                                                                                                                                                                                           |                                                                                                                                        | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                  |                                                                                             |  |  |  |  |
| 1564<br>1565<br>1566                                                                                                                                                 | Total                          |                                                                                                                                                                                                                           | 22                                                                                                                                     | Number of Distinct Observations Number of Missing Observations                                                                                                                                                                                                                                                                                   | 1                                                                                           |  |  |  |  |
| 1564<br>1565<br>1566<br>1567                                                                                                                                         | Total                          | Minimum<br>Maximum<br>SD                                                                                                                                                                                                  | 0.25<br>16.5<br>3.766                                                                                                                  | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                                                    | 1<br>2.293<br>0.875<br>0.803                                                                |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568                                                                                                                                 | Total                          | Minimum<br>Maximum<br>SD<br>Coefficient of Variation                                                                                                                                                                      | 0.25<br>16.5<br>3.766<br>1.642                                                                                                         | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness                                                                                                                                                                                                                                           | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569                                                                                                                         | Total                          | Minimum<br>Maximum<br>SD                                                                                                                                                                                                  | 0.25<br>16.5<br>3.766                                                                                                                  | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                                                    | 1<br>2.293<br>0.875<br>0.803                                                                |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570                                                                                                                 | Total                          | Minimum Maximum SD Coefficient of Variation Mean of logged Data                                                                                                                                                           | 0.25<br>16.5<br>3.766<br>1.642<br>0.163                                                                                                | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                         | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571                                                                                                         | Total                          | Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame                                                                                                                                                 | 0.25<br>16.5<br>3.766<br>1.642<br>0.163                                                                                                | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                         | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572                                                                                                 | Total                          | Minimum Maximum SD Coefficient of Variation Mean of logged Data Nonparame                                                                                                                                                 | 0.25<br>16.5<br>3.766<br>1.642<br>0.163                                                                                                | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                         | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575                                                                         | Total                          | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo                                                                                                                                 | 0.25<br>16.5<br>3.766<br>1.642<br>0.163<br>tric Distribution Fr                                                                        | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics e Distribution (0.05)                                                                                                                                                                               | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576                                                                 |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo                                                                                                                                 | 0.25<br>16.5<br>3.766<br>1.642<br>0.163                                                                                                | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics e Distribution (0.05)                                                                                                                                                                               | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577                                                         |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo                                                                                                                                 | 0.25 16.5 3.766 1.642 0.163  tric Distribution Fr                                                                                      | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics e Distribution (0.05)                                                                                                                                                                               | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033                                              |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578                                                 |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo                                                                                                                                 | 0.25<br>16.5<br>3.766<br>1.642<br>0.163<br>tric Distribution Fr                                                                        | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution (0.05)  stribution 95% UCLs (Adjusted for Skewness)                                                                                                                                    | 1<br>2.293<br>0.875<br>0.803<br>3.124                                                       |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1579                                         |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo                                                                                                                                 | 0.25 16.5 3.766 1.642 0.163  tric Distribution Fr                                                                                      | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics e Distribution (0.05)  stribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033                                              |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1579<br>1580                                 |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  ormal UCL 95% Student's-t UCL                                                                                             | 0.25 16.5 3.766 1.642 0.163  tric Distribution Fr                                                                                      | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution (0.05)  stribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033                                              |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1569<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1578<br>1579<br>1580<br>1581                 |                                | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  ormal UCL 95% Student's-t UCL                                                                                             | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Discernible 3.675                                   | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution (0.05)  stribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033                                              |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1579<br>1580<br>1581<br>1582                         | 95% No                         | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  ormal UCL 95% Student's-t UCL                                                                                             | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Discernible 3.675                                   | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution (0.05)  stribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033<br>4.185<br>3.764                            |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1579<br>1580<br>1581<br>1582<br>1583                 | 95% No                         | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  ormal UCL 95% Student's-t UCL  Nonparame 195% CLT UCL                                                                     | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Dis                                                 | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) on Free UCLs                                                                       | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033<br>4.185<br>3.764                            |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1578<br>1579<br>1580<br>1581<br>1582                         | 95% No.                        | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  ormal UCL 95% Student's-t UCL  Nonparame 95% CLT UCL Standard Bootstrap UCL                                               | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Dis                                                 | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  on Free UCLs 95% Bootstrap-t UCL                                                  | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033<br>4.185<br>3.764                            |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1588<br>1589<br>1580<br>1581<br>1582<br>1583                 | 95% No.                        | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  Ormal UCL 95% Student's-t UCL  Nonparame 95% CLT UCL  Standard Bootstrap UCL 5% Hall's Bootstrap UCL                      | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Dis 3.675  ametric Distributio 3.614 3.6 9.29       | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  on Free UCLs 95% Bootstrap-t UCL                                                  | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033<br>4.185<br>3.764                            |  |  |  |  |
| 1564<br>1565<br>1566<br>1567<br>1568<br>1570<br>1571<br>1572<br>1573<br>1574<br>1575<br>1576<br>1577<br>1588<br>1589<br>1580<br>1581<br>1582<br>1583<br>1584<br>1585 | 95% No.                        | Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data do not fo  Ass  Ormal UCL 95% Student's-t UCL  Nonparame 95% CLT UCL  Standard Bootstrap UCL 5% Hall's Bootstrap UCL 5% BCA Bootstrap UCL | 0.25 16.5 3.766 1.642 0.163  tric Distribution Frollow a Discernible suming Normal Dis 3.675  ametric Distributio 3.614 3.6 9.29 4.336 | Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  ree UCL Statistics Distribution (0.05)  stribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  on Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL | 1<br>2.293<br>0.875<br>0.803<br>3.124<br>1.033<br>4.185<br>3.764<br>3.675<br>6.822<br>3.672 |  |  |  |  |

SLR Page 33 of 42

|                                                      | A B C                                                                                  |                                                                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I I J K                                                                                              |       |  |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------|--|--|--|--|
| _                                                    | A B C                                                                                  | D E Nonparametric UC                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G H I J K for Data Sets with Non-Detects                                                                 |       |  |  |  |  |
| 1                                                    |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 2                                                    | User Selected Options                                                                  |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 3                                                    | Date/Time of Computation                                                               | ProUCL 5.112/31/2019 3                                           | 3:58:18 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |       |  |  |  |  |
| 5                                                    | From File                                                                              | From File SED 0-0.15mbg Chemistry_input_v5.xls                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 6                                                    | Full Precision                                                                         | Full Precision OFF                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 7                                                    | Confidence Coefficient                                                                 | 95%                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 8                                                    | Number of Bootstrap Operations                                                         | 2000                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 9                                                    |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1589                                                 |                                                                                        |                                                                  | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL to Use                                                                                               |       |  |  |  |  |
| 1590                                                 | 95% Che                                                                                | byshev (Mean, Sd) UCL                                            | 5.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |       |  |  |  |  |
| 1591                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1592                                                 | Note: Suggestions regardi                                                              | ing the selection of a 95%                                       | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rovided to help the user to select the most appropriate 95% UCL.                                         |       |  |  |  |  |
| 1593                                                 | R                                                                                      | ecommendations are bas                                           | ed upon da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ta size, data distribution, and skewness.                                                                |       |  |  |  |  |
| 1594                                                 | These recommendations                                                                  | are based upon the resu                                          | lts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nulation studies summarized in Singh, Maichle, and Lee (2006).                                           |       |  |  |  |  |
| 1595                                                 | However, simulations result                                                            | s will not cover all Real W                                      | orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ets; for additional insight the user may want to consult a statistician                                  | ۱.    |  |  |  |  |
| 1596                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1597                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1598                                                 | pyrene                                                                                 |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1599                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1600                                                 |                                                                                        |                                                                  | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statistics                                                                                               |       |  |  |  |  |
| 1601                                                 | Total                                                                                  | Number of Observations                                           | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of Distinct Observations                                                                          | 22    |  |  |  |  |
| 1602                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Missing Observations                                                                           | 1     |  |  |  |  |
| 1603                                                 |                                                                                        | Minimum                                                          | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean                                                                                                     | 2.696 |  |  |  |  |
| 1604                                                 |                                                                                        | Maximum                                                          | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Median                                                                                                   | 1.49  |  |  |  |  |
| 1605                                                 |                                                                                        | SD                                                               | 3.887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Std. Error of Mean                                                                                       | 0.829 |  |  |  |  |
| 1606                                                 |                                                                                        | Coefficient of Variation                                         | 1.441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skewness                                                                                                 | 3.804 |  |  |  |  |
| 1607                                                 |                                                                                        | Mean of logged Data                                              | 0.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD of logged Data                                                                                        | 0.815 |  |  |  |  |
| 1608                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1609                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Free UCL Statistics                                                                                 |       |  |  |  |  |
| 1610                                                 |                                                                                        | Data appear Logne                                                | ormal Distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | buted at 5% Significance Level                                                                           |       |  |  |  |  |
| 1611                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1612                                                 |                                                                                        |                                                                  | suming Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mal Distribution                                                                                         |       |  |  |  |  |
| 1613                                                 | 95% No                                                                                 | ormal UCL                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                         |       |  |  |  |  |
| 1614                                                 |                                                                                        | 95% Student's-t UCL                                              | 4.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Adjusted-CLT UCL (Chen-1995)                                                                         | 4.778 |  |  |  |  |
| 1615                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Modified-t UCL (Johnson-1978)                                                                        | 4.234 |  |  |  |  |
| 1616                                                 |                                                                                        |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                          |       |  |  |  |  |
| 1617                                                 |                                                                                        | •                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tribution Free UCLs                                                                                      | 4.400 |  |  |  |  |
| 1618                                                 |                                                                                        | 95% CLT UCL                                                      | 4.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Jackknife UCL                                                                                        | 4.122 |  |  |  |  |
| 1619                                                 |                                                                                        | Standard Bootstrap UCL                                           | 4.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Bootstrap-t UCL                                                                                      | 7.339 |  |  |  |  |
| 1620                                                 |                                                                                        | 5% Hall's Bootstrap UCL                                          | 9.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Percentile Bootstrap UCL                                                                             | 4.095 |  |  |  |  |
| 1621                                                 |                                                                                        | 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL                      | 4.973                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0EV Chahyahay/Maan Cd 1101                                                                               | 6 200 |  |  |  |  |
| 1622                                                 | 07 F9/ Ch                                                                              | , , , ,                                                          | 5.182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Chebyshev(Mean, Sd) UCL                                                                              | 6.308 |  |  |  |  |
| 1623                                                 |                                                                                        | ebyshev(Mean, Sd) UCL                                            | 7.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% Chebyshev(Mean, Sd) UCL                                                                              | 10.94 |  |  |  |  |
| 1624                                                 |                                                                                        |                                                                  | Quagasts 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IICI to IIco                                                                                             |       |  |  |  |  |
|                                                      | 1                                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL to Use vant to try Lognormal Distribution                                                            |       |  |  |  |  |
| 1625                                                 |                                                                                        | Data appear Lacres                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rant to try Lognorniai Distributiofi                                                                     |       |  |  |  |  |
| 1625<br>1626                                         |                                                                                        | Data appear Lognor                                               | iliai, iviay w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |       |  |  |  |  |
| 1625<br>1626<br>1627                                 | Note: Suggestions regard                                                               | •                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | royided to help the user to select the most appropriate 05% LICE                                         |       |  |  |  |  |
| 1625<br>1626<br>1627<br>1628                         | Note: Suggestions regardi                                                              | ing the selection of a 95%                                       | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rovided to help the user to select the most appropriate 95% UCL.                                         |       |  |  |  |  |
| 1625<br>1626<br>1627<br>1628<br>1629                 | Note: Suggestions regard                                                               | ing the selection of a 95% ecommendations are bas                | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ta size, data distribution, and skewness.                                                                |       |  |  |  |  |
| 1625<br>1626<br>1627<br>1628<br>1629<br>1630         | Note: Suggestions regards R These recommendations                                      | ng the selection of a 95% ecommendations are based upon the resu | UCL are predupon dated upon dated the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress | ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). |       |  |  |  |  |
| 1625<br>1626<br>1627<br>1628<br>1629<br>1630<br>1631 | Note: Suggestions regardi<br>R<br>These recommendations<br>However, simulations result | ng the selection of a 95% ecommendations are based upon the resu | UCL are predupon dated upon dated the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress | ta size, data distribution, and skewness.                                                                | 1.    |  |  |  |  |
| 1625<br>1626<br>1627<br>1628<br>1629<br>1630         | Note: Suggestions regardi<br>R<br>These recommendations<br>However, simulations result | ng the selection of a 95% ecommendations are based upon the resu | UCL are predupon dated upon dated the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress of the single stress | ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). | 1.    |  |  |  |  |

SLR Page 34 of 42

|                      | A B C                          | D E                              | F              | G H I J K                                                             | L            |
|----------------------|--------------------------------|----------------------------------|----------------|-----------------------------------------------------------------------|--------------|
| 1                    |                                | Nonparametric UC                 | L Statistics   | for Data Sets with Non-Detects                                        |              |
| 2                    |                                |                                  |                |                                                                       |              |
| 3                    | User Selected Options          |                                  |                |                                                                       |              |
| 4                    | Date/Time of Computation       | ProUCL 5.112/31/2019 3           |                |                                                                       |              |
| 5                    | From File<br>Full Precision    | SED 0-0.15mbg Chemist            | try_input_v5   | .xis                                                                  |              |
| 6                    | Confidence Coefficient         | 95%                              |                |                                                                       |              |
| 7                    | Number of Bootstrap Operations | 2000                             |                |                                                                       |              |
| 8<br>9<br>10         | Number of Bootstrap Operations | 2000                             |                |                                                                       |              |
| 1634                 | ammonia and ammonium (as N)    |                                  |                |                                                                       |              |
| 1635                 |                                |                                  |                |                                                                       |              |
| 1636                 |                                |                                  | General        | Statistics                                                            |              |
| 1637                 | Total                          | Number of Observations           | 16             | Number of Distinct Observations                                       | 4            |
| 1638                 |                                |                                  |                | Number of Missing Observations                                        | 7            |
| 1639                 |                                | Number of Detects                | 6              | Number of Non-Detects                                                 | 10           |
| 1640                 | Ni                             | umber of Distinct Detects        | 4              | Number of Distinct Non-Detects                                        | 1            |
| 1641                 |                                | Minimum Detect                   | 100            | Minimum Non-Detect                                                    | 100          |
| 1642                 |                                | Maximum Detect                   | 400            | Maximum Non-Detect                                                    | 100          |
| 1643                 |                                | Variance Detects                 | 10667          | Percent Non-Detects                                                   | 62.5%        |
| 1644                 |                                | Mean Detects                     | 233.3          | SD Detects                                                            | 103.3        |
| 1645                 |                                | Median Detects                   | 200            | CV Detects                                                            | 0.443        |
| 1646                 |                                | Skewness Detects                 | 0.666          | Kurtosis Detects                                                      | 0.586        |
| 1647                 |                                | Mean of Logged Detects           | 5.366          | SD of Logged Detects                                                  | 0.469        |
| 1648                 |                                |                                  |                |                                                                       |              |
| 1649                 |                                |                                  |                | tion Free UCL Statistics                                              |              |
| 1650                 |                                | Detected Data appea              | r Normal Di    | stributed at 5% Significance Level                                    |              |
| 1651                 | Vanlan I                       | Asian (ICM) Obstiction well      | - Nomed O      | ultical Values and other Namenaussia LIOLs                            |              |
| 1652                 | Kapian-i                       |                                  |                | ritical Values and other Nonparametric UCLs                           | 22.72        |
| 1653                 |                                | Mean<br>SD                       | 150<br>86.6    | Standard Error of Mean                                                | 23.72<br>N/A |
| 1654                 |                                | _                                | 191.6          | 95% KM (BCA) UCL                                                      | N/A<br>N/A   |
| 1655                 |                                | 95% KM (t) UCL<br>95% KM (z) UCL | 189            | 95% KM (Percentile Bootstrap) UCL<br>95% KM Bootstrap t UCL           | N/A<br>N/A   |
| 1656                 | 0                              | 0% KM Chebyshev UCL              | 221.2          | 95% KM Chebyshev UCL                                                  | 253.4        |
| 1657                 |                                | 5% KM Chebyshev UCL              | 298.1          | 99% KM Chebyshev UCL                                                  | 386          |
| 1658                 | 97.                            | 3 % Kivi Chebyshev OCL           | 290.1          | 99% KIVI Chebyshev OCL                                                | 360          |
| 1659                 | Static                         | tice using KM actimates          | on Logged I    | Data and Assuming Lognormal Distribution                              |              |
| 1660                 | Statis                         | KM SD (logged)                   | 0.452          | 95% Critical H Value (KM-Log)                                         | 2.002        |
| 1661                 |                                | KM Mean (logged)                 | 4.89           | KM Geo Mean                                                           | 133          |
| 1662                 | KM Standar                     | d Error of Mean (logged)         | 0.124          | 95% H-UCL (KM -Log)                                                   | 186.1        |
| 1663                 | Tim Ganda                      | a ziror or moarr (loggoa)        | 0              | 33 /3 11 332 (1.111 239)                                              |              |
| 1664                 |                                |                                  | Suggested      | UCL to Use                                                            |              |
| 1665                 |                                |                                  |                | vant to try Normal Distribution.                                      |              |
| 1666<br>1667         | Note: Suggestions regard       |                                  |                | ovided to help the user to select the most appropriate 95% UCL        |              |
| 1668                 | R                              | ecommendations are bas           | ed upon dat    | a size, data distribution, and skewness.                              |              |
| 1669                 | These recommendations          | are based upon the resu          | Its of the sim | ulation studies summarized in Singh, Maichle, and Lee (2006).         |              |
|                      | However, simulations result    | s will not cover all Real W      | orld data se   | ts; for additional insight the user may want to consult a statisticia | an.          |
| 1670<br>1071<br>1072 |                                |                                  |                |                                                                       |              |
| 1673                 | ammonia as N                   |                                  |                |                                                                       |              |
| 1674                 |                                |                                  |                |                                                                       |              |
| 1675                 |                                |                                  |                | Statistics                                                            |              |
| 1676                 | Total                          | Number of Observations           | 6              | Number of Distinct Observations                                       | 6            |
| 1677                 |                                |                                  |                | Number of Missing Observations                                        | 17           |
| 1678                 |                                | Minimum                          | 3.6            | Mean                                                                  | 64.93        |
| 1679                 |                                | Maximum                          | 190            | Median                                                                | 26.5         |
| 1680                 |                                | SD                               | 76.54          | Std. Error of Mean                                                    | 31.25        |
| 1681                 |                                | Coefficient of Variation         | 1.179          | Skewness                                                              | 1.169        |
| 1682                 |                                | Mean of logged Data              | 3.419          | SD of logged Data                                                     | 1.468        |
|                      |                                |                                  |                |                                                                       |              |

SLR Page 35 of 42

| Nonparametric Distribution   Free UCL Statistics   Section   Sec |               |                                     | -           | 1 0             |                             | -              |                                                                       |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|-------------|-----------------|-----------------------------|----------------|-----------------------------------------------------------------------|-------|
| User Selected Options   Policia, 5.112/31/2019 3.58 ft 8 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             | Α                                   | В           | С               | D E  Nonparametric UC       | L Statistics   | G H I J K<br>for Data Sets with Non-Detects                           | L     |
| Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date    |               |                                     |             |                 |                             |                |                                                                       |       |
| Date/Time of Computation   ProUCLS \$11291/2019 35818 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                     | User Sele   | ected Options   |                             |                |                                                                       |       |
| Full Precision   OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Date                                | e/Time of C | Computation     | ProUCL 5.112/31/2019 3      | 3:58:18 PM     |                                                                       |       |
| Full Precision   OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\overline{}$ |                                     |             | From File       | SED 0-0.15mbg Chemis        | try_input_v5   | xls                                                                   |       |
| Number of Bootstrap Operations   2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6             |                                     | Fı          | ull Precision   | OFF                         |                |                                                                       |       |
| Note: Sample size is small (e.g., <10), if data are collected using ISM approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7             | (                                   |             |                 |                             |                |                                                                       |       |
| 1948   Note: Sample size is small (e.g., +10), if data are collected using 18M approach   1958   You may want to use Chebyshev UCI. to estimate EPG (TITRC, 2012).   1958   Section 1978   Section 197  | 8             | Number of Bootstrap Operations 2000 |             |                 |                             |                |                                                                       |       |
| 1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990    | 9             |                                     |             | N.              |                             | 40\ 1          |                                                                       |       |
| 1985   Chebyshev UcL can be computed using the Nonparametric and All UcL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                     |             | No              | •                           |                | <u> </u>                                                              |       |
| 1988   Nonparametric Distribution Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                     |             | Che             |                             |                |                                                                       |       |
| 1688         Nonparametro Justifusida et 5% Significanc Level           1689         Agrange Approximation Justifusida et 5% Significanc Level           1691         Agrange Approximation Justifusida et 5% Significanc Level           1692         95% MCLa (Adjusted for Skewness)           1693         95% Normal UCL         95% Adjusted Ct TUCL (Chen-1995)         13.03           1694         Normal UCL         169         95% LT UCL (Chen-1995)         13.03           1695         Normal UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         95% Significand Bootstrap UCL         169         169         169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                     |             |                 | byonor cor can be com       | patoa aomg     | and Homparamound and 7th COL Options.                                 |       |
| 1998   1998   1998   1998   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999   1999    |               |                                     |             |                 | Nonparame                   | tric Distribu  | tion Free UCL Statistics                                              |       |
| 1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                     |             |                 |                             |                |                                                                       |       |
| 1691         95% Normal UCL         1879         95% MCLs (Adjusted for Skewness)           1692         95% Normal UCL         1279         95% McJusted CTL UCL (Chen-1995)         13.2           1693         95% Student's-UCL         1879         95% Modified-t UCL (Johnson-1978)         13.0           1695         S         Nonparametric Distriction Free UCLs         Very Student's UCL         127.9           1698         95% Standard Bootstrap UCL         116.3         95% Bootstrap UCL         127.9           1699         95% Stylated Spostrap UCL         626.6         95% Percentile Bootstrap UCL         17.5           1700         95% Spost Spost Chebyshev(Mean, Sd) UCL         122.7         17.0         95% Chebyshev(Mean, Sd) UCL         260.1         95% Chebyshev(Mean, Sd) UCL         201.1           1701         95% Chebyshev(Mean, Sd) UCL         152.7         95% Chebyshev(Mean, Sd) UCL         260.1         95% Chebyshev(Mean, Sd) UCL         201.1           1702         97.5% Chebyshev(Mean, Sd) UCL         152.7         95% Chebyshev(Mean, Sd) UCL         250.1         95% Chebyshev(Mean, Sd) UCL         201.1           1703         Note: Suggestions regarding the selection of a 95% UCL style         suggestions regarding the selection of a 95% UCL style         suggestions regarding the selection of a 95% U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                     |             |                 |                             |                | <del>-</del>                                                          |       |
| 1692   95% Normal UCL   127.9   95% Adjusted for Skewness   132.3   130.4   1693   95% Student's-U UC   127.9   95% Adjusted for Skewness   132.3   130.4   1695   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696   1696  |               |                                     |             |                 | As                          | suming Norr    | mal Distribution                                                      |       |
| 1693   95% Students-t UCL   127.9   95% Adjusted-CLT UCL (Chen-1995)   132.3   1694   95% Adjusted-CLT UCL (Chen-1995)   132.3   130.4   1695   95% Modified-t UCL (Johnson-1978)   130.4   130.6   1697   95% Chemistry UCL   1697   95% Chemistry UCL   1698   95% Standard Bootstrap UCL   128   95% Bootstrap-UCL   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129.1   129  |               |                                     |             | 95% No          | ormal UCL                   |                | 95% UCLs (Adjusted for Skewness)                                      |       |
| 1695     1695     1695     1695     1695     1695     1695     1695     1695     1695     1695     1695     1695     1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1  |               |                                     |             |                 | 95% Student's-t UCL         | 127.9          | 95% Adjusted-CLT UCL (Chen-1995)                                      | 132.3 |
| 1695   Nonparametric Distribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                     |             |                 |                             |                | 95% Modified-t UCL (Johnson-1978)                                     | 130.4 |
| 1696         Nonparametric Distribution Free UCLs           1697         95% Jands 195% ClT UCL         11.63         95% Jackknife UCL         420.4           1698         95% Standard Bootstrap UCL         12.28         95% Percentile Bootstrap UCL         115.5           1700         95% Deck Bootstrap UCL         12.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                     |             |                 |                             |                |                                                                       |       |
| 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1696          |                                     |             |                 | Nonpar                      | ametric Dist   | tribution Free UCLs                                                   |       |
| 1998   95% Hall's Bootstrap UCL   626.6   95% Percentile Bootstrap UCL   12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1697          |                                     |             |                 |                             |                |                                                                       |       |
| 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1698          |                                     |             |                 | ·                           |                | -                                                                     |       |
| 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1699          |                                     |             |                 | •                           |                | 95% Percentile Bootstrap UCL                                          | 115.5 |
| 1702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1700          |                                     |             |                 | ·                           |                |                                                                       |       |
| 1702   1703   1704   1705   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706   1706    | 1701          |                                     |             |                 | * ' '                       |                |                                                                       |       |
| 1704   Suggested UCL to Use   1705   Data appear Normal, May want to try Normal Distribution   1706   1706   1707   Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL   1708   Recommendations are based upon data size, data distribution, and skewness.   1709   These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).   1710   However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statisticus.   1711   1711   1711   1712   1713   1714   1715   1715   1715   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716    | 1702          |                                     |             | 97.5% Ch        | ebyshev(Mean, Sd) UCL       | 260.1          | 99% Chebyshev(Mean, Sd) UCL                                           | 3/5.8 |
| Total Number of Observations   Same and Statistics   Same and S  |               |                                     |             |                 |                             | Suggested      | LICI to Lieu                                                          |       |
| 1706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                     |             |                 |                             |                |                                                                       |       |
| Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.    Recommendations are based upon data size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                     |             |                 | Data appear itel            | mai, may w     | unt to ay Normal Distribution                                         |       |
| Recommendations are based upon data size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | N                                   | lote: Sugge | estions regard  | ing the selection of a 95%  | UCL are pro    | ovided to help the user to select the most appropriate 95% UCL        |       |
| These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).   However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.   However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.   Weldeld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                     |             |                 |                             |                |                                                                       |       |
| However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.         1711       4 Number of Value of Para Statistics         1712       General Statistics         1715       Total Number of Observations       22       Number of Distinct Observations       15         1717       Number of Missing Observations       1         1718       Mean Minimum       5.8       Number of Missing Observations       1         1719       Maximum       1900       Mean 6640         1720       Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Span="4">Spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                     | These reco  | ommendations    | are based upon the resu     | Its of the sim | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 1711         1712         1713         Keldahl nitrogen total         Seneral Statistics         1714         1715         Seneral Statistics         15         1716         1717         15         Number of Distinct Observations         15         15         1717         15         Number of Missing Observations         1         15         1717         1718         Mainimum         5.8         Mean         654.2         1719         Median         600         604.2         1719         Median         600         1720         Median         600         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6         105.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Ho                                  | wever, sim  | ulations result | s will not cover all Real W | orld data set  | ts; for additional insight the user may want to consult a statisticia | an.   |
| 1712   Specific Section (1972)         Medical Introgen total           1713   Specific Section (1972)         Seneral Statistics         15           1716   Total Number of District Observations (1972)         22 Number of District Observations (1972)         15           1717   Section (1972)         Number of Missing Observations (1972)         1           1718   Section (1972)         Mean (1972)         Median (1972)         600           1720   Section (1972)         Median (1972)         105.6         105.6           1721   Coefficient of Variation (1972)         Newness (1972)         1.402           1722   Mean of logged Data (1972)         Section (1972)         Section (1972)         1.402           1723   Section (1972)         Nonparametric Distribution Free UCL Statistics         Section (1972)         1.402           1724   Section (1972)         Nonparametric Distribution Free UCL Statistics         1.402           1725   Data appear Normal Distribution         Free UCL Statistics         1.402           1726   Section (1972)         Assuming Normal Distribution         1.402           1727   Section (1972)         Section (1972)         1.402           1728   Section (1972)         Section (1972)         1.402           1729   Section (1972)         1.402         1.402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                     |             |                 |                             |                |                                                                       |       |
| 1713 keldahl nitrogen total           1714   1715   1715   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   1716   17                                                                         | 1712          |                                     |             |                 |                             |                |                                                                       |       |
| Title         General Statistics           1716         Total Number of Observations         22         Number of Distinct Observations         15           1717         1718         Number of Missing Observations         1           1718         Minimum         5.8         Mean         654.2           1719         Maximum         1900         Median         600           1720         SD         495.1         Std. Error of Mean         105.6           1721         Coefficient of Variation         0.757         Skewness         0.85           1722         Mean of logged Data         5.96         SD of logged Data         1.402           1723         Nonparametric Distribution Free UCL Statistics           1724         Nonparametric Distribution Free UCL Statistics           1725         Data appear Normal Distribution           1726         Assuming Normal Distribution           1727         Assuming Normal Distribution           1728         95% Normal UCL         95% VIcLs (Adjusted for Skewness)           1729         95% Normal UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1713          | kjeldahl nitr                       | ogen total  |                 |                             |                |                                                                       |       |
| Total Number of Observations   22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                     |             |                 |                             |                |                                                                       |       |
| 1716   Number of Missing Observations   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1715          |                                     |             |                 |                             |                |                                                                       |       |
| 1718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1716          |                                     |             | Total           | Number of Observations      | 22             |                                                                       |       |
| 1719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1717          |                                     |             |                 |                             |                | · ·                                                                   |       |
| 1720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1718          |                                     |             |                 |                             |                |                                                                       |       |
| 1720         Coefficient of Variation         0.757         Skewness         0.85           1722         Mean of logged Data         5.96         SD of logged Data         1.402           1723         Nonparametric Distribution Free UCL Statistics           1725         Data appear Normal Distributed at 5% Significance Level           1726         Assuming Normal Distribution           1728         95% Normal UCL         95% UCLs (Adjusted for Skewness)           1729         95% Student's-t UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3           1730         95% Modified-t UCL (Johnson-1978)         839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1719          |                                     |             |                 |                             |                |                                                                       |       |
| 1721       Mean of logged Data       5.96       SD of logged Data       1.402         1723       Nonparametric Distribution Free UCL Statistics         1725       Data appear Normal Distributed at 5% Significance Level         1726       Assuming Normal Distribution         1727       Assuming Normal Distribution         1728       95% Normal UCL       95% UCLs (Adjusted for Skewness)         1729       95% Student's-t UCL       835.9       95% Adjusted-CLT UCL (Chen-1995)       848.3         1730       95% Modified-t UCL (Johnson-1978)       839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                     |             |                 |                             |                |                                                                       |       |
| 1723       Nonparametric Distribution Free UCL Statistics         1724       Nonparametric Distribution Free UCL Statistics         1725       Data appear Normal Distributed at 5% Significance Level         1726       Assuming Normal Distribution         1727       Assuming Normal Distribution         1728       95% Normal UCL       95% UCLs (Adjusted for Skewness)         1729       95% Student's-t UCL       835.9       95% Adjusted-CLT UCL (Chen-1995)       848.3         1730       95% Modified-t UCL (Johnson-1978)       839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                     |             |                 |                             |                |                                                                       |       |
| 1724         Nonparametric Distribution Free UCL Statistics           1725         Data appear Normal Distributed at 5% Significance Level           1726           Assuming Normal Distribution           1728         95% Normal UCL         95% UCLs (Adjusted for Skewness)           1729         95% Student's-t UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3           1730         95% Modified-t UCL (Johnson-1978)         839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                     |             |                 | wican or logged Dala        | 0.30           | 3D oi logged Data                                                     | 1.402 |
| 1725   Data appear Normal Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                     |             |                 | Nonnarama                   | tric Distribu  | tion Free UCL Statistics                                              |       |
| 1726       Assuming Normal Distribution       1727     Assuming Normal Distribution       1728     95% Normal UCL     95% UCLs (Adjusted for Skewness)       1729     95% Student's-t UCL     835.9     95% Adjusted-CLT UCL (Chen-1995)     848.3       1730     95% Modified-t UCL (Johnson-1978)     839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                     |             |                 | ·                           |                |                                                                       |       |
| Assuming Normal Distribution           1728         95% Normal UCL         95% UCLs (Adjusted for Skewness)           1729         95% Student's-t UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3           1730         95% Modified-t UCL (Johnson-1978)         839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                     |             |                 | appeal 1101                 |                |                                                                       |       |
| 1728         95% Normal UCL         95% UCLs (Adjusted for Skewness)           1729         95% Student's-t UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3           1730         95% Modified-t UCL (Johnson-1978)         839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                     |             |                 | Ass                         | suming Norr    | mal Distribution                                                      |       |
| 1729         95% Student's-t UCL         835.9         95% Adjusted-CLT UCL (Chen-1995)         848.3           1730         95% Modified-t UCL (Johnson-1978)         839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                     |             | 95% No          |                             |                |                                                                       |       |
| 1730 95% Modified-t UCL (Johnson-1978) 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                     |             |                 | 95% Student's-t UCL         | 835.9          |                                                                       | 848.3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                     |             |                 |                             |                | 95% Modified-t UCL (Johnson-1978)                                     | 839   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                     |             |                 |                             |                |                                                                       |       |

SLR Page 36 of 42

|                      | A B C                                                             | D E                          | F              | G H I J K                                                            | L     |  |  |  |
|----------------------|-------------------------------------------------------------------|------------------------------|----------------|----------------------------------------------------------------------|-------|--|--|--|
| 1                    | Λ Β                                                               |                              | L Statistics   | for Data Sets with Non-Detects                                       |       |  |  |  |
| 2                    |                                                                   |                              |                |                                                                      |       |  |  |  |
| 3                    | User Selected Options                                             |                              |                |                                                                      |       |  |  |  |
| 4                    | <u> </u>                                                          | ProUCL 5.112/31/2019         |                |                                                                      |       |  |  |  |
| 5                    | From File                                                         | SED 0-0.15mbg Chemis         | try_input_v5   | xls                                                                  |       |  |  |  |
| 6                    | Full Precision                                                    | OFF                          |                |                                                                      |       |  |  |  |
| 7                    | Confidence Coefficient                                            | 95%                          |                |                                                                      |       |  |  |  |
| 8<br>9               | Number of Bootstrap Operations                                    | 2000                         |                |                                                                      |       |  |  |  |
|                      |                                                                   | Nonpai                       | rametric Dis   | tribution Free UCLs                                                  |       |  |  |  |
| 1732<br>1733         |                                                                   | 95% CLT UCL                  | 827.8          | 95% Jackknife UCL                                                    | 835.9 |  |  |  |
| 1734                 | 95%                                                               | Standard Bootstrap UCL       | 823.1          | 95% Bootstrap-t UCL                                                  | 876.1 |  |  |  |
| 1735                 | 95% Hall's Bootstrap UCL 878.8 95% Percentile Bootstrap UCL 828.4 |                              |                |                                                                      |       |  |  |  |
| 1736                 | g                                                                 | 95% BCA Bootstrap UCL        | 841.8          |                                                                      |       |  |  |  |
| 1737                 | 90% Cho                                                           | ebyshev(Mean, Sd) UCL        | 970.9          | 95% Chebyshev(Mean, Sd) UCL                                          | 1114  |  |  |  |
| 1738                 | 97.5% Ch                                                          | ebyshev(Mean, Sd) UCL        | 1313           | 99% Chebyshev(Mean, Sd) UCL                                          | 1704  |  |  |  |
| 1739                 |                                                                   |                              |                |                                                                      |       |  |  |  |
| 1740                 |                                                                   |                              |                | UCL to Use                                                           |       |  |  |  |
| 1741                 |                                                                   | Data appear No               | rmal, May w    | ant to try Normal Distribution                                       |       |  |  |  |
| 1742                 |                                                                   |                              |                |                                                                      |       |  |  |  |
| 1743                 |                                                                   |                              |                | ovided to help the user to select the most appropriate 95% UCI       | L.    |  |  |  |
| 1744                 |                                                                   |                              |                | ta size, data distribution, and skewness.                            |       |  |  |  |
| 1745                 |                                                                   |                              |                | nulation studies summarized in Singh, Maichle, and Lee (2006).       |       |  |  |  |
| 1746                 | nowever, Simulations result                                       | s will flot cover all Real W | ronu uata se   | ts; for additional insight the user may want to consult a statistici | ail.  |  |  |  |
| 1747                 | nitrogen (total)                                                  |                              |                |                                                                      |       |  |  |  |
| 1740                 | maogon (total)                                                    |                              |                |                                                                      |       |  |  |  |
| 1749                 |                                                                   |                              | General        | Statistics                                                           |       |  |  |  |
| 1750                 | Total                                                             | Number of Observations       | 6              | Number of Distinct Observations                                      | 3     |  |  |  |
| 1751<br>1752         |                                                                   |                              |                | Number of Missing Observations                                       | 17    |  |  |  |
| 1753                 |                                                                   | Number of Detects            | 3              | Number of Non-Detects                                                | 3     |  |  |  |
| 1754                 | Nu                                                                | umber of Distinct Detects    | 2              | Number of Distinct Non-Detects                                       | 1     |  |  |  |
| 1755                 |                                                                   | Minimum Detect               | 3000           | Minimum Non-Detect                                                   | 2000  |  |  |  |
| 1756                 |                                                                   | Maximum Detect               | 4000           | Maximum Non-Detect                                                   | 2000  |  |  |  |
| 1757                 |                                                                   | Variance Detects             | 333333         | Percent Non-Detects                                                  | 50%   |  |  |  |
| 1758                 |                                                                   | Mean Detects                 | 3333           | SD Detects                                                           | 577.4 |  |  |  |
| 1759                 |                                                                   | Median Detects               | 3000           | CV Detects                                                           | 0.173 |  |  |  |
| 1760                 |                                                                   | Skewness Detects             | 1.732          | Kurtosis Detects                                                     | N/A   |  |  |  |
| 1761                 |                                                                   | Mean of Logged Detects       | 8.102          | SD of Logged Detects                                                 | 0.166 |  |  |  |
| 1762                 |                                                                   |                              |                |                                                                      |       |  |  |  |
| 1763                 |                                                                   |                              |                | only 3 Detected Values.                                              |       |  |  |  |
| 1764<br>1765<br>1766 | Th                                                                | is is not enough to comp     | oute meanin    | gful or reliable statistics and estimates.                           |       |  |  |  |
|                      | Note: Samp                                                        | le size is small (e.g., <1   | 0), if data ar | e collected using ISM approach, you should use                       |       |  |  |  |
| 1767                 | <u> </u>                                                          |                              | -              | SM (ITRC, 2012) to compute statistics of interest.                   |       |  |  |  |
| 1768<br>1769         |                                                                   |                              | -              | /shev UCL to estimate EPC (ITRC, 2012).                              |       |  |  |  |
| 1770                 | Chebyshev                                                         | UCL can be computed u        | sing the No    | nparametric and All UCL Options of ProUCL 5.1                        |       |  |  |  |
| 1771                 |                                                                   |                              |                |                                                                      |       |  |  |  |
| 1772                 |                                                                   | Nonparame                    | tric Distribu  | tion Free UCL Statistics                                             |       |  |  |  |
| 1773                 | Dete                                                              | ected Data appear Appro      | oximate Nor    | mal Distributed at 5% Significance Level                             |       |  |  |  |
| 1774                 |                                                                   |                              |                |                                                                      |       |  |  |  |
| 1775                 | Kaplan-N                                                          | Meier (KM) Statistics usin   |                | ritical Values and other Nonparametric UCLs                          |       |  |  |  |
| 1776                 |                                                                   | Mean                         | 2667           | Standard Error of Mean                                               | 372.7 |  |  |  |
| 1777                 |                                                                   | SD                           | 745.4          | 95% KM (BCA) UCL                                                     | N/A   |  |  |  |
| 1778                 |                                                                   | 95% KM (t) UCL               | 3418           | 95% KM (Percentile Bootstrap) UCL                                    | N/A   |  |  |  |
| 1779                 |                                                                   | 95% KM (z) UCL               | 3280           | 95% KM Bootstrap t UCL                                               | N/A   |  |  |  |
| 1780                 |                                                                   | 0% KM Chebyshev UCL          | 3785           | 95% KM Chebyshev UCL                                                 | 4291  |  |  |  |
|                      | 97                                                                | 5% KM Chebyshev UCL          | 4994           | 99% KM Chebyshev UCL                                                 | 6375  |  |  |  |

SLR Page 37 of 42

|              | A B C                          | D E                                       | F              | G H I J K                                                             |              |
|--------------|--------------------------------|-------------------------------------------|----------------|-----------------------------------------------------------------------|--------------|
| 1            | A B C                          |                                           |                | for Data Sets with Non-Detects                                        | L            |
| 2            |                                | · · · · · · · · · · · · · · · · · · ·     |                |                                                                       |              |
| 3            | User Selected Options          |                                           |                |                                                                       |              |
| 4            | Date/Time of Computation       | ProUCL 5.112/31/2019 3                    | :58:18 PM      |                                                                       |              |
| 5            | From File                      | SED 0-0.15mbg Chemist                     | ry_input_v5    | xls                                                                   |              |
| 6            | Full Precision                 | OFF                                       |                |                                                                       |              |
| 7            | Confidence Coefficient         | 95%                                       |                |                                                                       |              |
| 8            | Number of Bootstrap Operations | 2000                                      |                |                                                                       |              |
| 9            |                                |                                           |                |                                                                       |              |
| 1782         |                                |                                           |                |                                                                       |              |
| 1783         | Statist                        |                                           |                | Data and Assuming Lognormal Distribution                              | 0.470        |
| 1784         |                                | KM SD (logged)                            | 0.268          | 95% Critical H Value (KM-Log)                                         | 2.173        |
| 1785         | VM Ctondor                     | KM Mean (logged) d Error of Mean (logged) | 7.852<br>0.134 | KM Geo Mean<br>95% H-UCL (KM -Log)                                    | 2570<br>3458 |
| 1786         | Nivi Stariuali                 | u Error or wearr (logged)                 | 0.134          | 55 % H-OCL (NW -LOG)                                                  | 3436         |
| 1787         |                                |                                           | Suggested      | UCL to Use                                                            |              |
| 1788         |                                |                                           |                | vant to try Normal Distribution.                                      |              |
| 1789         | Note: Suggestions regardi      |                                           | -              | ovided to help the user to select the most appropriate 95% UCL        |              |
| 1790         |                                |                                           |                | a size, data distribution, and skewness.                              | •            |
| 1791         |                                |                                           |                | nulation studies summarized in Singh, Maichle, and Lee (2006).        |              |
| 1792         |                                | <u> </u>                                  |                | ts; for additional insight the user may want to consult a statisticia | an.          |
| 1793<br>1794 | ,                              |                                           |                |                                                                       |              |
| 1795         | organic phosphorus             |                                           |                |                                                                       |              |
| 1796         |                                |                                           |                |                                                                       |              |
| 1797         |                                |                                           | General        | Statistics                                                            |              |
| 1798         | Total                          | Number of Observations                    | 6              | Number of Distinct Observations                                       | 6            |
| 1799         |                                |                                           |                | Number of Missing Observations                                        | 17           |
| 1800         |                                | Number of Detects                         | 5              | Number of Non-Detects                                                 | 1            |
| 1801         | Nι                             | imber of Distinct Detects                 | 5              | Number of Distinct Non-Detects                                        | 1            |
| 1802         |                                | Minimum Detect                            | 1.1            | Minimum Non-Detect                                                    | 1            |
| 1803         |                                | Maximum Detect                            | 4.6            | Maximum Non-Detect                                                    | 1            |
| 1804         |                                | Variance Detects                          | 1.837          | Percent Non-Detects                                                   | 16.67%       |
| 1805         |                                | Mean Detects                              | 2.58           | SD Detects                                                            | 1.355        |
| 1806         |                                | Median Detects                            | 2.4            | CV Detects                                                            | 0.525        |
| 1807         |                                | Skewness Detects                          | 0.745          | Kurtosis Detects SD of Logged Detects                                 | 0.194        |
| 1808         |                                | Mean of Logged Detects                    | 0.632          | 3D 01 Logged Detects                                                  | 0.549        |
| 1809         | Note: Samo                     | le eize is emall (e.a. <10                | )) if data ar  | e collected using ISM approach, you should use                        |              |
| 1810         |                                | , .                                       | •              | SM (ITRC, 2012) to compute statistics of interest.                    |              |
| 1811         | · ·                            |                                           |                | rshev UCL to estimate EPC (ITRC, 2012).                               |              |
| 1812         |                                |                                           |                | nparametric and All UCL Options of ProUCL 5.1                         |              |
| 1813<br>1814 | •                              | ·                                         |                | · · · · · · · · · · · · · · · · · · ·                                 |              |
| 1815         |                                | Nonparame                                 | tric Distribu  | tion Free UCL Statistics                                              |              |
| 1816         |                                | Detected Data appear                      | Normal Di      | stributed at 5% Significance Level                                    |              |
| 1817         |                                |                                           |                |                                                                       |              |
| 1818         | Kaplan-N                       | leier (KM) Statistics usin                | g Normal C     | ritical Values and other Nonparametric UCLs                           |              |
| 1819         |                                | Mean                                      | 2.317          | Standard Error of Mean                                                | 0.572        |
| 1820         |                                | SD                                        | 1.254          | 95% KM (BCA) UCL                                                      | 3.25         |
| 1821         |                                | 95% KM (t) UCL                            | 3.47           | 95% KM (Percentile Bootstrap) UCL                                     | 3.267        |
| 1822         |                                | 95% KM (z) UCL                            | 3.258          | 95% KM Bootstrap t UCL                                                | 3.952        |
| 1823         |                                | 0% KM Chebyshev UCL                       | 4.033          | 95% KM Chebyshev UCL                                                  | 4.811        |
| 1824         | 97.                            | 5% KM Chebyshev UCL                       | 5.89           | 99% KM Chebyshev UCL                                                  | 8.01         |
| 1825         |                                |                                           |                |                                                                       |              |

SLR Page 38 of 42

|              | A B C                                  | D E                         | F              | G H I J K                                                            | L            |
|--------------|----------------------------------------|-----------------------------|----------------|----------------------------------------------------------------------|--------------|
| 1            |                                        | Nonparametric UC            | L Statistics   | for Data Sets with Non-Detects                                       |              |
| 2            |                                        |                             |                |                                                                      |              |
| 3            | User Selected Options                  |                             |                |                                                                      |              |
| 4            | Date/Time of Computation               | ProUCL 5.112/31/2019 3      |                |                                                                      |              |
| 5            | From File                              | SED 0-0.15mbg Chemis        | try_input_v5   | o.xls                                                                |              |
| 6            | Full Precision  Confidence Coefficient | OFF<br>95%                  |                |                                                                      |              |
| 7            |                                        | 2000                        |                |                                                                      |              |
| 8<br>9<br>10 | Number of Bootstrap Operations         | 2000                        |                |                                                                      |              |
| 1826         | Statis                                 | ics using KM estimates      | on Logged I    | Data and Assuming Lognormal Distribution                             |              |
| 1827         |                                        | KM SD (logged)              | 0.545          | 95% Critical H Value (KM-Log)                                        | 2.749        |
| 1828         |                                        | KM Mean (logged)            | 0.693          | KM Geo Mean                                                          | 2            |
| 1829         | KM Standar                             | d Error of Mean (logged)    | 0.249          | 95% H-UCL (KM -Log)                                                  | 4.536        |
| 1830         |                                        |                             |                |                                                                      |              |
| 1831         |                                        |                             | Suggested      | UCL to Use                                                           |              |
| 1832         |                                        | Data appear No              | rmal, May v    | vant to try Normal Distribution.                                     |              |
| 1833         | Note: Suggestions regardi              | ng the selection of a 95%   | UCL are pr     | ovided to help the user to select the most appropriate 95% UCL       |              |
| 1834         | R                                      | ecommendations are bas      | sed upon dat   | ta size, data distribution, and skewness.                            |              |
| 1835         | These recommendations                  | are based upon the resu     | Its of the sin | nulation studies summarized in Singh, Maichle, and Lee (2006).       |              |
| 1836         | However, simulations result            | s will not cover all Real W | orld data se   | ts; for additional insight the user may want to consult a statistici | an.          |
| 1837         |                                        |                             |                |                                                                      |              |
| 1838         |                                        |                             |                |                                                                      |              |
| 1839         | phosphorus                             |                             |                |                                                                      |              |
| 1840         |                                        |                             |                |                                                                      |              |
| 1841         | <del>-</del>                           |                             |                | Statistics                                                           |              |
| 1842         | Total                                  | Number of Observations      | 22             | Number of Distinct Observations                                      | 22           |
| 1843         |                                        |                             | 500            | Number of Missing Observations                                       | 1            |
| 1844         |                                        | Minimum                     | 598            | Mean                                                                 | 904.4        |
| 1845         |                                        | Maximum<br>SD               | 1622<br>284.7  | Median<br>Std. Error of Mean                                         | 816<br>60.69 |
| 1846         |                                        | Coefficient of Variation    | 0.315          | Sta. Error of Mean<br>Skewness                                       | 1.383        |
| 1847         |                                        | Mean of logged Data         | 6.767          | SD of logged Data                                                    | 0.281        |
| 1848         |                                        | Wear or logged Data         | 0.707          | OD of logged Data                                                    | 0.201        |
| 1849         |                                        | Nonnarame                   | tric Distribu  | tion Free UCL Statistics                                             |              |
| 1850         |                                        | <u> </u>                    |                | Distributed at 5% Significance Level                                 |              |
| 1851         |                                        |                             |                |                                                                      |              |
| 1852         |                                        | Ass                         | suming Non     | mal Distribution                                                     |              |
| 1853<br>1854 | 95% No                                 | rmal UCL                    |                | 95% UCLs (Adjusted for Skewness)                                     |              |
| 1855         |                                        | 95% Student's-t UCL         | 1009           | 95% Adjusted-CLT UCL (Chen-1995)                                     | 1023         |
| 1856         |                                        |                             |                | 95% Modified-t UCL (Johnson-1978)                                    | 1012         |
| 1857         |                                        |                             |                | · · · · · · · · · · · · · · · · · · ·                                |              |
| 1858         |                                        | Nonpar                      | rametric Dis   | tribution Free UCLs                                                  |              |
| 1859         |                                        | 95% CLT UCL                 | 1004           | 95% Jackknife UCL                                                    | 1009         |
| 1860         | 95%                                    | Standard Bootstrap UCL      | 1003           | 95% Bootstrap-t UCL                                                  | 1044         |
| 1861         | 99                                     | 5% Hall's Bootstrap UCL     | 1041           | 95% Percentile Bootstrap UCL                                         | 1008         |
| 1862         | g                                      | 5% BCA Bootstrap UCL        | 1020           |                                                                      |              |
| 1863         | 90% Ch                                 | ebyshev(Mean, Sd) UCL       | 1086           | 95% Chebyshev(Mean, Sd) UCL                                          | 1169         |
| 1864         | 97.5% Cho                              | ebyshev(Mean, Sd) UCL       | 1283           | 99% Chebyshev(Mean, Sd) UCL                                          | 1508         |
| 1865         |                                        |                             |                |                                                                      |              |
| 1866         |                                        |                             |                | UCL to Use                                                           |              |
| 1867         |                                        | Data appear No              | rmal, May w    | ant to try Normal Distribution                                       |              |
| 1868         |                                        |                             |                |                                                                      |              |
|              | Note: Suggestions regardi              |                             |                | ovided to help the user to select the most appropriate 95% UCL       |              |
| 1869         |                                        |                             | امل محمد المح  | ta size, data distribution, and skewness.                            |              |
| 1869<br>1870 |                                        |                             |                |                                                                      |              |
|              | These recommendations                  | are based upon the resu     | Its of the sin | nulation studies summarized in Singh, Maichle, and Lee (2006).       |              |
| 1870         | These recommendations                  | are based upon the resu     | Its of the sin |                                                                      | an.          |

SLR Page 39 of 42

|              | A B C                          | D E                                       | F                 | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L              |
|--------------|--------------------------------|-------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1            |                                | Nonparametric UC                          | L Statistics      | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 2            |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 3            | User Selected Options          |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 4            | Date/Time of Computation       | ProUCL 5.112/31/2019 3                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 5            | From File Full Precision       | SED 0-0.15mbg Chemis OFF                  | try_input_v5      | .xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |
| 6            | Confidence Coefficient         | 95%                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 7            | Number of Bootstrap Operations | 2000                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 8<br>9<br>10 | Number of Bootstrap Operations | 2000                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1874         | Fecal Coliforms                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1875         |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1876         |                                |                                           | General           | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 1877         | Total                          | Number of Observations                    | 17                | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16             |
| 1878         |                                |                                           |                   | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6              |
| 1879         |                                | Number of Detects                         | 16                | Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1              |
| 1880         | Nι                             | umber of Distinct Detects                 | 15                | Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1              |
| 1881         |                                | Minimum Detect                            | 3000              | Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000           |
| 1882         |                                | Maximum Detect Variance Detects           | 45000<br>1.768E+8 | Maximum Non-Detect Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000<br>5.882% |
| 1883         |                                | Mean Detects                              | 21500             | Percent Non-Detects SD Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13297          |
| 1884         |                                | Median Detects                            | 18000             | CV Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.618          |
| 1885         |                                | Skewness Detects                          | 0.572             | Kurtosis Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.959         |
| 1886         |                                | Mean of Logged Detects                    | 9.761             | SD of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.731          |
| 1887         |                                |                                           |                   | 5- 01935-1 - 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 1888         |                                | Nonparame                                 | tric Distribu     | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |
| 1889<br>1890 |                                | Detected Data appea                       | r Normal Di       | stributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 1891         |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1892         | Kaplan-N                       | Meier (KM) Statistics usin                | ng Normal C       | critical Values and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 1893         |                                | Mean                                      | 20294             | Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3354           |
| 1894         |                                | SD                                        | 13389             | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25529          |
| 1895         |                                | 95% KM (t) UCL                            | 26149             | 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25765          |
| 1896         |                                | 95% KM (z) UCL                            | 25811             | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26981          |
| 1897         |                                | 0% KM Chebyshev UCL                       | 30356             | 95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34913          |
| 1898         | 97.                            | 5% KM Chebyshev UCL                       | 41239             | 99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53664          |
| 1899         | On the                         |                                           |                   | District Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of t |                |
| 1900         | Statis                         |                                           |                   | Data and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.012          |
| 1901         |                                | KM SD (logged)                            | 0.96<br>9.593     | 95% Critical H Value (KM-Log)  KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.613          |
| 1902         | KM Standar                     | KM Mean (logged) d Error of Mean (logged) | 0.24              | 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14668<br>43547 |
| 1903         | KW Standar                     | u Error or Mearr (logged)                 | 0.24              | 33 /8 FI-OCE (KWI-EOG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43347          |
| 1904         |                                |                                           | Suggested         | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 1905         |                                |                                           |                   | vant to try Normal Distribution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |
| 1906<br>1907 | Note: Suggestions regardi      |                                           |                   | ovided to help the user to select the most appropriate 95% UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |
| 1908         | R                              | ecommendations are bas                    | sed upon dat      | ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 1909         | These recommendations          | are based upon the resu                   | Its of the sin    | nulation studies summarized in Singh, Maichle, and Lee (2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 1910         | However, simulations result    | s will not cover all Real W               | orld data se      | ts; for additional insight the user may want to consult a statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an.            |
| 1911         |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1912         | PAHs (sum of total)            |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1913         |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 1914         |                                |                                           |                   | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 1915         | Total                          | Number of Observations                    | 22                | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22             |
| 1916         |                                |                                           |                   | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1              |
| 1917         |                                | Minimum                                   | 2.97              | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.79          |
| 1918         |                                | Maximum                                   | 98.69             | Median<br>Std. Freez of Mann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.55           |
| 1919         |                                | SD Coefficient of Variation               | 20.71             | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.415          |
| 1920         |                                | Coefficient of Variation                  | 1.4<br>2.262      | Skewness<br>SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.549<br>0.817 |
| 1921         |                                | Mean of logged Data                       | 2.202             | טו iogged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.017          |
| 1922         |                                |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |

SLR Page 40 of 42

|              | ABCDE                                                  | F              | G H I                               | J K                            | 1     |
|--------------|--------------------------------------------------------|----------------|-------------------------------------|--------------------------------|-------|
| 1            |                                                        |                | or Data Sets with Non-Detects       | JK                             | L     |
| 2            | ·                                                      |                |                                     |                                |       |
|              | User Selected Options                                  |                |                                     |                                |       |
| 3            | Date/Time of Computation ProUCL 5.112/31/2019 3        | 8:58:18 PM     |                                     |                                |       |
| 4            | From File SED 0-0.15mbg Chemis                         | try input v5   | xls                                 |                                |       |
| 5            | Full Precision OFF                                     | .,,            | ***                                 |                                |       |
| 6            | Confidence Coefficient 95%                             |                |                                     |                                |       |
| 7            | Number of Bootstrap Operations 2000                    |                |                                     |                                |       |
| 8<br>9<br>10 | Training of Deciding Operations                        |                |                                     |                                |       |
| 1923         | Nonparame                                              | tric Distribu  | ion Free UCL Statistics             |                                |       |
| 1924         | Data appear Approximate                                | Lognorma       | Distributed at 5% Significance L    | evel                           |       |
| 1925         |                                                        |                |                                     |                                |       |
| 1926         | Ass                                                    | suming Nor     | nal Distribution                    |                                |       |
| 1927         | 95% Normal UCL                                         |                | 95% UCLs (A                         | djusted for Skewness)          |       |
| 1928         | 95% Student's-t UCL                                    | 22.39          | 95% Adju                            | sted-CLT UCL (Chen-1995)       | 25.63 |
|              |                                                        |                | 95% Mod                             | dified-t UCL (Johnson-1978)    | 22.95 |
| 1929         |                                                        |                |                                     | . /                            |       |
| 1930<br>1931 | Nonpar                                                 | ametric Dis    | ribution Free UCLs                  |                                |       |
|              | 95% CLT UCL                                            | 22.06          |                                     | 95% Jackknife UCL              | 22.39 |
| 1932         | 95% Standard Bootstrap UCL                             | 21.75          |                                     | 95% Bootstrap-t UCL            | 38.12 |
| 1933         | 95% Hall's Bootstrap UCL                               | 51.19          | 959                                 | % Percentile Bootstrap UCL     | 23.26 |
| 1934         | 95% BCA Bootstrap UCL                                  | 26.41          |                                     |                                |       |
| 1935         | 90% Chebyshev(Mean, Sd) UCL                            | 28.04          | 95%                                 | Chebyshev(Mean, Sd) UCL        | 34.04 |
| 1936         | 97.5% Chebyshev(Mean, Sd) UCL                          | 42.37          |                                     | Chebyshev(Mean, Sd) UCL        | 58.72 |
| 1937         | 07.070 01.03/01.01(1.100.1.; 04/ 002                   |                |                                     | chiosyonev(mount, ou) obe      |       |
| 1938         |                                                        | Suggested      | JCL to Use                          |                                |       |
| 1939         |                                                        |                | May want to try Lognormal Distri    | hution                         |       |
| 1940         | Data appear Approximate                                | Lognomiai,     | way want to ay Lognormal Disar      | Dudon                          |       |
| 1941         | Note: Suggestions regarding the selection of a 95%     | LICL are no    | wided to help the user to select th | e most appropriate 95% LICI    |       |
| 1942         |                                                        |                | a size, data distribution, and skew |                                | -     |
| 1943         | These recommendations are based upon the resu          |                |                                     |                                |       |
| 1944         | However, simulations results will not cover all Real W |                |                                     | <u> </u>                       |       |
| 1945         |                                                        |                | o, ror additional moight the door m | ay want to consult a stationer |       |
| 1946         | PAHs (sum of total)                                    |                |                                     |                                |       |
| 1947         | 1 74 to (sum of total)                                 |                |                                     |                                |       |
| 1948         |                                                        | General        | Statistics                          |                                |       |
| 1949         | Total Number of Observations                           | 21             |                                     | ber of Distinct Observations   | 21    |
| 1950         | Total Namber of Observations                           |                |                                     | ber of Missing Observations    | 1     |
| 1951         | Minimum                                                | 2.97           | INUIII                              | Mean                           | 10.8  |
| 1952         | Maximum                                                | 42.23          |                                     | Median                         | 7.3   |
| 1953         | SD                                                     | 9.035          |                                     | Std. Error of Mean             | 1.972 |
| 1954         | Coefficient of Variation                               | 0.837          |                                     | Skewness                       | 2.406 |
| 1955         | Mean of logged Data                                    | 2.151          |                                     | SD of logged Data              | 0.646 |
| 1956         | iviean or logged Data                                  | ۷.۱۵۱          |                                     | 3D of logged Data              | 0.040 |
| 1957         | Managana                                               | trio Diotribu  | ion Free UCL Statistics             |                                |       |
| 1958         | •                                                      |                | uted at 5% Significance Level       |                                |       |
| 1959         | Data appear Logno                                      | Jillidi Distil | uteu at 3 % Significance Level      |                                |       |
| 1960         | A                                                      | numine No-     | ad Dietribution                     |                                |       |
| 1961         | 95% Normal UCL                                         | ounning NOT    | nal Distribution                    | djusted for Skewness)          |       |
| 1962         |                                                        | 14.2           | •                                   | <u> </u>                       | 15.15 |
| 1963         | 95% Student's-t UCL                                    | 14.2           | •                                   | sted-CLT UCL (Chen-1995)       | 15.15 |
| 14004        |                                                        |                | 95% Mod                             | dified-t UCL (Johnson-1978)    | 14.37 |
| 1964<br>1965 |                                                        |                |                                     |                                |       |

SLR Page 41 of 42

City of Hamilton Ecological Risk Assessment - Chedoke Creek SLR Project No.: 209.40666 January 2020

|      | Α        | В             | С              | D              | Е             | F             | G                | Н              | I           | J             | K                | L     |
|------|----------|---------------|----------------|----------------|---------------|---------------|------------------|----------------|-------------|---------------|------------------|-------|
| 1    |          |               |                | Nonpa          | rametric UC   | L Statistics  | for Data Set     | s with Non-I   | Detects     | ,             |                  |       |
| 2    |          |               |                |                |               |               |                  |                |             |               |                  |       |
| 3    |          | User Selec    | cted Options   |                |               |               |                  |                |             |               |                  |       |
| 4    | Dat      | e/Time of Co  | mputation      | ProUCL 5.1     | 12/31/2019    | 3:58:18 PM    |                  |                |             |               |                  |       |
| 5    |          |               | From File      | SED 0-0.15     | mbg Chemis    | stry_input_v5 | .xls             |                |             |               |                  |       |
| 6    |          | Ful           | l Precision    | OFF            |               |               |                  |                |             |               |                  |       |
| 7    |          | Confidence    | Coefficient    | 95%            |               |               |                  |                |             |               |                  |       |
| 8    | Number o | f Bootstrap ( | Operations     | 2000           |               |               |                  |                |             |               |                  |       |
| 9    |          |               |                |                |               |               |                  |                |             |               |                  |       |
| 1966 |          |               |                |                |               | rametric Dis  | tribution Fre    | e UCLs         |             |               |                  |       |
| 1967 |          |               |                |                | % CLT UCL     |               |                  |                |             |               | ckknife UCL      | 14.2  |
| 1968 |          |               |                | Standard Bo    |               | 13.95         |                  |                |             |               | tstrap-t UCL     | 16.77 |
| 1969 |          |               |                | 5% Hall's Bo   | <u>'</u>      |               |                  |                | 95% F       | Percentile Bo | otstrap UCL      | 14.18 |
| 1970 |          |               |                | 95% BCA Bo     | <u>'</u>      |               |                  |                |             |               |                  |       |
| 1971 |          |               |                | ebyshev(Mea    | , ,           | 16.71         |                  |                |             | ebyshev(Mea   | . ,              | 19.39 |
| 1972 |          |               | 97.5% Ch       | ebyshev(Mea    | an, Sd) UCL   | 23.11         |                  |                | 99% Ch      | ebyshev(Mea   | an, Sd) UCL      | 30.41 |
| 1973 |          |               |                |                |               |               |                  |                |             |               |                  |       |
| 1974 |          |               |                |                |               |               | UCL to Use       |                |             |               |                  |       |
| 1975 |          |               |                | Data ap        | pear Logno    | rmal, May w   | ant to try Lo    | gnormal Dis    | tribution   |               |                  |       |
| 1976 |          |               |                |                |               |               |                  |                |             |               |                  |       |
| 1977 | N        | lote: Sugges  |                | •              |               |               |                  | <u>'</u>       |             | - '' '        | iate 95% UCI     | L.    |
| 1978 |          |               |                | Recommenda     |               |               |                  |                |             |               |                  |       |
| 1979 |          |               |                |                | <u>'</u>      |               |                  |                |             | · · ·         | d Lee (2006).    |       |
| 1980 | Но       | wever, simu   | lations result | s will not cov | er all Real V | /orld data se | ts; for addition | nal insight th | ne user may | want to cons  | ult a statistici | an.   |

SLR Page 42 of 42

|    | A B C                           | D E                         | F              | G H I J K                                                             | 1       |
|----|---------------------------------|-----------------------------|----------------|-----------------------------------------------------------------------|---------|
| 1  | A                               |                             |                | for Data Sets with Non-Detects                                        |         |
| 2  |                                 |                             |                |                                                                       |         |
| 3  | User Selected Options           |                             |                |                                                                       |         |
|    | Date/Time of Computation        | ProUCL 5.11/13/2020 2:2     | 22:32 PM       |                                                                       |         |
| 4  | From File                       | WorkSheet.xls               |                |                                                                       |         |
| 5  | Full Precision                  | OFF                         |                |                                                                       |         |
| 6  | Confidence Coefficient          | 95%                         |                |                                                                       |         |
| 7  | Number of Bootstrap Operations  | 2000                        |                |                                                                       |         |
| 8  | . ramber of Bookshap operations |                             |                |                                                                       |         |
| 9  |                                 |                             |                |                                                                       |         |
| 10 | Acenaphthylene                  |                             |                |                                                                       |         |
| 11 | 7 Conapharyiono                 |                             |                |                                                                       |         |
| 12 |                                 |                             | General        | Statistics                                                            |         |
| 13 | Total                           | Number of Observations      | 21             | Number of Distinct Observations                                       | 2       |
| 14 | 1001                            | rumber of observations      |                | Number of Missing Observations                                        | 0       |
| 15 |                                 | Minimum                     | 0.05           | Mean                                                                  | 0.0881  |
| 16 |                                 | Maximum                     | 0.03           | Median                                                                | 0.0001  |
| 17 |                                 | Maximum                     | 0.0218         | Std. Error of Mean                                                    | 0.00476 |
| 18 |                                 | Coefficient of Variation    | 0.0218         | Sta. Error or Mean Skewness                                           | -1.327  |
| 19 |                                 |                             |                |                                                                       |         |
| 20 |                                 | Mean of logged Data         | -2.468         | SD of logged Data                                                     | 0.303   |
| 21 |                                 |                             |                |                                                                       |         |
| 22 |                                 |                             |                | tion Free UCL Statistics                                              |         |
| 23 |                                 | Data do not to              | DIIOW a DISC   | ernible Distribution (0.05)                                           |         |
| 24 |                                 |                             |                |                                                                       |         |
| 25 |                                 |                             | suming Norr    | nal Distribution                                                      |         |
| 26 | 95% No                          | ormal UCL                   |                | 95% UCLs (Adjusted for Skewness)                                      |         |
| 27 |                                 | 95% Student's-t UCL         | 0.0963         | 95% Adjusted-CLT UCL (Chen-1995)                                      | 0.0945  |
| 28 |                                 |                             |                | 95% Modified-t UCL (Johnson-1978)                                     | 0.0961  |
| 29 |                                 |                             |                |                                                                       |         |
| 30 |                                 | <u> </u>                    |                | tribution Free UCLs                                                   |         |
| 31 |                                 | 95% CLT UCL                 | 0.0959         | 95% Jackknife UCL                                                     | N/A     |
| 32 | 95%                             | Standard Bootstrap UCL      | N/A            | 95% Bootstrap-t UCL                                                   | N/A     |
| 33 | 99                              | 5% Hall's Bootstrap UCL     | N/A            | 95% Percentile Bootstrap UCL                                          | N/A     |
| 34 |                                 | 95% BCA Bootstrap UCL       | N/A            |                                                                       |         |
| 35 | 90% Che                         | ebyshev(Mean, Sd) UCL       | 0.102          | 95% Chebyshev(Mean, Sd) UCL                                           | 0.109   |
| 36 | 97.5% Ch                        | ebyshev(Mean, Sd) UCL       | 0.118          | 99% Chebyshev(Mean, Sd) UCL                                           | 0.135   |
| 37 |                                 |                             |                |                                                                       |         |
| 38 |                                 |                             | Suggested      | UCL to Use                                                            |         |
| 39 |                                 | 95% Student's-t UCL         | 0.0963         | or 95% Modified-t UCL                                                 | 0.0961  |
| 40 |                                 |                             |                |                                                                       |         |
| 41 | Note: Suggestions regard        | ng the selection of a 95%   | UCL are pro    | ovided to help the user to select the most appropriate 95% UCL        |         |
| 42 | R                               | ecommendations are bas      | ed upon dat    | a size, data distribution, and skewness.                              |         |
| 43 | These recommendations           | are based upon the resul    | Its of the sim | ulation studies summarized in Singh, Maichle, and Lee (2006).         |         |
| 44 | However, simulations result     | s will not cover all Real W | orld data set  | ts; for additional insight the user may want to consult a statisticia | an.     |
| 45 |                                 |                             |                |                                                                       |         |
| 46 | Note: For highly negati         | vely-skewed data, confid    | ence limits    | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                |         |
| 47 | reliable. C                     | hen's and Johnson's me      | thods provi    | de adjustments for positvely skewed data sets.                        |         |
| 48 |                                 |                             |                |                                                                       |         |
| 50 | Acenaphthene                    |                             |                |                                                                       |         |
| 51 |                                 |                             |                |                                                                       |         |
| 52 |                                 |                             | General        | Statistics                                                            |         |
| 53 | Total                           | Number of Observations      | 21             | Number of Distinct Observations                                       | 14      |
| 54 |                                 |                             |                | Number of Missing Observations                                        | 0       |
| 55 |                                 | Minimum                     | 0.05           | Mean                                                                  | 0.265   |
| 56 |                                 | Maximum                     | 0.97           | Median                                                                | 0.16    |
| 57 |                                 | SD                          | 0.291          | Std. Error of Mean                                                    | 0.0635  |
| 58 |                                 | Coefficient of Variation    | 1.099          | Skewness                                                              | 1.883   |
|    |                                 | Mean of logged Data         | -1.754         | SD of logged Data                                                     | 0.895   |
| 59 | <u> </u>                        | 33 310                      |                |                                                                       |         |

SLR Page 1 of 32

| 1                                                                                                                                            | A B C D E                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GHIJK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $\vdash$                                                                                                                                     |                                                                                                                                                        | UCL Statistic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                             |
| 2                                                                                                                                            | -                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 3                                                                                                                                            | User Selected Options                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 4                                                                                                                                            | Date/Time of Computation ProUCL 5.11/13/202                                                                                                            | 0 2:22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 5                                                                                                                                            | From File WorkSheet.xls                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 6                                                                                                                                            | Full Precision OFF                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 7                                                                                                                                            | Confidence Coefficient 95%                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 8                                                                                                                                            | Number of Bootstrap Operations 2000                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 9                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 10                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 60                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 61                                                                                                                                           | Nonpar                                                                                                                                                 | ametric Distrib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oution Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
| 62                                                                                                                                           | Data appear Approx                                                                                                                                     | imate Gamm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| 63                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 64                                                                                                                                           |                                                                                                                                                        | Assuming No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 65                                                                                                                                           | 95% Normal UCL                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| 66                                                                                                                                           | 95% Student's-t U                                                                                                                                      | CL 0.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.397                                                |
| 67                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.379                                                |
| 68                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 69                                                                                                                                           | Noi                                                                                                                                                    | parametric D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | istribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| 70                                                                                                                                           | 95% CLT U                                                                                                                                              | CL 0.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.374                                                |
| 71                                                                                                                                           | 95% Standard Bootstrap U                                                                                                                               | CL 0.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.415                                                |
| 72                                                                                                                                           | 95% Hall's Bootstrap U                                                                                                                                 | CL 0.356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.375                                                |
| 73                                                                                                                                           | 95% BCA Bootstrap U                                                                                                                                    | CL 0.389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 74                                                                                                                                           | 90% Chebyshev(Mean, Sd) U                                                                                                                              | CL 0.455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.542                                                |
| 75                                                                                                                                           | 97.5% Chebyshev(Mean, Sd) U                                                                                                                            | CL 0.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.897                                                |
| 76                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 77                                                                                                                                           |                                                                                                                                                        | Suggeste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
| 78                                                                                                                                           | Data appear Approx                                                                                                                                     | imate Gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a, May want to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      |
| 79                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 80                                                                                                                                           | Note: Suggestions regarding the selection of a                                                                                                         | 95% UCL are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | provided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                      |
| 81                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ata size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |
|                                                                                                                                              | These recommendations are based upon the                                                                                                               | esults of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | imulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 82                                                                                                                                           | '                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 82<br>83                                                                                                                                     | '                                                                                                                                                      | al World data s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sets; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                   |
|                                                                                                                                              | '                                                                                                                                                      | al World data s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                   |
| 83                                                                                                                                           | However, simulations results will not cover all Re                                                                                                     | al World data s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                   |
| 83<br>84                                                                                                                                     | '                                                                                                                                                      | al World data s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                   |
| 83<br>84<br>85                                                                                                                               | However, simulations results will not cover all Re                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | sets; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                   |
| 83<br>84<br>85<br>86                                                                                                                         | However, simulations results will not cover all Re  Anthracene                                                                                         | Gener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sets; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |
| 83<br>84<br>85<br>86<br>87                                                                                                                   | However, simulations results will not cover all Re                                                                                                     | Gener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sets; for additional insight the user may want to consult a statisticia  al Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                   |
| 83<br>84<br>85<br>86<br>87<br>88<br>89                                                                                                       | However, simulations results will not cover all Re  Anthracene  Total Number of Observation                                                            | General 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sets; for additional insight the user may want to consult a statisticia  al Statistics  Number of Distinct Observations Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                   |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90                                                                                                 | However, simulations results will not cover all Re.  Anthracene  Total Number of Observation  Minim                                                    | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | al Statistics  Number of Distinct Observations Number of Missing Observations Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>0<br>0.294                                     |
| 83<br>84<br>85<br>86<br>87<br>88<br>89                                                                                                       | However, simulations results will not cover all Re  Anthracene  Total Number of Observation  Minim  Maxim                                              | General 21 um 0.05 um 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sets; for additional insight the user may want to consult a statisticia  al Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15<br>0<br>0.294<br>0.21                             |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90                                                                                                 | However, simulations results will not cover all Re  Anthracene  Total Number of Observation  Minim  Maxim                                              | General Disservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>0<br>0.294<br>0.21<br>0.0642                   |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93                                                                               | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variar                                                                           | General 21 0.05 um 1.12 SD 0.294 ion 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sets; for additional insight the user may want to consult a statisticia  al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94                                                                         | However, simulations results will not cover all Re  Anthracene  Total Number of Observation  Minim  Maxim                                              | General 21 0.05 um 1.12 SD 0.294 ion 1.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15<br>0<br>0.294<br>0.21<br>0.0642                   |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95                                                                   | Anthracene  Total Number of Observati  Minim  Maxim  Coefficient of Variat  Mean of logged D                                                           | General 21 0.05 um 1.12 SD 0.294 ion 1.001 ata -1.587                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96                                                             | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar                                                 | General 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                       | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar                                                 | General 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                 | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar                                                 | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                 | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear                                    | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Sommal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168          |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100                                    | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear                                    | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics  buted at 5% Significance Level  Dormal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102                      | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear                                    | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutton Free UCL Statistics  Dutto | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103               | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear                                    | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics  buted at 5% Significance Level  Dormal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104        | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear  95% Normal UCL  95% Student's-t U | General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   General   Gene | Sets; for additional insight the user may want to consult a statisticial statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Putton Free UCL Statistics buted at 5% Significance Level  Demail Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105 | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear  95% Normal UCL  95% Student's-t U | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Al Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Dutton Free UCL Statistics  buted at 5% Significance Level  Dormal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |
| 83<br>84<br>85<br>86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104              | Anthracene  Total Number of Observation  Minim  Maxim  Coefficient of Variat  Mean of logged D  Nonpar  Data appear  95% Normal UCL  95% Student's-t U | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sets; for additional insight the user may want to consult a statisticial statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Putton Free UCL Statistics buted at 5% Significance Level  Demail Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15<br>0<br>0.294<br>0.21<br>0.0642<br>2.168<br>0.861 |

SLR Page 2 of 32

| Nonparametric UCL Statistics for Data Sets with Non-Detect  UCL Statistics for Data Sets with Non-Detect  Data Sets with Non-Detect  Data Sets with Non-Detect  Data Sets with Non-Detect  Data Sets with Non-Detect  ProUCL 5.11/13/2020 2:22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I J K                                                                                                                                                                                                                                                                                                 | L                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 3 User Selected Options  Determine of Computation ProJUCL 5 11/12/2020 2:22:22 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S                                                                                                                                                                                                                                                                                                     |                                 |
| Date/Time of Computation   Drail Cl E 11/12/2020 2:22:22 DM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |                                 |
| Date/Time of Computation ProUCL 5.11/13/2020 2:22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                       |                                 |
| E E1 W 100 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |                                 |
| 5 From File WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |                                 |
| 6 Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                       |                                 |
| 7 Confidence Coefficient 95%  9 Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                 |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                                 |
| 10 95% Hall's Bootstrap UCL 0.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                          | 0.404                           |
| 95% BCA Rootstrap LICL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                       |                                 |
| 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                            | 0.574                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                            | 0.932                           |
| 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ                                                                                                                                                                                                                                                                                                     |                                 |
| 113 Suggested UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |                                 |
| Data appear Gamma, May want to try Gamma Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                       |                                 |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t the most appropriate 95% UCL.                                                                                                                                                                                                                                                                       |                                 |
| Recommendations are based upon data size, data distribution, and sk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| These recommendations are based upon the results of the simulation studies summarized in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                       |                                 |
| However, simulations results will not cover all Real World data sets; for additional insight the user                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r may want to consult a statistician                                                                                                                                                                                                                                                                  | i.                              |
| 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| Paradalantharana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                 |
| Benzo[a]anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                       |                                 |
| 123 General Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                       |                                 |
| Total Number of Observations 21 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | umber of Distinct Observations                                                                                                                                                                                                                                                                        | 19                              |
| 125 No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | umber of Missing Observations                                                                                                                                                                                                                                                                         | 0                               |
| 126 Minimum 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                                                                                                                                                                                                  | 0.937                           |
| 128 Maximum 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Median                                                                                                                                                                                                                                                                                                | 0.75                            |
| 129 SD 0.796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Std. Error of Mean                                                                                                                                                                                                                                                                                    | 0.174                           |
| 130 Coefficient of Variation 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Skewness                                                                                                                                                                                                                                                                                              | 2.109                           |
| 131 Mean of logged Data -0.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SD of logged Data                                                                                                                                                                                                                                                                                     | 1.071                           |
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>                                                                                                                                                                                                                                                                                              |                                 |
| Nonparametric Distribution Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                       |                                 |
| Data do not follow a Discernible Distribution (0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                       |                                 |
| 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                       |                                 |
| 136 Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                       |                                 |
| Assuming Normal Distribution  95% Normal UCL 95% UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Adjusted for Skewness)                                                                                                                                                                                                                                                                               | 1 200                           |
| Assuming Normal Distribution           137         95% Normal UCL         95% UCLs           138         95% Student's-t UCL         1.237         95% A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | djusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                           | 1.308                           |
| Assuming Normal Distribution           137         95% Normal UCL         95% UCLs           138         95% Student's-t UCL         1.237         95% A           139         95% Normal UCL         1.237         95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` '                                                                                                                                                                                                                                                                                                   | 1.308<br>1.25                   |
| 136   Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | djusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                           |                                 |
| 136   Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | djusted-CLT UCL (Chen-1995)<br>Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                          |                                 |
| 136   Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL                                                                                                                                                                                                                         | 1.25                            |
| Assuming Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | djusted-CLT UCL (Chen-1995)<br>Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                          | 1.25                            |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% UCLs   95% Student's-t UCL   1.237   95% Ar   95% Ar   95% Normal UCL   1.237   95% Ar   95% Normal UCL   1.240   95% Normal UCL   1.241   95% Standard Bootstrap UCL   1.212   1.244   95% Hall's Bootstrap UCL   2.95   1.244   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246   1.246    | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                                                                                    | 1.25<br>1.237<br>1.484          |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% UCLs   95% Student's-t UCL   1.237   95% A   95% A   95% Normal UCL   1.237   95% A   95% Normal UCL   1.237   95% A   95% Normal UCL   1.241   141   Nonparametric Distribution Free UCLs   142   95% CLT UCL   1.223   143   95% Standard Bootstrap UCL   1.21   145   95% BCA Bootstrap UCL   2.95   145   95% BCA Bootstrap UCL   1.316   145   96% Chebyshay/Mean Sch UCL   1.459   95% BCA   95% | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                                                                                    | 1.25<br>1.237<br>1.484          |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% UCLs   95% UCLs   138   95% Student's-t UCL   1.237   95% A   139   95% Normal UCL   1.237   95% A   140   141   Nonparametric Distribution Free UCLs   142   95% CLT UCL   1.223   143   95% Standard Bootstrap UCL   1.21   144   95% Hall's Bootstrap UCL   2.95   145   95% BCA Bootstrap UCL   1.316   146   90% Chebyshev(Mean, Sd) UCL   1.459   95% DCA   146   90% Chebyshev(Mean, Sd) UCL   90% Chebyshev( | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                      | 1.25<br>1.237<br>1.484<br>1.235 |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% UCLs   95% Student's-t UCL   1.237   95% A   95% CLT UCL   1.223   95% Standard Bootstrap UCL   1.21   144   95% Hall's Bootstrap UCL   2.95   145   95% BCA Bootstrap UCL   1.316   146   90% Chebyshev(Mean, Sd) UCL   1.459   95   95   147   97.5% Chebyshev(Mean, Sd) UCL   2.023   99   95   147   97.5% Chebyshev(Mean, Sd) UCL   2.023   99   95   147   10.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1. | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  5% Chebyshev(Mean, Sd) UCL                                                                                                                                          | 1.25<br>1.237<br>1.484<br>1.235 |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% UCLs   95% Student's-t UCL   1.237   95% A   djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  5% Chebyshev(Mean, Sd) UCL                                                                                                                                          | 1.25<br>1.237<br>1.484<br>1.235 |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   138   95% Student's-t UCL   1.237   95% At   139   95% M   140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  5% Chebyshev(Mean, Sd) UCL                                                                                                                                          | 1.25<br>1.237<br>1.484<br>1.235 |
| Assuming Normal Distribution   95% Normal UCL   95% UCLs   95% UCLs   95% Student's-t UCL   1.237   95% A    | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  5% Chebyshev(Mean, Sd) UCL                                                                                                                                          | 1.25<br>1.237<br>1.484<br>1.235 |
| 136   Symmal Distribution   137   95% Normal UCL   95% UCLs   138   95% Student's-t UCL   1.237   95% Al   139   95% Al   140   141   Nonparametric Distribution Free UCLs   142   95% CLT UCL   1.223   143   95% Standard Bootstrap UCL   1.21   144   95% Hall's Bootstrap UCL   2.95   145   95% BCA Bootstrap UCL   1.316   146   90% Chebyshev(Mean, Sd) UCL   1.459   95   147   97.5% Chebyshev(Mean, Sd) UCL   2.023   99   148   149   Suggested UCL to Use   150   95% Chebyshev (Mean, Sd) UCL   1.695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   1695   169 | djusted-CLT UCL (Chen-1995) Modified-t UCL (Johnson-1978)  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 5% Chebyshev(Mean, Sd) UCL 9% Chebyshev(Mean, Sd) UCL                                                                                                                   | 1.25<br>1.237<br>1.484<br>1.235 |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | djusted-CLT UCL (Chen-1995)  Modified-t UCL (Johnson-1978)  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 9% Chebyshev(Mean, Sd) UCL 9% Chebyshev(Mean, Sd) UCL                                                                                                                  | 1.25<br>1.237<br>1.484<br>1.235 |
| 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | djusted-CLT UCL (Chen-1995) Modified-t UCL (Johnson-1978)  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 96% Chebyshev(Mean, Sd) UCL 96% Chebyshev(Mean, Sd) UCL 97% Chebyshev(Mean, Sd) UCL 97% Chebyshev(Mean, Sd) UCL 97% Chebyshev(Mean, Sd) UCL 97% Chebyshev(Mean, Sd) UCL | 1.25<br>1.237<br>1.484<br>1.235 |

SLR Page 3 of 32

|            | A B C                                   | D E                         | F             | G H I J K                                                              | -              |
|------------|-----------------------------------------|-----------------------------|---------------|------------------------------------------------------------------------|----------------|
| 1          | ABC                                     |                             |               | for Data Sets with Non-Detects                                         |                |
| 2          |                                         |                             |               |                                                                        |                |
| 3          | User Selected Options                   |                             |               |                                                                        |                |
| 4          | Date/Time of Computation                | ProUCL 5.11/13/2020 2::     | 22:32 PM      |                                                                        |                |
| 5          | From File                               | WorkSheet.xls               |               |                                                                        |                |
| 6          | Full Precision                          | OFF                         |               |                                                                        |                |
| 7          | Confidence Coefficient                  | 95%                         |               |                                                                        |                |
| 8          | Number of Bootstrap Operations          | 2000                        |               |                                                                        |                |
| 9          |                                         |                             |               |                                                                        |                |
| 10         |                                         |                             |               |                                                                        |                |
| 156        |                                         |                             |               |                                                                        |                |
| 157        |                                         |                             |               |                                                                        |                |
| 158        | Benzo[b]fluoranthene                    |                             |               |                                                                        |                |
| 159        |                                         |                             |               |                                                                        |                |
| 160        |                                         |                             | General       | Statistics                                                             |                |
| 161        | Total                                   | Number of Observations      | 21            | Number of Distinct Observations                                        | 19             |
| 162        |                                         |                             |               | Number of Missing Observations                                         | 0              |
| 163        |                                         | Minimum                     | 0.05          | Mean                                                                   | 1.376          |
| 164        |                                         | Maximum                     | 4.96          | Median                                                                 | 1.18           |
| 165        |                                         | SD                          | 1.091         | Std. Error of Mean                                                     | 0.238          |
| 166        |                                         | Coefficient of Variation    | 0.793         | Skewness                                                               | 1.888          |
| 167        |                                         | Mean of logged Data         | -0.0832       | SD of logged Data                                                      | 1.152          |
| 168        |                                         |                             |               |                                                                        |                |
| 169        |                                         | Nonparame                   | tric Distribu | tion Free UCL Statistics                                               |                |
| 170        |                                         | Data do not fo              | ollow a Disc  | ernible Distribution (0.05)                                            |                |
| 171        |                                         |                             |               |                                                                        |                |
| 172        |                                         | Ass                         | suming Nori   | mal Distribution                                                       |                |
| 173        | 95% No                                  | rmal UCL                    |               | 95% UCLs (Adjusted for Skewness)                                       |                |
| 174        |                                         | 95% Student's-t UCL         | 1.787         | 95% Adjusted-CLT UCL (Chen-1995)                                       | 1.873          |
| 175        |                                         |                             |               | 95% Modified-t UCL (Johnson-1978)                                      | 1.803          |
| 176        |                                         |                             |               |                                                                        |                |
| 177        |                                         | Nonpar                      | ametric Dis   | tribution Free UCLs                                                    |                |
| 178        |                                         | 95% CLT UCL                 | 1.768         | 95% Jackknife UCL                                                      | 1.787          |
| 179        | 95% \$                                  | Standard Bootstrap UCL      | 1.742         | 95% Bootstrap-t UCL                                                    | 1.967          |
| 180        | 95                                      | 5% Hall's Bootstrap UCL     | 2.493         | 95% Percentile Bootstrap UCL                                           | 1.767          |
| 181        | 9                                       | 5% BCA Bootstrap UCL        | 1.88          |                                                                        |                |
| 182        | 90% Che                                 | ebyshev(Mean, Sd) UCL       | 2.091         | 95% Chebyshev(Mean, Sd) UCL                                            | 2.414          |
| 183        | 97.5% Che                               | ebyshev(Mean, Sd) UCL       | 2.863         | 99% Chebyshev(Mean, Sd) UCL                                            | 3.746          |
| 184        |                                         |                             |               |                                                                        |                |
| 185        |                                         |                             | Suggested     | UCL to Use                                                             |                |
| 186        | 95% Che                                 | byshev (Mean, Sd) UCL       | 2.414         |                                                                        |                |
| 187        |                                         |                             |               |                                                                        |                |
| 188        | • • • • • • • • • • • • • • • • • • • • |                             |               | ovided to help the user to select the most appropriate 95% UCL.        |                |
| 189        | R                                       | ecommendations are bas      | ed upon dat   | ta size, data distribution, and skewness.                              |                |
| 190        |                                         |                             |               | nulation studies summarized in Singh, Maichle, and Lee (2006).         |                |
| 191        | However, simulations results            | s will not cover all Real W | orld data se  | ts; for additional insight the user may want to consult a statistician | ۱.             |
| 192        |                                         |                             |               |                                                                        |                |
| 193        |                                         |                             |               |                                                                        |                |
| 194        | Benzo[g,h,i]perylene                    |                             |               |                                                                        |                |
| 195        |                                         |                             |               |                                                                        |                |
| 196        |                                         |                             |               | Statistics                                                             |                |
| 197        | Total                                   | Number of Observations      | 21            | Number of Distinct Observations                                        | 18             |
|            |                                         |                             |               | Number of Missing Observations                                         | 0              |
| 198        |                                         | 8.41. 1                     | 0.1           | Mean                                                                   | 0.515          |
| 198<br>199 |                                         | Minimum                     |               |                                                                        |                |
|            |                                         | Maximum                     | 1.23          | Median                                                                 | 0.45           |
| 199        |                                         |                             |               | Median<br>Std. Error of Mean                                           | 0.45<br>0.0672 |
| 199<br>200 |                                         | Maximum                     | 1.23          |                                                                        |                |

SLR Page 4 of 32

|                                                                                                                                                                             | A B C                                                                                   | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1                                                                                                                                                                           |                                                                                         | Nonparametric UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L Statistics for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 2                                                                                                                                                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 3                                                                                                                                                                           | User Selected Options                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 4                                                                                                                                                                           | · ·                                                                                     | ProUCL 5.11/13/2020 2::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 5                                                                                                                                                                           |                                                                                         | WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 6                                                                                                                                                                           |                                                                                         | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 7                                                                                                                                                                           |                                                                                         | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 8                                                                                                                                                                           | Number of Bootstrap Operations                                                          | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 9                                                                                                                                                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 10                                                                                                                                                                          |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 204                                                                                                                                                                         |                                                                                         | Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tric Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
| 206                                                                                                                                                                         |                                                                                         | Data appear Approxima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | te Normal Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | stributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                    |
| 207                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 208                                                                                                                                                                         |                                                                                         | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | suming Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 209                                                                                                                                                                         | 95% Nor                                                                                 | rmal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 210                                                                                                                                                                         |                                                                                         | 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.64                                               |
| 211                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.633                                              |
| 212                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 213                                                                                                                                                                         |                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 214                                                                                                                                                                         |                                                                                         | 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.631                                              |
| 215                                                                                                                                                                         |                                                                                         | Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.654                                              |
| 216                                                                                                                                                                         |                                                                                         | % Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.626                                              |
| 217                                                                                                                                                                         |                                                                                         | 5% BCA Bootstrap UCL byshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0F0/ Obstacle (Masses Od.) HOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.007                                              |
| 218                                                                                                                                                                         |                                                                                         | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.807                                              |
| 219                                                                                                                                                                         | 97.5% Chebyshev(Mean, Sd) UCL                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% Chebyshev(Weah, 5u) OCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.103                                              |
| 1                                                                                                                                                                           |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>"</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |
| 220                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggested UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CI to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
| 221                                                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggested UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 221<br>222                                                                                                                                                                  |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CL to Use<br>It to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 221<br>222<br>223                                                                                                                                                           | Note: Suggestions regardin                                                              | Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mal, May wan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 221<br>222<br>223<br>224                                                                                                                                                    |                                                                                         | Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mal, May want                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |
| 221<br>222<br>223<br>224<br>225                                                                                                                                             | Re                                                                                      | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UCL are provi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t to try Normal Distribution ided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 221<br>222<br>223<br>224                                                                                                                                                    | Re<br>These recommendations a                                                           | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s  Its of the simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it to try Normal Distribution  ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.                                                 |
| 221<br>222<br>223<br>224<br>225<br>226                                                                                                                                      | Re<br>These recommendations a                                                           | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s  Its of the simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it to try Normal Distribution  ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227                                                                                                                               | Re<br>These recommendations :<br>However, simulations results                           | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s  Its of the simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it to try Normal Distribution  ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228                                                                                                                        | Re<br>These recommendations a                                                           | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s  Its of the simula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | it to try Normal Distribution  ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.                                                 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229                                                                                                                 | Re<br>These recommendations :<br>However, simulations results                           | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s Its of the simula orld data sets;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006). for additional insight the user may want to consult a statistician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n.                                                 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232                                                                                            | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Nor<br>ng the selection of a 95%<br>ecommendations are bas<br>are based upon the resu<br>s will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are provi<br>ed upon data s<br>tts of the simula<br>orld data sets;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006). for additional insight the user may want to consult a statistician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231                                                                                                   | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Nor<br>ing the selection of a 95%<br>ecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mal, May want  UCL are provi ed upon data s Its of the simula orld data sets;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006). for additional insight the user may want to consult a statisticial atlastics.  Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234                                                                              | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL are provi ed upon data s tts of the simula orld data sets;  General Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ided to help the user to select the most appropriate 95% UCL. size, data distribution, and skewness. ation studies summarized in Singh, Maichle, and Lee (2006). for additional insight the user may want to consult a statisticial atlistics  Number of Distinct Observations Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17 0                                               |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235                                                                       | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL are provi ed upon data s tts of the simula orld data sets;  General Sta 21  0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atistics  Number of Distributions  Number of Missing Observations  Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>0<br>0.443                                   |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236                                                                       | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Nor  ng the selection of a 95% ecommendations are base are based upon the resu s will not cover all Real W  Number of Observations  Minimum  Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are provied upon data sits of the simula orld data sets;  General Sta 21  0.05  1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | atistics  Number of District Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>0<br>0.443<br>0.34                           |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237                                                         | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum Maximum SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL are provied upon data sits of the simula orld data sets;  General Sta 21  0.05  1.48  0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atistics  Number of District Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>0<br>0.443<br>0.34<br>0.074                  |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238                                                         | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Nor  Ing the selection of a 95% ecommendations are base are based upon the resu is will not cover all Real W  Number of Observations  Minimum  Maximum  SD  Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are provied upon data sits of the simula orld data sets;  General Sta 21  0.05  1.48  0.339  0.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atistics  Number of District Observations  Number of Missing Observations  Mean  Std. Error of Mean  Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>239                                                  | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum Maximum SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL are provied upon data sits of the simula orld data sets;  General Sta 21  0.05  1.48  0.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atistics  Number of District Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>0<br>0.443<br>0.34<br>0.074                  |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>239<br>240                                    | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum Maximum SD  Coefficient of Variation Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | General Sta  0.05  1.48  0.339  0.765  -1.115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | atistics  Number of District Observations  Number of Missing Observations  Mean  Std. Error of Mean  Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>239<br>240<br>241                             | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norms of the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Mumber of Observations  Minimum Maximum SD  Coefficient of Variation  Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Stan | atistics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>237<br>238<br>239<br>240<br>241                                    | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norms of the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Mumber of Observations  Minimum Maximum SD  Coefficient of Variation  Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Stan | attistics  Number of District Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  ided to help the user to select the most appropriate 95% UCL.  Size, data distribution, and skewness.  attion studies summarized in Singh, Maichle, and Lee (2006).  for additional insight the user may want to consult a statistician  attistics  Number of Distinct Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>239<br>240<br>241                             | Res These recommendations a However, simulations results  Benzo[k]fluoranthene          | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Munimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Stan | atistics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  In Free UCL Statistics  Idea distribution, and skewness.  Author to the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the se | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>229<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>240<br>241<br>242<br>243                      | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Munimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Startic Distribution ma Distribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atistics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  In Free UCL Statistics  Idea distribution, and skewness.  Author to the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the servation of the se | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>240<br>241<br>242                                    | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Startic Distribution ma Distribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | atistics  Number of Distribution  Nedian  Std. Error of Mean  Std. Error of Mean  Std. Error of Mean  Std. Stror of Mean  Std. Stror of Joseph Distribution  Std. Stror of Joseph Distribution  Std. Stror of Mean  Std. Stror of  | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761         |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>240<br>241<br>242<br>243                                    | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Norming the selection of a 95% ecommendations are based upon the results will not cover all Real Williams of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | General Sta  0.05  1.48  0.339  0.765  -1.115  tric Distribution ma Distribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | atistics  Number of Distribution  Nedian  Std. Error of Mean  Std. Error of Mean  Std. Error of Mean  Std. Stror of Mean  Std. | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761<br>0.89 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>240<br>241<br>242<br>243<br>244<br>245<br>246               | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Normg the selection of a 95% ecommendations are base are based upon the results will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not c | General State 1.115  General State 2.1  0.05  1.48  0.339  0.765  -1.115  tric Distribution ma Distribute suming Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atistics  Number of District Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  In Free UCL Statistics  In Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761<br>0.89 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>228<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>240<br>241<br>242<br>242<br>243<br>244<br>245<br>246<br>247 | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Nor  Ing the selection of a 95% ecommendations are base are based upon the resu is will not cover all Real W  Number of Observations  Minimum Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Inmal UCL 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | General State 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | attstics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Nedian  Std. Error of Mean  Skewness  SD of logged Data  In Free UCL Statistics  In Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761<br>0.89 |
| 221<br>222<br>223<br>224<br>225<br>226<br>227<br>230<br>231<br>232<br>233<br>234<br>235<br>236<br>237<br>238<br>240<br>241<br>242<br>243<br>244<br>245<br>246<br>247<br>248 | Res These recommendations a However, simulations results  Benzo[k]fluoranthene  Total N | Data appear Normg the selection of a 95% ecommendations are base are based upon the results will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not cover all Real Will not c | General State 1.115  General State 2.1  0.05  1.48  0.339  0.765  -1.115  tric Distribution ma Distribute suming Norma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | atistics  Number of District Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  In Free UCL Statistics  In Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17<br>0<br>0.443<br>0.34<br>0.074<br>1.761<br>0.89 |

SLR Page 5 of 32

|            | A B C                          | D E                                              | F             | G H I J K                                                             | L     |
|------------|--------------------------------|--------------------------------------------------|---------------|-----------------------------------------------------------------------|-------|
| 1          |                                | Nonparametric UC                                 | L Statistics  | for Data Sets with Non-Detects                                        |       |
| 2          |                                |                                                  |               |                                                                       |       |
| 3          | User Selected Options          |                                                  |               |                                                                       |       |
| 4          | Date/Time of Computation       | ProUCL 5.11/13/2020 2:                           | 22:32 PM      |                                                                       |       |
| 5          | From File                      | WorkSheet.xls                                    |               |                                                                       |       |
| 6          | Full Precision                 | OFF                                              |               |                                                                       |       |
| 7          | Confidence Coefficient         | 95%                                              |               |                                                                       |       |
| 8          | Number of Bootstrap Operations | 2000                                             |               |                                                                       |       |
| 9          |                                |                                                  |               |                                                                       |       |
| 10         | 01                             | 5% Hall's Bootstrap UCL                          | 1 101         | OF9/ Persentile Peetstree LICI                                        | 0.560 |
| 252        |                                | 95% BCA Bootstrap UCL                            | 0.602         | 95% Percentile Bootstrap UCL                                          | 0.569 |
| 253        |                                | ebyshev(Mean, Sd) UCL                            | 0.665         | 95% Chebyshev(Mean, Sd) UCL                                           | 0.766 |
| 254        |                                | ebyshev(Mean, Sd) UCL                            | 0.905         | 99% Chebyshev(Mean, Sd) UCL                                           | 1.179 |
| 255        | 97.576 011                     | ebysilev(ivieali, 3u) OCL                        | 0.903         | 33 % Chebyshev(iviean, 30) OCL                                        | 1.179 |
| 256        |                                |                                                  | Suggested     | UCL to Use                                                            |       |
| 257        |                                | Data annear Gan                                  |               | ant to try Gamma Distribution                                         |       |
| 258        |                                | Data appear Gan                                  | iiia, way w   | ant to try defining bistibution                                       |       |
| 259        | Note: Suggestions regard       | ing the selection of a 95%                       | UCL are pr    | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 260        |                                |                                                  |               | a size, data distribution, and skewness.                              |       |
| 261        |                                |                                                  |               | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 262        |                                |                                                  |               | ts; for additional insight the user may want to consult a statisticia | n.    |
| 263        | <u> </u>                       |                                                  |               |                                                                       |       |
| 264        |                                |                                                  |               |                                                                       |       |
| 265<br>266 | Benzo[a]pyrene                 |                                                  |               |                                                                       |       |
| 267        |                                |                                                  |               |                                                                       |       |
| 268        |                                |                                                  | General       | Statistics                                                            |       |
| 269        | Total                          | Number of Observations                           | 21            | Number of Distinct Observations                                       | 19    |
| 270        |                                |                                                  |               | Number of Missing Observations                                        | 0     |
| 271        |                                | Minimum                                          | 0.05          | Mean                                                                  | 0.864 |
| 272        |                                | Maximum                                          | 3.11          | Median                                                                | 0.72  |
| 273        |                                | SD                                               | 0.693         | Std. Error of Mean                                                    | 0.151 |
| 274        |                                | Coefficient of Variation                         | 0.802         | Skewness                                                              | 1.939 |
| 275        |                                | Mean of logged Data                              | -0.512        | SD of logged Data                                                     | 1.044 |
| 276        |                                |                                                  |               |                                                                       |       |
| 277        |                                | Nonparame                                        | tric Distribu | tion Free UCL Statistics                                              |       |
| 278        |                                | Data do not fo                                   | ollow a Disc  | ernible Distribution (0.05)                                           |       |
| 279        |                                |                                                  |               |                                                                       |       |
| 280        |                                |                                                  | suming Nori   | mal Distribution                                                      |       |
| 281        | 95% No                         | ormal UCL                                        |               | 95% UCLs (Adjusted for Skewness)                                      |       |
| 282        |                                | 95% Student's-t UCL                              | 1.125         | 95% Adjusted-CLT UCL (Chen-1995)                                      | 1.182 |
| 283        |                                |                                                  |               | 95% Modified-t UCL (Johnson-1978)                                     | 1.136 |
| 284        |                                | B1.                                              |               | hibation Front IIO                                                    |       |
| 285        |                                |                                                  |               | tribution Free UCLs                                                   | 1 105 |
| 286        | 050/                           | 95% CLT UCL                                      | 1.113         | 95% Jacktein t UCL                                                    | 1.125 |
| 287        |                                | Standard Bootstrap UCL                           | 2.578         | 95% Bootstrap LICL                                                    | 1.264 |
| 288        |                                | 5% Hall's Bootstrap UCL<br>95% BCA Bootstrap UCL | 1.2           | 95% Percentile Bootstrap UCL                                          | 1.121 |
| 289        |                                | ebyshev(Mean, Sd) UCL                            | 1.318         | 95% Chebyshev(Mean, Sd) UCL                                           | 1.524 |
| 290        |                                | ebyshev(Mean, Sd) UCL                            | 1.809         | 99% Chebyshev(Mean, Sd) UCL                                           | 2.37  |
| 291        | 97.3% CIII                     | objectivitali, ouj och                           | 1.003         | 33 /6 Chebyshev(Mean, 30) UCL                                         | 2.07  |
| 292        |                                |                                                  | Suggested     | UCL to Use                                                            |       |
| 293        | 95% Che                        | byshev (Mean, Sd) UCL                            | 1.524         |                                                                       |       |
| 294        | 3573 6116                      | , (, 04/ 00L                                     |               |                                                                       |       |
| 295        | Note: Suggestions regard       | ing the selection of a 95%                       | UCL are nr    | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 296        |                                |                                                  |               | a size, data distribution, and skewness.                              |       |
| 297        |                                |                                                  | -             | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 298        |                                | <u> </u>                                         |               | ts; for additional insight the user may want to consult a statisticia | n.    |
| 299        | , omialatione roodile          |                                                  | 50            | -,                                                                    |       |

SLR Page 6 of 32

| 1          | A B C                          | D E                         | F             | G H I J K                                                             |        |
|------------|--------------------------------|-----------------------------|---------------|-----------------------------------------------------------------------|--------|
|            | <i>x</i> 5                     |                             |               | for Data Sets with Non-Detects                                        |        |
| 2          |                                |                             |               |                                                                       |        |
| 3          | User Selected Options          |                             |               |                                                                       |        |
| 4          | Date/Time of Computation       | ProUCL 5.11/13/2020 2:2     | 22:32 PM      |                                                                       |        |
| 5          | From File                      | WorkSheet.xls               |               |                                                                       |        |
| 6          | Full Precision                 | OFF                         |               |                                                                       |        |
| 7          | Confidence Coefficient         | 95%                         |               |                                                                       |        |
| 8          | Number of Bootstrap Operations | 2000                        |               |                                                                       |        |
| 9          |                                |                             |               |                                                                       |        |
| 10         |                                |                             |               |                                                                       |        |
| 300        |                                |                             |               |                                                                       |        |
| 301        |                                |                             |               |                                                                       |        |
|            | Chrysene                       |                             |               |                                                                       |        |
| 303        |                                |                             |               |                                                                       |        |
| 304        |                                |                             | General       | Statistics                                                            |        |
| 305        | Total                          | Number of Observations      | 21            | Number of Distinct Observations                                       | 20     |
| 306        |                                |                             |               | Number of Missing Observations                                        | 0      |
| 307        |                                | Minimum                     | 0.05          | Mean                                                                  | 1.076  |
| 308        |                                | Maximum                     | 4.04          | Median                                                                | 0.88   |
| 309        |                                | SD                          | 0.899         | Std. Error of Mean                                                    | 0.196  |
| 310        |                                | Coefficient of Variation    | 0.835         | Skewness                                                              | 1.998  |
| 311        |                                | Mean of logged Data         | -0.336        | SD of logged Data                                                     | 1.125  |
| 312        |                                |                             |               |                                                                       |        |
| 313        |                                | Nonparame                   | tric Distribu | tion Free UCL Statistics                                              |        |
| 314        |                                | Data do not fo              | ollow a Disc  | ernible Distribution (0.05)                                           |        |
| 315        |                                |                             |               |                                                                       |        |
| 316        |                                | Ass                         | suming Norr   | mal Distribution                                                      |        |
| 317        | 95% No                         | rmal UCL                    |               | 95% UCLs (Adjusted for Skewness)                                      |        |
| 318        |                                | 95% Student's-t UCL         | 1.414         | 95% Adjusted-CLT UCL (Chen-1995)                                      | 1.49   |
| 319        |                                |                             |               | 95% Modified-t UCL (Johnson-1978)                                     | 1.428  |
| 320        |                                |                             |               |                                                                       |        |
| 321        |                                | Nonpar                      | ametric Dist  | tribution Free UCLs                                                   |        |
| 322        |                                | 95% CLT UCL                 | 1.398         | 95% Jackknife UCL                                                     | 1.414  |
| 323        | 95%                            | Standard Bootstrap UCL      | 1.397         | 95% Bootstrap-t UCL                                                   | 1.605  |
| 324        | 99                             | 5% Hall's Bootstrap UCL     | 2.903         | 95% Percentile Bootstrap UCL                                          | 1.417  |
| 325        | g                              | 95% BCA Bootstrap UCL       | 1.511         |                                                                       |        |
| 326        | 90% Che                        | ebyshev(Mean, Sd) UCL       | 1.664         | 95% Chebyshev(Mean, Sd) UCL                                           | 1.93   |
| 327        | 97.5% Che                      | ebyshev(Mean, Sd) UCL       | 2.3           | 99% Chebyshev(Mean, Sd) UCL                                           | 3.027  |
| 328        |                                |                             |               |                                                                       |        |
| 329        |                                |                             | Suggested     | UCL to Use                                                            |        |
| 330        | 95% Che                        | ebyshev (Mean, Sd) UCL      | 1.93          |                                                                       |        |
| 331        |                                |                             |               |                                                                       |        |
| 332        | Note: Suggestions regardi      | ing the selection of a 95%  | UCL are pro   | ovided to help the user to select the most appropriate 95% UCL.       |        |
| 333        | R                              | ecommendations are bas      | ed upon dat   | a size, data distribution, and skewness.                              |        |
| 334        | These recommendations          | are based upon the resul    | ts of the sim | nulation studies summarized in Singh, Maichle, and Lee (2006).        |        |
| 335        | However, simulations results   | s will not cover all Real W | orld data set | ts; for additional insight the user may want to consult a statisticia | in.    |
| 336        |                                |                             |               |                                                                       |        |
| 337        |                                |                             |               |                                                                       |        |
|            | Dibenz[a,h]anthracene          |                             |               |                                                                       |        |
| 339        |                                |                             |               |                                                                       |        |
| 340        |                                |                             |               | Statistics                                                            |        |
| 341        | Total                          | Number of Observations      | 21            | Number of Distinct Observations                                       | 11     |
| 342        |                                |                             |               | Number of Missing Observations                                        | 0      |
| U-12       |                                | Minimum                     | 0.06          | Mean                                                                  | 0.131  |
| 343        |                                | Massimouma                  | 0.35          | Median                                                                | 0.1    |
|            |                                | Maximum                     | 0.55          | Wedian                                                                | 0      |
| 343<br>344 |                                | SD                          | 0.0708        | Std. Error of Mean                                                    | 0.0154 |
| 343        |                                |                             |               |                                                                       |        |

SLR Page 7 of 32

|                                                                                                                                                                             | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1                                                                                                                                                                           | Nonpara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | metric UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 2                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 3                                                                                                                                                                           | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 4                                                                                                                                                                           | Date/Time of Computation ProUCL 5.11/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13/2020 2:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 5                                                                                                                                                                           | From File WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 6                                                                                                                                                                           | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 7                                                                                                                                                                           | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 8                                                                                                                                                                           | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 9                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 10                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 348                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 349                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 350                                                                                                                                                                         | Data ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pear Logno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ormal Distri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | buted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 351                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 352                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uming Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 353                                                                                                                                                                         | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 354                                                                                                                                                                         | 95% Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nt's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.163                                               |
| 355                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.159                                               |
| 356                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 357                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| 358                                                                                                                                                                         | 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.158                                               |
| 359                                                                                                                                                                         | 95% Standard Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.175                                               |
| 360                                                                                                                                                                         | 95% Hall's Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.159                                               |
| 361                                                                                                                                                                         | 95% BCA Boots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 362                                                                                                                                                                         | 90% Chebyshev(Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.198                                               |
| 363                                                                                                                                                                         | 97.5% Chebyshev(Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.285                                               |
| 364                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 365                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 366                                                                                                                                                                         | Data appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ear Lognon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| 366<br>367                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ant to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
|                                                                                                                                                                             | Note: Suggestions regarding the selectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ant to try Lognormal Distribution ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |
| 367                                                                                                                                                                         | Note: Suggestions regarding the selectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 367<br>368                                                                                                                                                                  | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 367<br>368<br>369                                                                                                                                                           | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |
| 367<br>368<br>369<br>370                                                                                                                                                    | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 367<br>368<br>369<br>370<br>371<br>372<br>373                                                                                                                               | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 367<br>368<br>369<br>370<br>371<br>372<br>373                                                                                                                               | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL as size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375                                                                                                                 | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of a 95%<br>ons are base<br>on the resul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UCL are pr<br>ed upon dat<br>ts of the sin<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticial                                                                                                                                                                                                                                                                                                                                                                              |                                                     |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376                                                                                                          | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of a 95%<br>ons are basion the resultable all Real Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UCL are pr<br>ed upon dat<br>ts of the sin<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial                                                                                                                                                                                                                                                                                                                                                                             | nn.                                                 |
| 367<br>368<br>370<br>371<br>372<br>373<br>374<br>375<br>376                                                                                                                 | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of a 95%<br>ons are basion the resultable all Real Wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UCL are pr<br>ed upon dat<br>ts of the sin<br>orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.  ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticia   Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                                          | 20                                                  |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377                                                                                                   | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n of a 95% ins are basion the result all Real We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are pred upon data ts of the simonld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rant to try Lognormal Distribution  rovided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness.  Inulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                       | 20<br>0                                             |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>378                                                                                            | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of a 95% ons are basson the result all Real We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are predupon data to of the simple orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. It as size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial statistics  Statistics  Number of Distinct Observations Number of Missing Observations Mean                                                                                                                                                                                                                                         | 20<br>0<br>2.589                                    |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>378<br>379                                                                                     | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of a 95% ons are basson the result all Real We servations Minimum Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCL are predupon data ts of the simorld data se  General 21  0.05 10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | covided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness.  Inulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                                                            | 20<br>0<br>2.589<br>1.98                            |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>376<br>377<br>378<br>379<br>380<br>381                                                                              | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of a 95% ons are base on the result all Real We servations  Minimum Maximum SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are pred upon datats of the simorld data se  General 21  0.05 10.3 2.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | covided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                                                          | 20<br>0<br>2.589<br>1.98<br>0.508                   |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>378<br>380<br>381<br>382                                                                       | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs  Coefficient of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of a 95% which are based on the result all Real Wood servations Minimum Maximum SD F Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are pred upon data ts of the simorld data se  General 21  0.05  10.3  2.326  0.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | covided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness                                                                                                                                                                                                                                                | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>378<br>380<br>381<br>382<br>383                                                                | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n of a 95% which are based on the result all Real Wood servations Minimum Maximum SD F Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | UCL are pred upon datats of the simorld data se  General 21  0.05 10.3 2.326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | covided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                                                          | 20<br>0<br>2.589<br>1.98<br>0.508                   |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384                                                                | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Coefficient of Mean of log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of a 95% on the result all Real Woods servations  Minimum  Maximum  SD  Variation  gged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL are pred upon data ts of the simorld data se  General 21  0.05 10.3 2.326 0.898 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.  ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                           | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>388<br>381<br>382<br>383<br>384<br>385                                                         | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Coefficient of Mean of log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of a 95% on the result all Real Woods servations Minimum Maximum SD F Variation gged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General 21 0.05 10.3 2.326 0.898 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                            | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>388<br>380<br>381<br>382<br>383<br>384<br>385<br>386                                           | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Coefficient of Mean of log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of a 95% on the result all Real Woods servations Minimum Maximum SD F Variation gged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | General 21 0.05 10.3 2.326 0.898 0.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.  ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                           | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387                                           | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Coefficient of Mean of log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n of a 95% on the result all Real Wood servations Minimum Maximum SD f Variation gged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | General 21 0.05 10.3 2.326 0.898 0.437 tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.  Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006).  Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  Ittion Free UCL Statistics  uted at 5% Significance Level                                                                                                                              | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388                                    | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Me | n of a 95% on the result all Real Wood servations Minimum Maximum SD f Variation gged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | General 21 0.05 10.3 2.326 0.898 0.437 tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | covided to help the user to select the most appropriate 95% UCL. Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Itton Free UCL Statistics  mal Distribution                                                                                                                                                                                       | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041          |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389                             | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Mean of log Notes and Data age 195% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n of a 95% on the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and th | General 21 0.05 10.3 2.326 0.898 0.437 tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. It is size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician statistician statistics.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Intion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                       | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390                      | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes and State Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient of Mean of log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean of Log Notes Coefficient Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Mean Of Me | n of a 95% on the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and th | General 21 0.05 10.3 2.326 0.898 0.437 tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. It is size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician statistician studies.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                           | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391               | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Mean of log Notes and Data age 195% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n of a 95% on the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and th | General 21 0.05 10.3 2.326 0.898 0.437 tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. It is size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician statistician statistics.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Intion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                       | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>388<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392        | Note: Suggestions regarding the selection Recommendation These recommendations are based upon However, simulations results will not cover Fluoranthene  Total Number of Observation Mean of log Notes and Data age 195% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n of a 95% who are basion the result all Real Wood servations  Minimum Maximum SD f Variation gged Data  lonparameter ppear Gam  Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General 21  0.05 10.3 2.326 0.898 0.437  tric Distributura Distributura Distributura Nora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Stat. Error of Mean  Std. Error of Mean  Skewness  SD of logged Data  stion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                         | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>380<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392<br>393 | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs  Coefficient of Mean of log  N  Data a  95% Normal UCL  95% Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n of a 95% who are basion the result all Real Wood all Real Wood servations  Minimum Maximum SD f Variation aged Data  lonparameter ppear Garr  Ass  Nonpara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General 21  0.05 10.3 2.326 0.898 0.437  tric Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distributio | sant to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. It is size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statisticial statistics.  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  Ittion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |
| 367<br>368<br>369<br>370<br>371<br>372<br>373<br>374<br>375<br>376<br>377<br>388<br>381<br>382<br>383<br>384<br>385<br>386<br>387<br>388<br>389<br>390<br>391<br>392        | Note: Suggestions regarding the selectio Recommendatio These recommendations are based upo However, simulations results will not cover  Fluoranthene  Total Number of Obs  Coefficient of Mean of log  N  Data a  95% Normal UCL  95% Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n of a 95% on the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and the result all Real Wood and th | General 21  0.05 10.3 2.326 0.898 0.437  tric Distributura Distributura Distributura Nora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Statistics  Number of District Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Number of Missing Observations  Stat. Error of Mean  Std. Error of Mean  Skewness  SD of logged Data  stion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                         | 20<br>0<br>2.589<br>1.98<br>0.508<br>2.041<br>1.346 |

SLR Page 8 of 32

|                                                                                                | A B C D E  Nonparametric UC                                                                                                                                                                                                                          | F<br>L Statistics                                                                      | G H I J K Mor Data Sets with Non-Detects                                                                                                                                                                                          | L                               |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 1                                                                                              |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 3                                                                                              | User Selected Options                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 4                                                                                              | Date/Time of Computation ProUCL 5.11/13/2020 2:                                                                                                                                                                                                      | 22:32 PM                                                                               |                                                                                                                                                                                                                                   |                                 |
| 5                                                                                              | From File WorkSheet.xls                                                                                                                                                                                                                              |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 6                                                                                              | Full Precision OFF                                                                                                                                                                                                                                   |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 7                                                                                              | Confidence Coefficient 95%                                                                                                                                                                                                                           |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 8                                                                                              | Number of Bootstrap Operations 2000                                                                                                                                                                                                                  |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 9                                                                                              |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 10                                                                                             |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 396                                                                                            | 95% Hall's Bootstrap UCL                                                                                                                                                                                                                             | 7.723                                                                                  | 95% Percentile Bootstrap UCL                                                                                                                                                                                                      | 3.441                           |
| 397                                                                                            | 95% BCA Bootstrap UCL                                                                                                                                                                                                                                | 3.594                                                                                  |                                                                                                                                                                                                                                   |                                 |
| 398                                                                                            | 90% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                          | 4.112                                                                                  | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                       | 4.802                           |
| 399                                                                                            | 97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                        | 5.759                                                                                  | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                       | 7.639                           |
| 400                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        | '                                                                                                                                                                                                                                 |                                 |
| 401                                                                                            |                                                                                                                                                                                                                                                      | Suggested                                                                              | UCL to Use                                                                                                                                                                                                                        |                                 |
| 402                                                                                            | Data appear Gan                                                                                                                                                                                                                                      | nma, May w                                                                             | ant to try Gamma Distribution                                                                                                                                                                                                     |                                 |
| 403                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 404                                                                                            | Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                   | UCL are pr                                                                             | ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                   |                                 |
| 405                                                                                            | Recommendations are bas                                                                                                                                                                                                                              | sed upon da                                                                            | a size, data distribution, and skewness.                                                                                                                                                                                          |                                 |
| 406                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                    |                                 |
| 407                                                                                            | However, simulations results will not cover all Real W                                                                                                                                                                                               | orld data se                                                                           | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                             | n.                              |
| 408                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 409                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 410                                                                                            | Fluorene                                                                                                                                                                                                                                             |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 411                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 412                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        | Statistics                                                                                                                                                                                                                        |                                 |
| 413                                                                                            | Total Number of Observations                                                                                                                                                                                                                         | 21                                                                                     | Number of Distinct Observations                                                                                                                                                                                                   | 17                              |
| 414                                                                                            |                                                                                                                                                                                                                                                      |                                                                                        | Number of Missing Observations                                                                                                                                                                                                    | 0                               |
| 415                                                                                            | Minimum                                                                                                                                                                                                                                              | 0.05                                                                                   | Mean                                                                                                                                                                                                                              | 0.332                           |
| 416                                                                                            | Maximum                                                                                                                                                                                                                                              | 1.06                                                                                   | Median                                                                                                                                                                                                                            | 0.25                            |
| 417                                                                                            | SD.                                                                                                                                                                                                                                                  | 0.3                                                                                    | Std. Error of Mean                                                                                                                                                                                                                | 0.0655                          |
| 418                                                                                            | Coefficient of Variation                                                                                                                                                                                                                             | 0.904                                                                                  | Skewness                                                                                                                                                                                                                          | 1.396                           |
| 419                                                                                            | Mean of logged Data                                                                                                                                                                                                                                  | -1.5                                                                                   | SD of logged Data                                                                                                                                                                                                                 | 0.95                            |
| 420                                                                                            | Nonnerome                                                                                                                                                                                                                                            | trio Diotribu                                                                          | tion Free UCL Statistics                                                                                                                                                                                                          |                                 |
| 421                                                                                            | ·                                                                                                                                                                                                                                                    |                                                                                        |                                                                                                                                                                                                                                   |                                 |
| 422                                                                                            | Data appear Approxima                                                                                                                                                                                                                                | ate Norman                                                                             | Distributed at 5% Significance Level                                                                                                                                                                                              |                                 |
| 423                                                                                            | Δο                                                                                                                                                                                                                                                   | eumina Nor                                                                             | mal Distribution                                                                                                                                                                                                                  |                                 |
| 424                                                                                            | 95% Normal UCL                                                                                                                                                                                                                                       | summing 140m                                                                           | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                  |                                 |
| 425                                                                                            | 00 /0 Hollina 00E                                                                                                                                                                                                                                    | 0.445                                                                                  |                                                                                                                                                                                                                                   | 0.461                           |
|                                                                                                | 95% Student's-t LICI                                                                                                                                                                                                                                 | ().445                                                                                 | 95% Adjusted-Cl   UC.   Chen-1995)                                                                                                                                                                                                |                                 |
| 426                                                                                            | 95% Student's-t UCL                                                                                                                                                                                                                                  | 0.445                                                                                  | 95% Adjusted-CLT UCL (Chen-1995)<br>95% Modified-t UCL (Johnson-1978)                                                                                                                                                             | 0.448                           |
| 427                                                                                            | 95% Student's-t UCL                                                                                                                                                                                                                                  | 0.445                                                                                  | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                 | 0.448                           |
| 427<br>428                                                                                     |                                                                                                                                                                                                                                                      |                                                                                        | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                 | 0.448                           |
| 427<br>428<br>429                                                                              |                                                                                                                                                                                                                                                      |                                                                                        |                                                                                                                                                                                                                                   | 0.448                           |
| 427<br>428<br>429<br>430                                                                       | Nonpar                                                                                                                                                                                                                                               | rametric Dis                                                                           | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                 |                                 |
| 427<br>428<br>429<br>430<br>431                                                                | Nonpai<br>95% CLT UCL                                                                                                                                                                                                                                | rametric Dis                                                                           | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL                                                                                                                                                         | 0.445                           |
| 427<br>428<br>429<br>430<br>431<br>432                                                         | Nonpai<br>95% CLT UCL<br>95% Standard Bootstrap UCL                                                                                                                                                                                                  | 0.44<br>0.437                                                                          | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                    | 0.445                           |
| 427<br>428<br>429<br>430<br>431<br>432<br>433                                                  | Nonpai<br>95% CLT UCL<br>95% Standard Bootstrap UCL<br>95% Hall's Bootstrap UCL                                                                                                                                                                      | 0.44<br>0.437<br>0.475                                                                 | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                    | 0.445                           |
| 427<br>428<br>429<br>430<br>431<br>432<br>433                                                  | Nonpai<br>95% CLT UCL<br>95% Standard Bootstrap UCL<br>95% Hall's Bootstrap UCL<br>95% BCA Bootstrap UCL                                                                                                                                             | 0.44<br>0.437<br>0.475<br>0.459                                                        | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                      | 0.445<br>0.479<br>0.44          |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435                                    | Nonpai<br>95% CLT UCL<br>95% Standard Bootstrap UCL<br>95% Hall's Bootstrap UCL<br>95% BCA Bootstrap UCL<br>90% Chebyshev(Mean, Sd) UCL                                                                                                              | 0.44<br>0.437<br>0.475<br>0.459<br>0.528                                               | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL                                                                         | 0.445<br>0.479<br>0.44<br>0.617 |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436                             | Nonpai<br>95% CLT UCL<br>95% Standard Bootstrap UCL<br>95% Hall's Bootstrap UCL<br>95% BCA Bootstrap UCL<br>90% Chebyshev(Mean, Sd) UCL                                                                                                              | 0.44<br>0.437<br>0.475<br>0.459<br>0.528<br>0.741                                      | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL                                                                         | 0.445<br>0.479<br>0.44<br>0.617 |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437                      | Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                               | 0.44<br>0.437<br>0.475<br>0.459<br>0.528<br>0.741                                      | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                            | 0.445<br>0.479<br>0.44<br>0.617 |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437                      | Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                               | 0.44<br>0.437<br>0.475<br>0.459<br>0.528<br>0.741                                      | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                            | 0.445<br>0.479<br>0.44<br>0.617 |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439        | Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL                                                                                               | 0.44<br>0.437<br>0.475<br>0.459<br>0.528<br>0.741<br>Suggested                         | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                            | 0.445<br>0.479<br>0.44<br>0.617 |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439<br>440 | Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Data appear Not  Note: Suggestions regarding the selection of a 95%                          | 0.44 0.437 0.475 0.459 0.528 0.741  Suggested mal, May w                               | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use ant to try Normal Distribution      | 0.445<br>0.479<br>0.44          |
| 427<br>428<br>429<br>430<br>431<br>432<br>433<br>434<br>435<br>436<br>437<br>438<br>439        | Nonpal 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL  Data appear Not  Note: Suggestions regarding the selection of a 95% Recommendations are base | 0.44 0.437 0.475 0.459 0.528 0.741  Suggested mal, May we see UCL are prosed upon dare | 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use ant to try Normal Distribution | 0.445<br>0.479<br>0.44          |

SLR Page 9 of 32

|        |                                            | - 1             |                   | 0                 |                  |            | _        |           | 1/         |          |                                              |
|--------|--------------------------------------------|-----------------|-------------------|-------------------|------------------|------------|----------|-----------|------------|----------|----------------------------------------------|
| 1      | A B C D Nonpar                             | E<br>ametric UC | F<br>L Statistics | G<br>for Data Set | H<br>s with Non- | Detects    |          | J         | K          |          | L                                            |
| 1      |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 3      | User Selected Options                      |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 4      | Date/Time of Computation ProUCL 5.11       | /13/2020 2::    | 22:32 PM          |                   |                  |            |          |           |            |          |                                              |
|        | From File WorkSheet.x                      | ds              |                   |                   |                  |            |          |           |            |          |                                              |
| 5<br>6 | Full Precision OFF                         |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 7      | Confidence Coefficient 95%                 |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 8      | Number of Bootstrap Operations 2000        |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 9      |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 10     |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 444    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 445    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 446    | Indeno[1,2,3-cd]pyrene                     |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 447    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 448    |                                            |                 | General           | Statistics        |                  |            |          |           |            |          |                                              |
| 449    | Total Number of Ol                         | oservations     | 21                |                   |                  | Numb       | er of D  | istinct C | bservat    | ions     | 18                                           |
| 450    |                                            |                 |                   |                   |                  | Numb       | er of M  | issing C  | bservat    | ions     | 0                                            |
| 451    |                                            | Minimum         | 0.1               |                   |                  |            |          |           | M          | ean      | 0.441                                        |
| 452    |                                            | Maximum         | 1.25              |                   |                  |            |          |           | Med        | dian     | 0.36                                         |
| 453    |                                            | SD              | 0.288             |                   |                  |            |          | Std. E    | rror of M  | ean      | 0.0628                                       |
| 454    | Coefficient                                | of Variation    | 0.652             |                   |                  |            |          |           | Skewr      | ess      | 1.465                                        |
| 455    | Mean of lo                                 | ogged Data      | -1.02             |                   |                  |            |          | SD of     | logged [   | Data     | 0.684                                        |
| 456    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 457    |                                            | Nonparame       | tric Distribu     | tion Free UC      | L Statistics     | 3          |          |           |            |          |                                              |
| 458    | Data                                       | appear Gan      | nma Distrib       | uted at 5% S      | ignificance      | Level      |          |           |            |          | 2                                            |
| 459    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 460    |                                            | Ass             | suming Nor        | mal Distribut     | ion              |            |          |           |            |          |                                              |
| 461    | 95% Normal UCL                             |                 |                   |                   | 95%              | UCLs (Ad   | ljusted  | for Ske   | wness)     |          |                                              |
| 462    | 95% Stud                                   | ent's-t UCL     | 0.55              |                   |                  | 95% Adjus  | ted-CL   | T UCL (   | Chen-19    | 995)     | 0.566                                        |
| 463    |                                            |                 |                   |                   |                  | 95% Modi   | fied-t U | CL (Jol   | nnson-19   | 978)     | 0.553                                        |
| 464    |                                            |                 |                   |                   |                  |            |          |           |            | ·        |                                              |
| 465    |                                            | Nonpar          | ametric Dis       | tribution Fre     | e UCLs           |            |          |           |            |          |                                              |
| 466    | 95%                                        | 6 CLT UCL       | 0.545             |                   |                  |            | ,        | 95% Ja    | ckknife l  | JCL      | 0.55                                         |
| 467    | 95% Standard Boo                           | ·               | 0.546             |                   |                  |            |          |           | tstrap-t l |          | 0.589                                        |
| 468    | 95% Hall's Boo                             |                 | 0.636             |                   |                  | 95%        | 6 Perce  | ntile Bo  | otstrap l  | JCL      | 0.547                                        |
| 469    | 95% BCA Boo                                |                 | 0.569             |                   |                  |            |          |           |            |          |                                              |
| 470    | 90% Chebyshev(Mea                          | ·               | 0.63              |                   |                  |            |          |           | an, Sd) l  |          | 0.715                                        |
| 471    | 97.5% Chebyshev(Mea                        | n, Sd) UCL      | 0.833             |                   |                  | 99% (      | Chebysl  | nev(Me    | an, Sd) l  | JCL      | 1.066                                        |
| 472    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 473    |                                            |                 |                   | UCL to Use        |                  |            |          |           |            |          |                                              |
| 474    | Data :                                     | appear Gan      | nma, May w        | ant to try Ga     | mma Distri       | bution     |          |           |            |          |                                              |
| 475    |                                            |                 |                   |                   |                  |            |          |           | . 050      |          |                                              |
| 476    | Note: Suggestions regarding the selecti    |                 |                   |                   |                  |            |          | appropr   | ate 95%    | UCL      | <u>.                                    </u> |
| 477    | Recommendat                                |                 | •                 |                   |                  |            |          |           | (0         | 000)     |                                              |
| 478    | These recommendations are based up         |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 479    | However, simulations results will not cove | er all Real VV  | orid data se      | ts; for additio   | nai insignt ti   | ne user ma | y want   | to cons   | ult a sta  | tisticia | ın.                                          |
| 480    |                                            |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 481    | Marky described and d                      |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 402    | Methylnaphthalene, 1-                      |                 |                   |                   |                  |            |          |           |            |          |                                              |
| 483    |                                            |                 | Osmanal           | Castleties        |                  |            |          |           |            |          |                                              |
| 484    | Total Number of O                          | neon/otions     | 21                | Statistics        |                  | NI. see I- | or of D  | ictinct C | hear at    | ione     | 1.4                                          |
| 485    | Total Number of Ol                         | JSEI VATIONS    | ۷۱                |                   |                  |            |          |           | bservat    |          | 14                                           |
| 486    |                                            | Minimum         | 0.05              |                   |                  | Numb       | er of M  | issing C  | bservat    |          | 0 280                                        |
| 487    |                                            | Minimum         | 0.05              |                   |                  |            |          |           |            | ean      | 0.289                                        |
| 488    |                                            | Maximum         | 0.89              |                   |                  |            |          | Ctrl C    |            | dian     | 0.12                                         |
| 489    |                                            | SD              | 0.274             |                   |                  |            |          | Std. E    | rror of M  |          | 0.0597                                       |
| 490    | Coefficient                                |                 | 0.949             |                   |                  |            |          |           | Skewr      |          | 1.2                                          |
| 491    | Mean of lo                                 | ogged Data      | -1.667            |                   |                  |            |          | SD of     | logged [   | Jata     | 0.951                                        |

SLR Page 10 of 32

|                                                                                                                                                                                                  | A B C                                                                                                                                                 | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1                                                                                                                                                                                                |                                                                                                                                                       | Nonparametric UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Statistics for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |
| 2                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 3                                                                                                                                                                                                | User Selected Options                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 4                                                                                                                                                                                                | · ·                                                                                                                                                   | OUCL 5.11/13/2020 2:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 5                                                                                                                                                                                                |                                                                                                                                                       | orkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 6                                                                                                                                                                                                | Full Precision OFF                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 7                                                                                                                                                                                                | Confidence Coefficient 95%  Number of Bootstrap Operations 200                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 8                                                                                                                                                                                                | Number of Bootstrap Operations 200                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 9                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 10                                                                                                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 492<br>493                                                                                                                                                                                       |                                                                                                                                                       | Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 493                                                                                                                                                                                              | Data                                                                                                                                                  | a appear Approximate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lognormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| 495                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 496                                                                                                                                                                                              |                                                                                                                                                       | Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uming Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| 497                                                                                                                                                                                              | 95% Norma                                                                                                                                             | al UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |
| 498                                                                                                                                                                                              | 9                                                                                                                                                     | 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.392                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.404                                               |
| 499                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.394                                               |
| 500                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 501                                                                                                                                                                                              |                                                                                                                                                       | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |
| 502                                                                                                                                                                                              |                                                                                                                                                       | 95% CLT UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.392                                               |
| 503                                                                                                                                                                                              |                                                                                                                                                       | ndard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.426                                               |
| 504                                                                                                                                                                                              |                                                                                                                                                       | Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.386                                               |
| 505                                                                                                                                                                                              |                                                                                                                                                       | BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 050/ Obabarahar/Maara CalVIIOI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.540                                               |
| 506                                                                                                                                                                                              | ·                                                                                                                                                     | shev(Mean, Sd) UCL<br>shev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% Chebyshev(Mean, Sd) UCL<br>99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.549                                               |
| 507                                                                                                                                                                                              | 97.5% Criebys                                                                                                                                         | snev(iviean, 5d) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99% Chebyshev(Mean, Su) OCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.003                                               |
| 508                                                                                                                                                                                              |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
|                                                                                                                                                                                                  |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Suggested I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 509                                                                                                                                                                                              | Data a                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Suggested l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 509<br>510                                                                                                                                                                                       | Data a                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCL to Use<br>May want to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |
| 509<br>510<br>511                                                                                                                                                                                |                                                                                                                                                       | appear Approximate I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ognormal, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |
| 509<br>510<br>511<br>512                                                                                                                                                                         | Note: Suggestions regarding the                                                                                                                       | appear Approximate I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lognormal, I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | May want to try Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| 509<br>510<br>511<br>512<br>513                                                                                                                                                                  | Note: Suggestions regarding th                                                                                                                        | appear Approximate I<br>the selection of a 95%<br>mmendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UCL are pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |
| 509<br>510<br>511<br>512                                                                                                                                                                         | Note: Suggestions regarding the Recoremendations are                                                                                                  | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are products of the simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n.                                                  |
| 509<br>510<br>511<br>512<br>513<br>514                                                                                                                                                           | Note: Suggestions regarding the Recoremendations are                                                                                                  | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are products of the simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                  |
| 509<br>510<br>511<br>512<br>513<br>514<br>515                                                                                                                                                    | Note: Suggestions regarding the Recoremendations are                                                                                                  | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are products of the simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                  |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516                                                                                                                                             | Note: Suggestions regarding the Recoremendations are                                                                                                  | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are products of the simulations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                        | n.                                                  |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517                                                                                                                                      | Note: Suggestions regarding the Recorest These recommendations are However, simulations results will                                                  | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are produced upon data ts of the simulated data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statistician                                                                                                                                                                                                                                                                                                                                 | n.                                                  |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517                                                                                                                                      | Note: Suggestions regarding the Recorement of These recommendations are However, simulations results will Methylnaphthalene, 2-                       | the selection of a 95% ommendations are base based upon the resulting ill not cover all Real William and the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of a 95% of the selection of | UCL are producted upon data ts of the simulated data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006).  s; for additional insight the user may want to consult a statistician                                                                                                                                                                                                                                                                                                                                 |                                                     |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518                                                                                                                               | Note: Suggestions regarding the Recorement of These recommendations are However, simulations results will Methylnaphthalene, 2-                       | the selection of a 95% ommendations are base based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are produced upon data ts of the simulated data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial statistics.  Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                         | 17                                                  |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521                                                                                                          | Note: Suggestions regarding the Recorement of These recommendations are However, simulations results will Methylnaphthalene, 2-                       | the selection of a 95% ommendations are base based upon the result ill not cover all Real Womber of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UCL are producted upon data ts of the similarly orld data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial statistics.  Statistics  Number of Distinct Observations Number of Missing Observations                                                                                                                                                                                                                                          | 17 0                                                |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523                                                                                            | Note: Suggestions regarding the Recorement of These recommendations are However, simulations results will Methylnaphthalene, 2-                       | the selection of a 95% ommendations are base based upon the result ill not cover all Real Williamber of Observations  Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UCL are producted upon data to of the simulated data sets  General S  21  0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean                                                                                                                                                                                                                                                | 17<br>0<br>0.571                                    |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524                                                                                     | Note: Suggestions regarding the Recorement of These recommendations are However, simulations results will Methylnaphthalene, 2-                       | the selection of a 95% ommendations are base based upon the result ill not cover all Real W. mber of Observations  Minimum Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCL are producted upon data to of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median                                                                                                                                                                                                                                        | 17<br>0<br>0.571<br>0.24                            |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525                                                                              | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-                              | the selection of a 95% ommendations are base based upon the result ill not cover all Real W.  mber of Observations  Minimum  Maximum  SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL are producted upon data to of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                    | 17<br>0<br>0.571<br>0.24<br>0.136                   |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526                                                                       | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% memorations are base based upon the result ill not cover all Real William mber of Observations  Minimum Maximum SD oefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General S  21  0.05  1.94  0.625  1.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness                                                                                                                                                                                                          | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527                                                                | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the result ill not cover all Real W.  mber of Observations  Minimum  Maximum  SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | UCL are producted upon data to of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation of the simulation | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean                                                                                                                                                                                                                    | 17<br>0<br>0.571<br>0.24<br>0.136                   |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528                                                         | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the result ill not cover all Real William of Observations  Minimum Maximum  SD oefficient of Variation Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General \$ 21  0.05 1.94 0.625 1.094 -1.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness                                                                                                                                                                                                          | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529                                                         | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the resulting in the cover all Real William of Observations  Minimum Maximum SD oefficient of Variation Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General \$ 21  0.05 1.94 0.625 1.094 -1.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                             | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530                                                  | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the resulting in the cover all Real William of Observations  Minimum Maximum SD oefficient of Variation Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General \$ 21  0.05 1.94 0.625 1.094 -1.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                            | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531                                           | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Gam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | General S  21  0.05  1.94  0.625  1.094  -1.212  tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                            | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532                                    | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num                   | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garr  Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General S  21  0.05  1.94  0.625  1.094  -1.212  tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                            | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531                                           | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num  Co  N  95% Norma | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garr  Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | General S  21  0.05  1.94  0.625  1.094  -1.212  tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  don Free UCL Statistics  sted at 5% Significance Level                                                                                                                              | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229          |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533                             | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num  Co  N  95% Norma | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garrassel UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | General S  21  0.05 1.94 0.625 1.094 -1.212  tric Distributions Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statistician  Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  clon Free UCL Statistics  sted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                         | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229<br>1.235 |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534               | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num  Co  N  95% Norma | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garr  Assal UCL 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General S  21  0.05  1.94  0.625  1.094  -1.212  tric Distributional Distributional Norm  0.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  dion Free UCL Statistics  sted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)     | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229<br>1.235 |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535               | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num  Co  N  95% Norma | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garr  Assel UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | General S  21  0.05  1.94  -1.212  tric Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Dist | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial statistics  Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  clion Free UCL Statistics sted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229<br>1.235 |
| 509<br>510<br>511<br>512<br>513<br>514<br>515<br>516<br>517<br>518<br>519<br>520<br>521<br>522<br>523<br>524<br>525<br>526<br>527<br>528<br>529<br>530<br>531<br>532<br>533<br>534<br>535<br>536 | Note: Suggestions regarding the Recore These recommendations are However, simulations results will Methylnaphthalene, 2-  Total Num  Co  N  95% Norma | the selection of a 95% ommendations are base based upon the result ill not cover all Real William Maximum SD oefficient of Variation Mean of logged Data  Nonparame Data appear Garr  Assal UCL 95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | General S  21  0.05  1.94  0.625  1.094  -1.212  tric Distributional Distributional Norm  0.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | May want to try Lognormal Distribution  ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.  ulation studies summarized in Singh, Maichle, and Lee (2006). s; for additional insight the user may want to consult a statisticial statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data  dion Free UCL Statistics  sted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)     | 17<br>0<br>0.571<br>0.24<br>0.136<br>1.229<br>1.235 |

SLR Page 11 of 32

|            | A B C D E                                              | F<br>Statistics | G H I J K Mor Data Sets with Non-Detects                              | L     |
|------------|--------------------------------------------------------|-----------------|-----------------------------------------------------------------------|-------|
| 1          | Nonparametric 00                                       | L Otatiotics    | IOI Data dets with Non-Detects                                        |       |
| 2          | User Selected Options                                  |                 |                                                                       |       |
| 3          | Date/Time of Computation ProUCL 5.11/13/2020 2:        | 22:22 DM        |                                                                       |       |
| 4          | From File WorkSheet.xls                                | 22.32 F IVI     |                                                                       |       |
| 5          | Full Precision OFF                                     |                 |                                                                       |       |
| 6          | Confidence Coefficient 95%                             |                 |                                                                       |       |
| 7          |                                                        |                 |                                                                       |       |
| 8          | Number of Bootstrap Operations 2000                    |                 |                                                                       |       |
| 9          |                                                        |                 |                                                                       |       |
| 10         | 252/ 11 11 2 11 11 11                                  | 0.045           | 050( D 11 D 1101                                                      | 0.704 |
| 540        | 95% Hall's Bootstrap UCL                               | 0.815           | 95% Percentile Bootstrap UCL                                          | 0.784 |
| 541        | 95% BCA Bootstrap UCL                                  | 0.834           |                                                                       |       |
| 542        | 90% Chebyshev(Mean, Sd) UCL                            | 0.981           | 95% Chebyshev(Mean, Sd) UCL                                           | 1.166 |
| 543        | 97.5% Chebyshev(Mean, Sd) UCL                          | 1.423           | 99% Chebyshev(Mean, Sd) UCL                                           | 1.929 |
| 544        |                                                        |                 |                                                                       |       |
| 545        |                                                        | Suggested       | UCL to Use                                                            |       |
| 546        | Data appear Gan                                        | nma, May w      | ant to try Gamma Distribution                                         |       |
| 547        |                                                        |                 |                                                                       |       |
| 548        | Note: Suggestions regarding the selection of a 95%     | UCL are p       | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 549        | Recommendations are bas                                | ed upon da      | ta size, data distribution, and skewness.                             |       |
| 550        | These recommendations are based upon the resu          | Its of the sir  | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 551        | However, simulations results will not cover all Real W | orld data se    | ts; for additional insight the user may want to consult a statisticia | n.    |
| 552        |                                                        |                 |                                                                       |       |
| 553        |                                                        |                 |                                                                       |       |
|            | laphthalene                                            |                 |                                                                       |       |
| 555        |                                                        |                 |                                                                       |       |
| 556        |                                                        | General         | Statistics                                                            |       |
| 557        | Total Number of Observations                           | 21              | Number of Distinct Observations                                       | 11    |
| 558        |                                                        |                 | Number of Missing Observations                                        | 0     |
| 559        | Minimum                                                | 0.05            | Mean                                                                  | 0.185 |
| 560        | Maximum                                                | 1.2             | Median                                                                | 0.1   |
| 561        | SD                                                     | 0.257           | Std. Error of Mean                                                    | 0.056 |
| 562        | Coefficient of Variation                               | 1.387           | Skewness                                                              | 3.468 |
| 563        | Mean of logged Data                                    | -2.101          | SD of logged Data                                                     | 0.788 |
| 564        |                                                        |                 |                                                                       |       |
| 565        | Nonparame                                              | tric Distribu   | tion Free UCL Statistics                                              |       |
|            | Data do not fo                                         | ollow a Disc    | ernible Distribution (0.05)                                           |       |
| 566<br>567 |                                                        |                 |                                                                       |       |
|            | Ass                                                    | sumina Nor      | mal Distribution                                                      |       |
| 568        | 95% Normal UCL                                         |                 | 95% UCLs (Adjusted for Skewness)                                      |       |
| 569        | 95% Student's-t UCL                                    | 0.282           | 95% Adjusted-CLT UCL (Chen-1995)                                      | 0.323 |
| 570<br>571 |                                                        |                 | 95% Modified-t UCL (Johnson-1978)                                     | 0.289 |
| 571        |                                                        |                 |                                                                       |       |
| 572        | Nonpar                                                 | ametric Dis     | tribution Free UCLs                                                   |       |
| 573        | 95% CLT UCL                                            | 0.277           | 95% Jackknife UCL                                                     | 0.282 |
| 574        | 95% Standard Bootstrap UCL                             | 0.277           | 95% Bootstrap-t UCL                                                   | 0.436 |
| 575        | 95% Hall's Bootstrap UCL                               | 0.541           | 95% Percentile Bootstrap UCL                                          | 0.430 |
| 576        | 95% BCA Bootstrap UCL                                  | 0.33            | 55% Coorning Bookship OCE                                             |       |
| 577        | 90% Chebyshev(Mean, Sd) UCL                            | 0.353           | 95% Chebyshev(Mean, Sd) UCL                                           | 0.43  |
| 578        | 97.5% Chebyshev(Mean, Sd) UCL                          | 0.535           | 99% Chebyshev(Mean, Sd) UCL                                           | 0.743 |
| 579        | 57.576 Chebyshev(Mean, Gu) UCL                         | 0.000           | 33 % OneDyshev(Mean, 30) UCL                                          | J./4J |
| 580        |                                                        | Suggested       | UCL to Use                                                            |       |
| 581        |                                                        | 0.43            | 00L 10 03 <del>0</del>                                                |       |
| 582        | 95% Chebyshev (Mean, Sd) UCL                           | 0.43            |                                                                       |       |
| 583        | Mater Currentine and Late 1 Control                    | 1101 -          | evided to help the upperty relative area.                             |       |
| 584        |                                                        |                 | ovided to help the user to select the most appropriate 95% UCL.       |       |
| 585        |                                                        |                 | ta size, data distribution, and skewness.                             |       |
| 586        | <u> </u>                                               |                 | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 587        | However, simulations results will not cover all Real W | orld data se    | ts; for additional insight the user may want to consult a statisticia | n.    |

SLR Page 12 of 32

|                          | A B C                            | D E                             | F              | G H I J K                                                              |         |
|--------------------------|----------------------------------|---------------------------------|----------------|------------------------------------------------------------------------|---------|
| 1                        | A B C                            |                                 |                | for Data Sets with Non-Detects                                         | L       |
| 2                        |                                  |                                 |                |                                                                        |         |
| 3                        | User Selected Options            |                                 |                |                                                                        |         |
| 4                        | Date/Time of Computation         | ProUCL 5.11/13/2020 2:          | 22:32 PM       |                                                                        |         |
| 5                        | From File \                      | WorkSheet.xls                   |                |                                                                        |         |
| 6                        | Full Precision (                 | OFF                             |                |                                                                        |         |
| 7                        | Confidence Coefficient 9         | 95%                             |                |                                                                        |         |
| 8                        | Number of Bootstrap Operations 2 | 2000                            |                |                                                                        |         |
| 9                        |                                  |                                 |                |                                                                        |         |
| 10                       |                                  |                                 |                |                                                                        |         |
| 588                      |                                  |                                 |                |                                                                        |         |
| 589                      |                                  |                                 |                |                                                                        |         |
| 590                      | Phenanthrene                     |                                 |                |                                                                        |         |
| 591                      |                                  |                                 |                |                                                                        |         |
| 592                      |                                  |                                 | General        | Statistics                                                             |         |
| 593                      | Total N                          | lumber of Observations          | 21             | Number of Distinct Observations                                        | 20      |
| 594                      |                                  |                                 |                | Number of Missing Observations                                         | 0       |
| 595                      |                                  | Minimum                         | 0.05           | Mean                                                                   | 2.248   |
| 596                      |                                  | Maximum                         | 10             | Median                                                                 | 1.31    |
| 597                      |                                  | SD                              | 2.426          | Std. Error of Mean                                                     | 0.529   |
| 598                      |                                  | Coefficient of Variation        | 1.079          | Skewness                                                               | 2.046   |
| 599                      |                                  | Mean of logged Data             | 0.13           | SD of logged Data                                                      | 1.48    |
| 600                      |                                  |                                 |                |                                                                        |         |
| 601                      |                                  | Nonparame                       | tric Distribu  | tion Free UCL Statistics                                               |         |
| 602                      |                                  | Data appear Gan                 | nma Distribu   | uted at 5% Significance Level                                          |         |
| 603                      |                                  |                                 |                |                                                                        |         |
| 604                      |                                  | Ass                             | suming Nori    | mal Distribution                                                       |         |
| 605                      | 95% Nor                          | mal UCL                         |                | 95% UCLs (Adjusted for Skewness)                                       |         |
| 606                      |                                  | 95% Student's-t UCL             | 3.161          | 95% Adjusted-CLT UCL (Chen-1995)                                       | 3.371   |
| 607                      |                                  |                                 |                | 95% Modified-t UCL (Johnson-1978)                                      | 3.201   |
| 608                      |                                  |                                 |                |                                                                        |         |
| 609                      |                                  | Nonpar                          | ametric Dis    | tribution Free UCLs                                                    |         |
| 610                      |                                  | 95% CLT UCL                     | 3.119          | 95% Jackknife UCL                                                      | 3.161   |
| 611                      | 95% S                            | tandard Bootstrap UCL           | 3.111          | 95% Bootstrap-t UCL                                                    | 3.929   |
| 612                      | 95                               | % Hall's Bootstrap UCL          | 6.994          | 95% Percentile Bootstrap UCL                                           | 3.12    |
| 613                      | 95                               | 5% BCA Bootstrap UCL            | 3.394          |                                                                        |         |
| 614                      | 90% Chel                         | byshev(Mean, Sd) UCL            | 3.836          | 95% Chebyshev(Mean, Sd) UCL                                            | 4.556   |
| 615                      | 97.5% Chel                       | byshev(Mean, Sd) UCL            | 5.554          | 99% Chebyshev(Mean, Sd) UCL                                            | 7.516   |
| 616                      |                                  |                                 |                | 1                                                                      |         |
| 617                      |                                  |                                 | Suggested      | UCL to Use                                                             |         |
| 618                      |                                  | Data appear Garr                | nma, May w     | ant to try Gamma Distribution                                          |         |
| 619                      |                                  |                                 |                |                                                                        |         |
| 620                      | Note: Suggestions regarding      | g the selection of a 95%        | UCL are pr     | ovided to help the user to select the most appropriate 95% UCL.        |         |
| 621                      | Re                               | commendations are bas           | ed upon dat    | a size, data distribution, and skewness.                               |         |
| 622                      | These recommendations a          | are based upon the resul        | Its of the sim | nulation studies summarized in Singh, Maichle, and Lee (2006).         |         |
| 623                      | However, simulations results     | will not cover all Real W       | orld data se   | ts; for additional insight the user may want to consult a statisticiar | n.      |
| 624                      |                                  |                                 |                |                                                                        |         |
| 625                      |                                  |                                 |                |                                                                        |         |
| 626                      | Pyrene                           |                                 |                |                                                                        |         |
| 627                      |                                  |                                 |                |                                                                        |         |
|                          |                                  |                                 | General        | Statistics                                                             |         |
| 628                      |                                  |                                 |                | Number of Distinct Observations                                        | 18      |
| 628<br>629               | Total N                          | lumber of Observations          | 21             |                                                                        |         |
|                          | Total N                          | lumber of Observations          | 21             | Number of Missing Observations                                         | 0       |
| 629                      | Total N                          | lumber of Observations  Minimum | 0.05           |                                                                        | 0 2.096 |
| 629<br>630               | Total N                          |                                 |                | Number of Missing Observations                                         |         |
| 629<br>630<br>631<br>632 | Total N                          | Minimum                         | 0.05           | Number of Missing Observations  Mean                                   | 2.096   |
| 629<br>630<br>631        | Total N                          | Minimum<br>Maximum              | 0.05<br>7.83   | Number of Missing Observations  Mean  Median                           | 2.096   |

SLR Page 13 of 32

|            | Α           | В                 | С              | D              | E<br>rametric UC | F<br>I Statistics | G<br>for Data Se | H<br>te with Non- | <br>  Detecte | J               | K                     | L              |
|------------|-------------|-------------------|----------------|----------------|------------------|-------------------|------------------|-------------------|---------------|-----------------|-----------------------|----------------|
| 1          |             |                   |                | Nonpa          | ilailleuic oc    | L Statistics      | ioi Data Se      | 12 MILLI MOII-    | Detects       |                 |                       |                |
| 2          |             | User Selec        | cted Options   |                |                  |                   |                  |                   |               |                 |                       |                |
| 3          | Date        | e/Time of Co      |                | ProUCL 5.1     | 1/13/2020 2:     | 22:32 PM          |                  |                   |               |                 |                       |                |
| 5          |             |                   | From File      | WorkSheet.     | xls              |                   |                  |                   |               |                 |                       |                |
| 6          |             | Full              | l Precision    | OFF            |                  |                   |                  |                   |               |                 |                       |                |
| 7          | (           | Confidence (      | Coefficient    | 95%            |                  |                   |                  |                   |               |                 |                       |                |
| 8          | Number of   | f Bootstrap C     | Operations     | 2000           |                  |                   |                  |                   |               |                 |                       |                |
| 9          |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 10         |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 636        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 637        |             |                   |                |                |                  |                   |                  | CL Statistics     |               |                 |                       |                |
| 638        |             |                   |                |                | Data do not fo   | ollow a Disc      | emible Dist      | ribution (0.0     | 5)            |                 |                       |                |
| 639        |             |                   |                |                | Λο               | suming Nor        | mal Dietribu     | tion              |               |                 |                       |                |
| 640        |             |                   | 95% No         | ormal UCL      | 73.              | sulling NOI       | nai Distribu     |                   | UCI s (Adiu   | sted for Skev   | wness)                |                |
| 641        |             |                   | 0070110        |                | dent's-t UCL     | 2.774             |                  |                   |               | d-CLT UCL (     |                       | 2.917          |
| 642        |             | 95% Students-t OC |                |                |                  |                   |                  |                   |               | ed-t UCL (Joh   |                       | 2.802          |
| 644        |             |                   |                |                |                  |                   |                  |                   |               | •               |                       | 1              |
| 645        |             |                   |                |                | Nonpar           | ametric Dis       | tribution Fre    | e UCLs            |               |                 |                       |                |
| 646        |             |                   |                | 95             | % CLT UCL        | 2.743             |                  |                   |               | 95% Jac         | kknife UCL            | 2.774          |
| 647        |             |                   | 95%            | Standard Bo    | otstrap UCL      | 2.726             |                  |                   |               | 95% Boots       | strap-t UCL           | 3.174          |
| 648        |             |                   | 9              | 5% Hall's Bo   | otstrap UCL      | 5.642             |                  |                   | 95% F         | Percentile Boo  | tstrap UCL            | 2.766          |
| 649        |             |                   | Ś              | 95% BCA Bo     | otstrap UCL      | 2.878             |                  |                   |               |                 |                       |                |
| 650        |             |                   |                | ebyshev(Mea    |                  | 3.276             |                  |                   |               | ebyshev(Mea     |                       | 3.81           |
| 651        |             |                   | 97.5% Ch       | ebyshev(Mea    | an, Sd) UCL      | 4.552             |                  |                   | 99% Ch        | ebyshev(Mea     | n, Sd) UCL            | 6.009          |
| 652        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 653        |             |                   | OE9/ Cha       | husbau (Ma     | C4/ HCI          |                   | UCL to Use       | )                 |               |                 |                       | T              |
| 654        |             |                   | 95% Cne        | ebyshev (Mea   | an, Sa) UCL      | 3.81              |                  |                   |               |                 |                       |                |
| 655        | N           | ote: Sugges       | tions regard   | ing the selec  | tion of a 95%    | UCL are nr        | ovided to be     | In the user to    | select the n  | nost appropria  | ate 95% UC            |                |
| 656        |             | oto. ougges       |                |                | tions are bas    |                   |                  | -                 |               |                 |                       |                |
| 657<br>658 |             | These recon       |                |                |                  |                   |                  |                   |               | Maichle, and    | Lee (2006)            |                |
| 659        | Hov         | wever, simul      | lations result | s will not cov | er all Real W    | orld data se      | ts; for addition | onal insight th   | ne user may   | want to consu   | ult a statistic       | ian.           |
| 660        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 662        | PAHs (Total | I)                |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 663        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 664        |             |                   |                |                |                  |                   | Statistics       |                   |               |                 |                       |                |
| 665        |             |                   | Total          | Number of C    | bservations      | 21                |                  |                   |               | r of Distinct O |                       |                |
| 666        |             |                   |                |                |                  |                   |                  |                   | Number        | of Missing O    |                       | 0              |
| 667        |             |                   |                |                | Minimum          | 0.91              |                  |                   |               |                 | Mean                  | 13.88          |
| 668        |             |                   |                |                | Maximum<br>SD    | 52.42<br>11.97    |                  |                   |               | C+4 E-          | Median<br>ror of Mean | 11.22<br>2.612 |
| 669        |             |                   |                | Coefficient    | of Variation     | 0.862             |                  |                   |               | Siu. Er         | Skewness              | 1.986          |
| 670        |             |                   |                |                | logged Data      | 2.245             |                  |                   |               | SD of le        | ogged Data            | 1.036          |
| 671        |             |                   |                | 5411 51        | - 3900 Data      | 2.2.10            |                  |                   |               | 35 01 10        | - 2900 Daid           |                |
| 672<br>673 |             |                   |                |                | Nonparame        | tric Distribu     | tion Free U      | CL Statistics     | i             |                 |                       |                |
| 674        |             |                   |                | Data           | appear Gar       |                   |                  |                   |               |                 |                       |                |
| 675        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 676        |             |                   |                |                | Ass              | suming Non        | mal Distribu     | tion              |               |                 |                       |                |
| 677        |             |                   | 95% No         | ormal UCL      |                  |                   |                  | 95%               | UCLs (Adju    | sted for Skev   | vness)                |                |
| 678        |             |                   |                | 95% Stu        | dent's-t UCL     | 18.39             |                  |                   |               | d-CLT UCL (0    |                       | 19.39          |
| 679        |             |                   |                |                |                  |                   |                  |                   | 95% Modifie   | ed-t UCL (Joh   | nson-1978)            | 18.57          |
| 680        |             |                   |                |                |                  |                   |                  |                   |               |                 |                       |                |
| 681        |             |                   |                |                |                  | ametric Dis       | tribution Fre    | e UCLs            |               |                 |                       | T 2=2-         |
| 682        |             |                   | 0=0:           |                | % CLT UCL        | 18.18             |                  |                   |               |                 | kknife UCL            | 18.39          |
| 683        |             |                   |                | Standard Bo    |                  | 18.11             |                  |                   | 050/5         |                 | strap-t UCL           | 20.71          |
| 684        |             |                   | 9:             | 5% Hall's Bo   | oisirap UCL      | 40.05             |                  |                   | 95% F         | Percentile Boo  | แรแสр UCL             | 18.42          |

SLR Page 14 of 32

|            |                                                        | -                 |                                                                                                   |        |
|------------|--------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|--------|
| 1          | A B C D E  Nonparametric UC                            | F<br>L Statistics | G H I J K for Data Sets with Non-Detects                                                          | L      |
| 2          | ·                                                      |                   |                                                                                                   |        |
| 3          | User Selected Options                                  |                   |                                                                                                   |        |
| 4          | Date/Time of Computation ProUCL 5.11/13/2020 2:        | 22:32 PM          |                                                                                                   |        |
| 5          | From File WorkSheet.xls                                |                   |                                                                                                   |        |
| 6          | Full Precision OFF                                     |                   |                                                                                                   |        |
| 7          | Confidence Coefficient 95%                             |                   |                                                                                                   |        |
| 8          | Number of Bootstrap Operations 2000                    |                   |                                                                                                   |        |
| 9          | ,                                                      |                   |                                                                                                   |        |
| 10         |                                                        |                   |                                                                                                   |        |
| 685        | 95% BCA Bootstrap UCL                                  | 19.31             |                                                                                                   |        |
| 686        | 90% Chebyshev(Mean, Sd) UCL                            | 21.72             | 95% Chebyshev(Mean, Sd) UCL                                                                       | 25.27  |
| 687        | 97.5% Chebyshev(Mean, Sd) UCL                          | 30.19             | 99% Chebyshev(Mean, Sd) UCL                                                                       | 39.87  |
| 688        |                                                        |                   |                                                                                                   |        |
| 689        |                                                        | Suggested         | UCL to Use                                                                                        |        |
| 690        | Data appear Gar                                        | nma, May w        | ant to try Gamma Distribution                                                                     |        |
| 691        |                                                        |                   |                                                                                                   |        |
| 692        |                                                        |                   | ovided to help the user to select the most appropriate 95% UCL                                    |        |
| 693        |                                                        |                   | ta size, data distribution, and skewness.                                                         |        |
| 694        | <u> </u>                                               |                   | nulation studies summarized in Singh, Maichle, and Lee (2006).                                    |        |
| 695        | However, simulations results will not cover all Real W | oria data se      | ts; for additional insight the user may want to consult a statisticia                             | in.    |
| 696        | Antinon                                                |                   |                                                                                                   |        |
| 097        | Antimony                                               |                   |                                                                                                   |        |
| 698        |                                                        | Conoral           | Statistics                                                                                        |        |
| 699        | Total Number of Observations                           | 21                | Number of Distinct Observations                                                                   | 9      |
| 700        | Number of Detects                                      | 11                | Number of Non-Detects                                                                             | 10     |
| 701        | Number of Distinct Detects                             | 9                 | Number of Distinct Non-Detects                                                                    | 1      |
| 702        | Minimum Detect                                         | 0.8               | Minimum Non-Detect                                                                                | 0.8    |
| 703        | Maximum Detect                                         | 1.9               | Maximum Non-Detect                                                                                | 0.8    |
| 704        | Variance Detects                                       | 0.138             | Percent Non-Detects                                                                               | 47.62% |
| 705        | Mean Detects                                           | 1.218             | SD Detects                                                                                        | 0.371  |
| 706<br>707 | Median Detects                                         | 1.1               | CV Detects                                                                                        | 0.305  |
| 708        | Skewness Detects                                       | 0.615             | Kurtosis Detects                                                                                  | -0.745 |
| 709        | Mean of Logged Detects                                 | 0.156             | SD of Logged Detects                                                                              | 0.298  |
| 710        |                                                        |                   |                                                                                                   |        |
| 711        | Nonparame                                              | etric Distribu    | tion Free UCL Statistics                                                                          |        |
| 712        | Detected Data appea                                    | r Normal Di       | stributed at 5% Significance Level                                                                |        |
| 713        |                                                        |                   |                                                                                                   |        |
| 714        | Kaplan-Meier (KM) Statistics usi                       | ng Normal C       | ritical Values and other Nonparametric UCLs                                                       |        |
| 715        | Mean                                                   | 1.019             | Standard Error of Mean                                                                            | 0.0756 |
| 716        | SD                                                     | 0.33              | 95% KM (BCA) UCL                                                                                  | 1.157  |
| 717        | 95% KM (t) UCL                                         | 1.149             | 95% KM (Percentile Bootstrap) UCL                                                                 | 1.143  |
| 718        | 95% KM (z) UCL                                         | 1.143             | 95% KM Bootstrap t UCL                                                                            | 1.189  |
| 719        | 90% KM Chebyshev UCL                                   | 1.246             | 95% KM Chebyshev UCL                                                                              | 1.349  |
| 720        | 97.5% KM Chebyshev UCL                                 | 1.491             | 99% KM Chebyshev UCL                                                                              | 1.771  |
| 721        |                                                        |                   |                                                                                                   |        |
| 722        |                                                        |                   | Data and Assuming Lognormal Distribution                                                          | 1.010  |
| 723        | KM SD (logged)                                         | 0.28              | 95% Critical H Value (KM-Log)                                                                     | 1.819  |
| 724        | KM Standard Ever of Many (Jarrad)                      | -0.0243           | KM Geo Mean                                                                                       | 0.976  |
| 725        | KM Standard Error of Mean (logged)                     | 0.0641            | 95% H-UCL (KM -Log)                                                                               | 1.137  |
| 726        |                                                        | Suggested         | LICI to Liea                                                                                      |        |
| 727        | Date carres No                                         |                   | UCL to Use                                                                                        |        |
| 728        |                                                        |                   | vant to try Normal Distribution.  ovided to help the user to select the most appropriate 95% UCL. |        |
| 729        |                                                        |                   | ta size, data distribution, and skewness.                                                         | •      |
| 730        |                                                        | -                 | nulation studies summarized in Singh, Maichle, and Lee (2006).                                    |        |
| 731        | <u> </u>                                               |                   | ts; for additional insight the user may want to consult a statisticia                             | ın     |
| 732        | However, simulations results will not cover all Near W | onu uata Se       | to, for additional margin the door may want to consult a statistical                              |        |

SLR Page 15 of 32

| _   | A B C                          | D E                                           |                | GHIJK                                                                 |       |
|-----|--------------------------------|-----------------------------------------------|----------------|-----------------------------------------------------------------------|-------|
| 1   | A B C                          |                                               | L Statistics   | G H I J K I for Data Sets with Non-Detects                            |       |
| 2   |                                | •                                             |                |                                                                       |       |
| 3   | User Selected Options          |                                               |                |                                                                       |       |
| 4   | Date/Time of Computation       | ProUCL 5.11/13/2020 2::                       | 22:32 PM       |                                                                       |       |
| 5   | From File                      | WorkSheet.xls                                 |                |                                                                       |       |
| 6   | Full Precision                 | OFF                                           |                |                                                                       |       |
| 7   | Confidence Coefficient         | 95%                                           |                |                                                                       |       |
| 8   | Number of Bootstrap Operations | 2000                                          |                |                                                                       |       |
| 9   |                                |                                               |                |                                                                       |       |
| 10  |                                |                                               |                |                                                                       |       |
| 733 |                                |                                               |                |                                                                       |       |
| 734 |                                |                                               |                |                                                                       |       |
| 735 | Arsenic                        |                                               |                |                                                                       |       |
| 736 |                                |                                               |                |                                                                       |       |
| 737 |                                |                                               | General        | Statistics                                                            |       |
| 738 | Total                          | Number of Observations                        | 21             | Number of Distinct Observations                                       | 21    |
| 739 |                                |                                               |                | Number of Missing Observations                                        | 0     |
| 740 |                                | Minimum                                       | 1.7            | Mean                                                                  | 5.867 |
| 741 |                                | Maximum                                       | 16             | Median                                                                | 5.4   |
| 742 |                                | SD                                            | 3.002          | Std. Error of Mean                                                    | 0.655 |
| 743 |                                | Coefficient of Variation                      | 0.512          | Skewness                                                              | 1.942 |
| 744 |                                | Mean of logged Data                           | 1.661          | SD of logged Data                                                     | 0.477 |
| 745 |                                |                                               |                | 1                                                                     |       |
| 746 |                                | Nonparame                                     | tric Distribu  | tion Free UCL Statistics                                              |       |
| 747 |                                | Data appear Gan                               | nma Distrib    | uted at 5% Significance Level                                         |       |
| 748 |                                |                                               |                |                                                                       |       |
| 749 |                                | Ass                                           | suming Nor     | mal Distribution                                                      |       |
| 750 | 95% No                         | rmal UCL                                      |                | 95% UCLs (Adjusted for Skewness)                                      |       |
| 751 |                                | 95% Student's-t UCL                           | 6.996          | 95% Adjusted-CLT UCL (Chen-1995)                                      | 7.241 |
| 752 |                                |                                               |                | 95% Modified-t UCL (Johnson-1978)                                     | 7.043 |
| 753 |                                |                                               |                | 1                                                                     |       |
| 754 |                                | Nonpar                                        | ametric Dis    | tribution Free UCLs                                                   |       |
| 755 |                                | 95% CLT UCL                                   | 6.944          | 95% Jackknife UCL                                                     | 6.996 |
| 756 | 95% \$                         | Standard Bootstrap UCL                        | 6.931          | 95% Bootstrap-t UCL                                                   | 7.554 |
| 757 | 95                             | 5% Hall's Bootstrap UCL                       | 12.33          | 95% Percentile Bootstrap UCL                                          | 6.971 |
| 758 |                                | 95% BCA Bootstrap UCL                         | 7.205          |                                                                       |       |
| 759 | 90% Che                        | ebyshev(Mean, Sd) UCL                         | 7.832          | 95% Chebyshev(Mean, Sd) UCL                                           | 8.722 |
| 760 | 97.5% Che                      | ebyshev(Mean, Sd) UCL                         | 9.957          | 99% Chebyshev(Mean, Sd) UCL                                           | 12.38 |
| 761 |                                |                                               |                |                                                                       |       |
| 762 |                                |                                               |                | UCL to Use                                                            |       |
| 763 |                                | Data appear Gan                               | nma, May w     | ant to try Gamma Distribution                                         |       |
| 764 |                                |                                               |                |                                                                       |       |
| 765 | Note: Suggestions regardi      | ing the selection of a 95%                    | UCL are pr     | ovided to help the user to select the most appropriate 95% UCL        |       |
| 766 |                                |                                               |                | a size, data distribution, and skewness.                              |       |
| 767 | These recommendations          | are based upon the resu                       | Its of the sin | nulation studies summarized in Singh, Maichle, and Lee (2006).        |       |
| 768 | However, simulations results   | s will not cover all Real W                   | orld data se   | ts; for additional insight the user may want to consult a statisticia | in.   |
| 769 |                                |                                               |                |                                                                       |       |
| 770 |                                |                                               |                |                                                                       |       |
| 771 | Barium                         |                                               |                |                                                                       |       |
| 772 |                                |                                               |                |                                                                       |       |
| 773 |                                |                                               |                | Statistics                                                            | 4.5   |
| 774 | Total                          | Number of Observations                        | 21             | Number of Distinct Observations                                       | 19    |
| 775 |                                |                                               |                | Number of Missing Observations                                        | 0     |
| 776 |                                | Minimum                                       | 16             | Mean                                                                  | 160.7 |
| 777 |                                | Maximum                                       | 398            | Median                                                                | 143   |
| 778 |                                | SD                                            | 105.6          | Std. Error of Mean                                                    | 23.04 |
|     |                                | 0 46 - 1 4 - 4 \ / 1 - 41                     | 0.057          | Skewness                                                              | 0.925 |
| 779 |                                | Coefficient of Variation  Mean of logged Data | 0.657<br>4.828 | SD of logged Data                                                     | 0.805 |

SLR Page 16 of 32

|                                                                                                                                   | A B C                                 | D E                                                                                                                            | F                                                                                                  | G H I J K                                                                                                                                                                                                                                                                                                                  | L                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 1                                                                                                                                 |                                       | Nonparametric UC                                                                                                               | L Statistics                                                                                       | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                             |                                                      |
| 2                                                                                                                                 |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 3                                                                                                                                 | User Selected Options                 | 1101 5 44 44 0 0000 0                                                                                                          | 20.00.014                                                                                          |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 4                                                                                                                                 | · ·                                   | OUCL 5.11/13/2020 2:2                                                                                                          | 22:32 PM                                                                                           |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 5                                                                                                                                 | From File Wo                          | orkSheet.xls                                                                                                                   |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 6                                                                                                                                 | Confidence Coefficient 95             |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 7                                                                                                                                 | Number of Bootstrap Operations 200    |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 8                                                                                                                                 |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 9                                                                                                                                 |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 781                                                                                                                               |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 782                                                                                                                               |                                       | Nonparame                                                                                                                      | tric Distribu                                                                                      | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                   |                                                      |
| 783                                                                                                                               |                                       | Data appear Nor                                                                                                                | mal Distribu                                                                                       | ted at 5% Significance Level                                                                                                                                                                                                                                                                                               |                                                      |
| 784                                                                                                                               |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 785                                                                                                                               |                                       |                                                                                                                                | suming Norr                                                                                        | nal Distribution                                                                                                                                                                                                                                                                                                           |                                                      |
| 786                                                                                                                               | 95% Norma                             |                                                                                                                                |                                                                                                    | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                           |                                                      |
| 787                                                                                                                               |                                       | 95% Student's-t UCL                                                                                                            | 200.4                                                                                              | 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                           | 203.5                                                |
| 788                                                                                                                               |                                       |                                                                                                                                |                                                                                                    | 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                          | 201.2                                                |
| 789                                                                                                                               |                                       | Nan                                                                                                                            | omotrio Di-                                                                                        | tribution Free LICLs                                                                                                                                                                                                                                                                                                       |                                                      |
| 790                                                                                                                               |                                       | 95% CLT UCL                                                                                                                    | 198.6                                                                                              | tribution Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                      | 200.4                                                |
| 791                                                                                                                               | 95% Sta                               | ndard Bootstrap UCL                                                                                                            | 198.5                                                                                              | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                        | 200.4                                                |
| 792                                                                                                                               |                                       | Hall's Bootstrap UCL                                                                                                           | 209.6                                                                                              | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                               | 198.9                                                |
| 793                                                                                                                               |                                       | BCA Bootstrap UCL                                                                                                              | 205.0                                                                                              | 30% Forcentale Bookstap CoE                                                                                                                                                                                                                                                                                                | 100.0                                                |
| 794                                                                                                                               |                                       | shev(Mean, Sd) UCL                                                                                                             | 229.8                                                                                              | 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                | 261.1                                                |
| 795<br>796                                                                                                                        | · · · · · · · · · · · · · · · · · · · | shev(Mean, Sd) UCL                                                                                                             | 304.5                                                                                              | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                | 389.9                                                |
| 797                                                                                                                               | ,                                     | , , ,                                                                                                                          |                                                                                                    | , , , ,                                                                                                                                                                                                                                                                                                                    |                                                      |
| 798                                                                                                                               |                                       |                                                                                                                                | Suggested                                                                                          | UCL to Use                                                                                                                                                                                                                                                                                                                 |                                                      |
| 799                                                                                                                               |                                       | Data appear Nor                                                                                                                | mal, May w                                                                                         | ant to try Normal Distribution                                                                                                                                                                                                                                                                                             |                                                      |
| 800                                                                                                                               |                                       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 801                                                                                                                               | Note: Suggestions regarding           | the selection of a 95%                                                                                                         | UCL are pro                                                                                        | ovided to help the user to select the most appropriate 95% UCL                                                                                                                                                                                                                                                             |                                                      |
| 802                                                                                                                               |                                       |                                                                                                                                |                                                                                                    | a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                   |                                                      |
| 803                                                                                                                               |                                       | based upon the resul                                                                                                           | ts of the sim                                                                                      | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                             |                                                      |
| 804                                                                                                                               | However, simulations results wi       |                                                                                                                                |                                                                                                    |                                                                                                                                                                                                                                                                                                                            |                                                      |
| 005                                                                                                                               |                                       | ll not cover all Real W                                                                                                        | orld data set                                                                                      | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                      | an.                                                  |
| 805                                                                                                                               |                                       | ll not cover all Real W                                                                                                        | orld data se                                                                                       | is; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                      | an.                                                  |
| 805                                                                                                                               | Dandlium                              | ll not cover all Real W                                                                                                        | orld data se                                                                                       | is; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                      | an.                                                  |
| 806<br>807                                                                                                                        | Beryllium                             | ll not cover all Real W                                                                                                        | orld data se                                                                                       | is; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                      | an.                                                  |
| 806<br>807<br>808                                                                                                                 | Beryllium                             | ll not cover all Real W                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                            | an.                                                  |
| 806<br>807<br>808<br>809                                                                                                          |                                       |                                                                                                                                | General                                                                                            | Statistics                                                                                                                                                                                                                                                                                                                 |                                                      |
| 806<br>807<br>808<br>809<br>810                                                                                                   |                                       | Il not cover all Real W                                                                                                        |                                                                                                    |                                                                                                                                                                                                                                                                                                                            | 18<br>0                                              |
| 806<br>807<br>808<br>809<br>810<br>811                                                                                            |                                       |                                                                                                                                | General                                                                                            | Statistics  Number of Distinct Observations                                                                                                                                                                                                                                                                                | 18                                                   |
| 806<br>807<br>808<br>809<br>810<br>811                                                                                            |                                       | nber of Observations                                                                                                           | General<br>21                                                                                      | Statistics  Number of Distinct Observations  Number of Missing Observations                                                                                                                                                                                                                                                | 18                                                   |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813                                                                              |                                       | nber of Observations<br>Minimum                                                                                                | <b>General</b> 21 0.16                                                                             | Statistics  Number of Distinct Observations  Number of Missing Observations  Mean                                                                                                                                                                                                                                          | 18<br>0<br>0.398                                     |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813                                                                              | Total Nur                             | nber of Observations  Minimum  Maximum                                                                                         | General 21 0.16 0.85                                                                               | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median                                                                                                                                                                                                                                     | 18<br>0<br>0.398<br>0.39                             |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814                                                                       | Total Nur                             | nber of Observations Minimum Maximum SD                                                                                        | General 21 0.16 0.85 0.143                                                                         | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean                                                                                                                                                                                                                  | 18<br>0<br>0.398<br>0.39<br>0.0312                   |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813                                                                              | Total Nur                             | nber of Observations  Minimum  Maximum  SD  oefficient of Variation                                                            | General 21  0.16 0.85 0.143 0.36                                                                   | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness                                                                                                                                                                                                         | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336          |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815                                                                | Total Nur                             | Minimum Maximum SD oefficient of Variation Mean of logged Data                                                                 | General 21  0.16 0.85 0.143 0.36 -0.981                                                            | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                       | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336          |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816                                                         | Total Nur                             | Minimum Maximum SD oefficient of Variation Mean of logged Data                                                                 | General 21  0.16 0.85 0.143 0.36 -0.981                                                            | Statistics  Number of Distinct Observations  Number of Missing Observations  Mean  Median  Std. Error of Mean  Skewness  SD of logged Data                                                                                                                                                                                 | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336          |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817                                                  | Total Nur                             | Minimum Maximum SD oefficient of Variation Mean of logged Data  Nonparame                                                      | General 21  0.16 0.85 0.143 0.36 -0.981  tric Distribute Normal E                                  | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                       | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336          |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818                                           | Total Nur                             | Minimum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Ita appear Approxima                                 | General 21  0.16 0.85 0.143 0.36 -0.981  tric Distribute Normal E                                  | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level                                                                                                                        | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336          |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820                             | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data Nonparame Ita appear Approxima Assal UCL                        | General   21                                                                                       | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                    | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823        | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Ita appear Approxima                                 | General 21  0.16 0.85 0.143 0.36 -0.981  tric Distribute Normal E                                  | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                   | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>819<br>820<br>821<br>822<br>823<br>824 | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data Nonparame Ita appear Approxima Assal UCL                        | General   21                                                                                       | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                    | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>820<br>821<br>822<br>823<br>824<br>825 | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data Nonparame Ita appear Approxima Ass al UCL 95% Student's-t UCL   | General   21                                                                                       | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>820<br>821<br>822<br>823<br>824<br>825<br>826 | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data  Nonparame Ita appear Approxima  Ass al UCL 95% Student's-t UCL | General   21   0.16   0.85   0.143   0.36   -0.981   tric Distributite Normal Esuming Norm   0.451 | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  10                                                                                                                    | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |
| 806<br>807<br>808<br>809<br>810<br>811<br>812<br>813<br>814<br>815<br>816<br>817<br>818<br>820<br>821<br>822<br>823<br>824<br>825 | Total Nur  C  Da  95% Norma           | Minimum Maximum SD oefficient of Variation Mean of logged Data Nonparame Ita appear Approxima Ass al UCL 95% Student's-t UCL   | General   21                                                                                       | Statistics  Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness SD of logged Data  tion Free UCL Statistics Distributed at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978) | 18<br>0<br>0.398<br>0.39<br>0.0312<br>1.336<br>0.357 |

SLR Page 17 of 32

| H          | A B C                          | D E  Nonparametric UC         | F<br>I Statistics                   | G<br>for Data Set | H<br>'s with Non-Γ | )etects      | J            | K            |         | L       |
|------------|--------------------------------|-------------------------------|-------------------------------------|-------------------|--------------------|--------------|--------------|--------------|---------|---------|
| 1          |                                | Nonparametric 60              | L Otationes                         | 101 Data 001      | S WIGHT TOTAL      | 7010013      |              |              |         |         |
| 2          | User Selected Options          |                               |                                     |                   |                    |              |              |              |         |         |
| 3          | Date/Time of Computation       | ProUCL 5.11/13/2020 2:        | 22·32 PM                            |                   |                    |              |              |              |         |         |
| 4          | From File                      | WorkSheet.xls                 |                                     |                   |                    |              |              |              |         |         |
| 5          | Full Precision                 | OFF                           |                                     |                   |                    |              |              |              |         |         |
| 6          | Confidence Coefficient         | 95%                           |                                     |                   |                    |              |              |              |         |         |
| 7          | Number of Bootstrap Operations | 2000                          |                                     |                   |                    |              |              |              |         |         |
| 8          | · ·                            |                               |                                     |                   |                    |              |              |              |         |         |
| 9          |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 829        | 9                              | 95% Hall's Bootstrap UCL      | 0.497                               |                   |                    | 95% P        | ercentile Bo | otstrap U    | CL      | 0.45    |
| 830        |                                | 95% BCA Bootstrap UCL         | 0.458                               |                   |                    |              |              |              | +       |         |
| 831        | 90% Ch                         | nebyshev(Mean, Sd) UCL        | 0.491                               |                   |                    | 95% Che      | ebyshev(Me   | an, Sd) U    | CL      | 0.534   |
| 832        | 97.5% Ch                       | nebyshev(Mean, Sd) UCL        | 0.593                               |                   |                    | 99% Che      | ebyshev(Me   | an, Sd) U    | CL      | 0.708   |
| 833        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 834        |                                |                               | Suggested                           | UCL to Use        |                    |              |              |              |         |         |
| 835        |                                | Data appear No                | rmal, May w                         | ant to try No     | rmal Distribu      | ution        |              |              |         |         |
| 836        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 837        | Note: Suggestions regard       | ding the selection of a 95%   | UCL are pr                          | ovided to hel     | lp the user to     | select the m | ost appropr  | ate 95% I    | JCL.    |         |
| 838        | F                              | Recommendations are bas       | sed upon da                         | ta size, data     | distribution, a    | and skewnes  | s.           |              |         |         |
| 839        | These recommendation           | s are based upon the resu     | ilts of the sin                     | nulation studi    | ies summariz       | ed in Singh, | Maichle, an  | d Lee (20    | 06).    |         |
| 840        | However, simulations resul     | Its will not cover all Real W | orld data se                        | ts; for additio   | nal insight th     | e user may v | want to cons | ult a statis | stician | 1.      |
| 841        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 842        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 843        | Boron (Total)                  |                               |                                     |                   |                    |              |              |              |         |         |
| 844        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 845        |                                |                               | General                             | Statistics        |                    |              |              |              |         |         |
| 846        | Tota                           | I Number of Observations      | S 5 Number of Distinct Observations |                   |                    |              |              |              | ns      | 5       |
| 847        |                                |                               |                                     |                   |                    | Number       | of Missing C |              |         | 0       |
| 848        |                                | Minimum                       | 4                                   |                   |                    |              |              | Me           |         | 9.8     |
| 849        |                                | Maximum                       | 16                                  |                   |                    |              |              | Medi         |         | 11      |
| 850        |                                | SD                            | 5.167                               |                   |                    |              | Std. E       | rror of Me   |         | 2.311   |
| 851        |                                | Coefficient of Variation      | 0.527                               |                   |                    |              |              | Skewne       |         | -0.0993 |
| 852        |                                | Mean of logged Data           | 2.146                               |                   |                    |              | SD of        | logged Da    | ata     | 0.612   |
| 853        | Nie                            |                               | ( d10)                              | £ d.t             | .                  | - 1014       |              |              |         |         |
| 854        | NO                             | ote: Sample size is small (   |                                     |                   |                    |              | acn          |              |         |         |
| 855        | Oha                            | you may want to use C         | -                                   |                   |                    |              |              |              |         |         |
| 856        | Cité                           | ebyshev UCL can be com        | iputeu usirig                       | uie Nonpar        | ameurc and         | All OCL Opt  | ions.        |              |         |         |
| 857        |                                | Nonnarama                     | stric Dietribu                      | tion Free UC      | Cl Statistics      |              |              |              |         |         |
| 858        |                                | Data appear Noi               |                                     |                   |                    | evel         |              |              |         |         |
| 859        |                                | Data appear ite               | mai Biodibi                         | 1100 01 070 0     | ngrilliourioo E    | -0101        |              |              |         |         |
| 860        |                                | As                            | sumina Nor                          | mal Distribut     | tion               |              |              |              |         |         |
| 861        | 95% N                          | ormal UCL                     |                                     |                   |                    | UCLs (Adju   | sted for Ske | wness)       |         |         |
| 862        | 307014                         | 95% Student's-t UCL           | 14.73                               |                   |                    | 5% Adjusted  |              |              | 95)     | 13.49   |
| 863        |                                |                               | _                                   |                   |                    | 95% Modifie  |              |              | - 1     | 14.71   |
| 864<br>865 |                                |                               |                                     | <u> </u>          |                    |              | (            |              |         |         |
| 866        |                                | Nonpai                        | rametric Dis                        | tribution Fre     | e UCLs             |              |              |              |         |         |
| 867        |                                | 95% CLT UCL                   | 13.6                                |                   |                    |              | 95% Ja       | ckknife U    | CL      | 14.73   |
| 868        | 95%                            | Standard Bootstrap UCL        | 13.21                               |                   |                    |              | 95% Boo      | tstrap-t U   | CL      | 14.79   |
| 869        | 9                              | 95% Hall's Bootstrap UCL      | 12.17                               |                   |                    | 95% P        | ercentile Bo | otstrap U    | CL      | 13.2    |
| 870        |                                | 95% BCA Bootstrap UCL         | 12.8                                |                   |                    |              |              |              | $\top$  |         |
| 871        | 90% Ch                         | nebyshev(Mean, Sd) UCL        | 16.73                               |                   |                    | 95% Che      | ebyshev(Me   | an, Sd) U    | CL      | 19.87   |
| 872        | 97.5% Ch                       | nebyshev(Mean, Sd) UCL        | 24.23                               |                   |                    | 99% Che      | ebyshev(Me   | an, Sd) U    | CL      | 32.79   |
| 873        |                                |                               |                                     |                   |                    |              |              |              |         |         |
| 874        |                                |                               | Suggested                           | UCL to Use        | ,                  |              |              |              |         |         |
| 875        |                                | Data appear No                | rmal, May w                         | ant to try No     | rmal Distribu      | ution        |              |              |         |         |
| 876        |                                |                               |                                     |                   |                    |              |              |              |         |         |
|            |                                |                               |                                     |                   |                    |              |              |              |         |         |

SLR Page 18 of 32

|            |                                                 | E        | F              | G H I J K                                                              | L     |
|------------|-------------------------------------------------|----------|----------------|------------------------------------------------------------------------|-------|
| 1          | Nonparame                                       | tric UC  | L Statistics   | for Data Sets with Non-Detects                                         |       |
| 2          |                                                 |          |                |                                                                        |       |
| 3          | User Selected Options                           | 2000 0   | 00.00 DM       |                                                                        |       |
| 4          | Date/Time of Computation ProUCL 5.11/13/2       | 2020 2:2 | 22:32 PM       |                                                                        |       |
| 5          | From File WorkSheet.xls  Full Precision OFF     |          |                |                                                                        |       |
| 6          | Confidence Coefficient 95%                      |          |                |                                                                        |       |
| 7          | Number of Bootstrap Operations 2000             |          |                |                                                                        |       |
| 8          | Number of Bootstrap Operations 2000             |          |                |                                                                        |       |
| 9          |                                                 |          |                |                                                                        |       |
| 10         | Note: Suggestions regarding the selection of    | a 95%    | UCL are pro    | ovided to help the user to select the most appropriate 95% UCL.        |       |
| 877        |                                                 |          |                | a size, data distribution, and skewness.                               |       |
| 879        | These recommendations are based upon the        | ne resu  | Its of the sim | ulation studies summarized in Singh, Maichle, and Lee (2006).          |       |
| 880        | However, simulations results will not cover all | Real W   | orld data set  | ts; for additional insight the user may want to consult a statisticia  | n.    |
| 881        |                                                 |          |                |                                                                        |       |
| 882        | Note: For highly negatively-skewed data         | , confid | dence limits   | (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                 |       |
| 883        | reliable. Chen's and Johnson                    | on's me  | ethods provi   | de adjustments for positvely skewed data sets.                         |       |
| 884        |                                                 |          |                |                                                                        |       |
| 885        |                                                 |          | ·              |                                                                        |       |
| 886        | Cadmium                                         |          |                |                                                                        |       |
| 887        |                                                 |          |                |                                                                        |       |
| 888        | <del>-</del>                                    | 1        |                | Statistics                                                             |       |
| 889        | Total Number of Observ                          | ations   | 21             | Number of Distinct Observations                                        | 20    |
| 890        | NA:-                                            | nimum    | 0.07           | Number of Missing Observations  Mean                                   | 13.43 |
| 891        |                                                 | kimum    | 68             | Median                                                                 | 7.6   |
| 892        | ivia                                            | SD       | 17.35          | Std. Error of Mean                                                     | 3.787 |
| 893        | Coefficient of Va                               |          | 1.292          | Skewness                                                               | 2.073 |
| 894        | Mean of logger                                  |          | 1.512          | SD of logged Data                                                      | 1.92  |
| 895<br>896 | 337                                             |          |                |                                                                        |       |
| 897        | Nong                                            | parame   | tric Distribu  | tion Free UCL Statistics                                               |       |
| 898        | Data appe                                       | ar Gan   | nma Distribu   | rted at 5% Significance Level                                          |       |
| 899        |                                                 |          |                |                                                                        |       |
| 900        |                                                 | Ass      | suming Norr    | nal Distribution                                                       |       |
| 901        | 95% Normal UCL                                  |          |                | 95% UCLs (Adjusted for Skewness)                                       |       |
| 902        | 95% Student's                                   | t UCL    | 19.96          | 95% Adjusted-CLT UCL (Chen-1995)                                       | 21.49 |
| 903        |                                                 |          |                | 95% Modified-t UCL (Johnson-1978)                                      | 20.25 |
| 904        |                                                 | .I       |                | Wheeler Free HOLe                                                      |       |
| 905        |                                                 | •        |                | tribution Free UCLs                                                    | 10.00 |
| 906        | 95% CL                                          |          | 19.66          | 95% Jackknife UCL                                                      | 19.96 |
| 907        | 95% Standard Bootstra<br>95% Hall's Bootstra    |          | 19.39<br>48.13 | 95% Bootstrap-t UCL<br>95% Percentile Bootstrap UCL                    | 24.26 |
| 908        | 95% Hall's Bootstra                             |          | 21.49          | 93 % Percentile Bootstap OCL                                           | 20.01 |
| 909        | 90% Chebyshev(Mean, So                          |          | 24.79          | 95% Chebyshev(Mean, Sd) UCL                                            | 29.94 |
| 910        | 97.5% Chebyshev(Mean, So                        |          | 37.08          | 99% Chebyshev(Mean, Sd) UCL                                            | 51.11 |
| 912        |                                                 |          |                | , , , , , , , , , , , , , , , , , , ,                                  |       |
| 913        |                                                 |          | Suggested      | UCL to Use                                                             |       |
| 914        | Data appe                                       | ar Gan   | nma, May w     | ant to try Gamma Distribution                                          |       |
| 915        |                                                 |          |                |                                                                        |       |
| 916        | Note: Suggestions regarding the selection of    | a 95%    | UCL are pro    | ovided to help the user to select the most appropriate 95% UCL.        |       |
| 917        | Recommendations                                 | are bas  | sed upon dat   | a size, data distribution, and skewness.                               |       |
| 918        | · ·                                             |          |                | ulation studies summarized in Singh, Maichle, and Lee (2006).          |       |
| 9 10       |                                                 | Dool W   | orld data set  | ts; for additional insight the user may want to consult a statisticial | n     |
| 919        | However, simulations results will not cover all | neai w   | ond data sc    | o, for additional moight are door may want to consult a stational      |       |
|            | However, simulations results will not cover all | neai w   | ond data se    | o, or containing it to use may have consent a consent                  |       |

SLR Page 19 of 32

| _                 | A B C                            | D E Nonnarametric UCI                     | F<br>Statistics | G H<br>for Data Sets with Nor | n-Detects        | J                   | K                | L               |
|-------------------|----------------------------------|-------------------------------------------|-----------------|-------------------------------|------------------|---------------------|------------------|-----------------|
| 1                 |                                  | Nonparamouro ooi                          | L Otationoo     | IOI Data Cots with Nor        |                  |                     |                  |                 |
| 2                 | Llear Calasted Ontions           |                                           |                 |                               |                  |                     |                  |                 |
| 3                 | User Selected Options            | 1101 5 44/40/0000 0                       | 20 00 DM        |                               |                  |                     |                  |                 |
| 4                 | '                                | roUCL 5.11/13/2020 2:2                    | 22:32 PIVI      |                               |                  |                     |                  |                 |
| 5                 |                                  | VorkSheet.xls                             |                 |                               |                  |                     |                  |                 |
| 6                 |                                  | )FF                                       |                 |                               |                  |                     |                  |                 |
| 7                 |                                  | 5%                                        |                 |                               |                  |                     |                  |                 |
| 8                 | Number of Bootstrap Operations 2 | 000                                       |                 |                               |                  |                     |                  |                 |
| 9                 |                                  |                                           |                 |                               |                  |                     |                  |                 |
| 10                |                                  |                                           |                 |                               |                  |                     |                  |                 |
| 922               | Chromium Total                   |                                           |                 |                               |                  |                     |                  |                 |
| 923               |                                  |                                           |                 |                               |                  |                     |                  |                 |
| 924               |                                  |                                           |                 | Statistics                    |                  |                     |                  |                 |
| 925               | Total No                         | umber of Observations                     | 21              |                               |                  | of Distinct Obser   |                  | 19              |
| 926               |                                  |                                           |                 |                               | Number of        | of Missing Obser    | vations          | 0               |
| 927               |                                  | Minimum                                   | 6.3             |                               |                  |                     | Mean             | 35.89           |
| 928               |                                  | Maximum                                   | 97              |                               |                  | 1                   | Median           | 32              |
| 929               |                                  | SD                                        | 22.89           |                               |                  | Std. Error o        | f Mean           | 4.995           |
| 930               | (                                | Coefficient of Variation                  | 0.638           |                               |                  | Ske                 | wness            | 1.36            |
| 931               |                                  | Mean of logged Data                       | 3.38            |                               |                  | SD of logge         | d Data           | 0.689           |
| 932               |                                  | L                                         |                 | II.                           |                  |                     |                  |                 |
| 933               |                                  | Nonparame                                 | tric Distribu   | tion Free UCL Statistic       | S                |                     |                  |                 |
| 934               | С                                | ata appear Approxima                      | te Normal I     | Distributed at 5% Signi       | ficance Level    |                     |                  |                 |
| 935               |                                  |                                           |                 |                               |                  |                     |                  |                 |
| 936               |                                  | Ass                                       | suming Non      | mal Distribution              |                  |                     |                  |                 |
| 937               | 95% Norm                         | nal UCL                                   |                 | 959                           | % UCLs (Adjus    | ted for Skewnes     | s)               |                 |
| 938               |                                  | 95% Student's-t UCL                       | 44.5            |                               |                  | -CLT UCL (Chen      |                  | 45.69           |
|                   |                                  |                                           |                 |                               | -                | I-t UCL (Johnson    |                  | 44.75           |
| 939               |                                  |                                           |                 |                               |                  | `                   |                  |                 |
| 940               |                                  | Nonpar                                    | ametric Dis     | tribution Free UCLs           |                  |                     |                  |                 |
| 941               |                                  | 95% CLT UCL                               | 44.1            |                               |                  | 95% Jackknii        | fe UCL           | 44.5            |
| 942               | 95% St                           | andard Bootstrap UCL                      | 43.95           |                               |                  | 95% Bootstrap       | -t UCL           | 47.75           |
| 943               |                                  | 6 Hall's Bootstrap UCL                    | 51.37           |                               | 95% Pe           | ercentile Bootstra  |                  | 44.6            |
| 944               |                                  | % BCA Bootstrap UCL                       | 46.36           |                               |                  | 5.000 200.00        | .p 002           |                 |
| 945               |                                  | yshev(Mean, Sd) UCL                       | 50.87           |                               | 95% Che          | byshev(Mean, So     | 4) UCI           | 57.66           |
| 946               |                                  | yshev(Mean, Sd) UCL                       | 67.08           |                               |                  | byshev(Mean, So     |                  | 85.59           |
| 947               | 07.070 OHOD                      | yonev(mean, ea) ee                        | 07.00           |                               | 0070 0110        | byonev (mean, e.    | u) 00L           |                 |
| 948               |                                  |                                           | Suggested       | UCL to Use                    |                  |                     |                  |                 |
| 949               |                                  |                                           |                 | ant to try Normal Distr       | ibution          |                     |                  |                 |
| 950               |                                  | Data appear Nor                           | iliai, iviay vi | ant to uy Normai Disu         | ibuuon           |                     |                  |                 |
| 951               | Note: Suggestions regarding      | the selection of a 95%                    | IICI are nr     | ovided to help the user       | to select the mo | net annronriate 9   | 5% LICI          |                 |
| 952               |                                  | commendations are bas                     |                 | <u>.</u>                      |                  |                     | ∪ /∪ UUL         | •               |
| 953               | These recommendations a          |                                           |                 |                               | <u> </u>         |                     | (2006)           |                 |
| 954               | However, simulations results v   | •                                         |                 |                               | •                |                     | , ,              |                 |
| 955               | i iowever, simulations results t | wiii flot cover all Real W                | oriu uata Se    | , ioi additional msignt       | uic usei illay W | rant to Consult a ! | Jaublicia        |                 |
| 956               |                                  |                                           |                 |                               |                  |                     |                  |                 |
| 957               | Coholi                           |                                           |                 |                               |                  |                     |                  |                 |
| 958               | Cobalt                           |                                           |                 |                               |                  |                     |                  |                 |
| 959               |                                  |                                           | 0               | Ctatiatia-                    |                  |                     |                  |                 |
| 960               | <del></del>                      |                                           |                 | Statistics                    | N. 1             | -f Distinct Of      |                  |                 |
| 961               | I otal No                        | umber of Observations                     | 5               |                               |                  | of Distinct Obser   |                  | 5               |
| 962               |                                  |                                           | F.4             |                               | Number o         | of Missing Obser    |                  | 0               |
| 902               |                                  |                                           | 5.1             |                               |                  |                     | Mean             | 7.2             |
| 963               |                                  | Minimum                                   |                 |                               |                  |                     |                  |                 |
|                   |                                  | Maximum                                   | 9.3             |                               |                  |                     | Median           | 6.9             |
| 963               |                                  | Maximum<br>SD                             | 1.703           |                               |                  | Std. Error o        | f Mean           | 0.762           |
| 963<br>964        |                                  | Maximum<br>SD<br>Coefficient of Variation | 1.703<br>0.237  |                               |                  | Std. Error o        | f Mean<br>ewness | 0.762<br>0.0987 |
| 963<br>964<br>965 |                                  | Maximum<br>SD                             | 1.703           |                               |                  | Std. Error o        | f Mean<br>ewness | 0.762           |

SLR Page 20 of 32

| $\vdash$ | A B C D                                   | E  <br>erametric UCI  | F<br>L Statistics | G H I J K Mor Data Sets with Non-Detects                              | L      |
|----------|-------------------------------------------|-----------------------|-------------------|-----------------------------------------------------------------------|--------|
| 1        | Nonpo                                     |                       |                   | ioi bad cob maritori baccab                                           |        |
| 2        | User Selected Options                     |                       |                   |                                                                       |        |
| 3        | · ·                                       | 11/13/2020 2:2        | 22:32 PM          |                                                                       |        |
| 4        | From File WorkSheet                       |                       | -2.02 T W         |                                                                       |        |
| 5        | Full Precision OFF                        | Alo                   |                   |                                                                       |        |
| 6        | Confidence Coefficient 95%                |                       |                   |                                                                       |        |
| 7        | Number of Bootstrap Operations 2000       |                       |                   |                                                                       |        |
| 8        | Trainber of Bootstap Operations 2000      |                       |                   |                                                                       |        |
| 9        |                                           |                       |                   |                                                                       |        |
| 10       | Note: Sample                              | size is small (       | ea <10)           | f data are collected using ISM approach                               |        |
| 969      | · ·                                       |                       |                   | JCL to estimate EPC (ITRC, 2012).                                     |        |
| 970      |                                           |                       |                   | the Nonparametric and All UCL Options.                                |        |
| 971      |                                           |                       | patoa aomig       | and Nonparamound and 7 in OOL Options.                                |        |
| 972      |                                           | Nonnarame             | tric Distribu     | tion Free UCL Statistics                                              |        |
| 973      | Dat                                       | •                     |                   | ted at 5% Significance Level                                          |        |
| 974      | 540                                       | а арреат поп          | iliai Distribi    | tied at 0 % Oigninication Level                                       |        |
| 975      |                                           | Δος                   | uming Nor         | mal Distribution                                                      |        |
| 976      | 95% Normal UCL                            | Ass                   | annig 1401        | 95% UCLs (Adjusted for Skewness)                                      |        |
| 977      |                                           | dent's-t UCL          | 8.824             | 95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)           | 8.489  |
| 978      | 95 % 5 tu                                 | dents-t occ           | 0.024             | 95% Modified-t UCL (Johnson-1978)                                     | 8.829  |
| 979      |                                           |                       |                   | 93 % Wodified-t OCE (3011115011-1976)                                 | 0.029  |
| 980      |                                           | Monnon                | omotrio Dia       | tribution Free UCLs                                                   |        |
| 981      | 0.5                                       | NOTIPAL<br>5% CLT UCL | 8.453             | 95% Jackknife UCL                                                     | 8.824  |
| 982      |                                           |                       |                   |                                                                       |        |
| 983      | 95% Standard Bo                           |                       | 9.733             | 95% Bootstrap-t UCL                                                   | 9.384  |
| 984      | 95% Hall's Bo                             | ·                     | 8.2               | 95% Percentile Bootstrap UCL                                          | 8.3    |
| 985      | 95% BCA Bo                                | •                     | 9.485             | OFO/ Chabyahay/Maan Cd) LICI                                          | 10.52  |
| 986      | 90% Chebyshev(Me                          |                       |                   | 95% Chebyshev(Mean, Sd) UCL                                           | 14.78  |
| 987      | 97.5% Chebyshev(Me                        | an, Sa) UCL           | 11.96             | 99% Chebyshev(Mean, Sd) UCL                                           | 14.78  |
| 988      |                                           |                       | Cummantad         | LICI to Lies                                                          |        |
| 989      | Det                                       |                       |                   | UCL to Use                                                            |        |
| 990      | Dat                                       | a appear Nor          | mai, may w        | ant to try Normal Distribution                                        |        |
| 991      | Nete Commenting and a street of           | +:                    | 1101              | ovided to help the user to select the most appropriate 95% UCL.       |        |
| 992      |                                           |                       |                   | a size, data distribution, and skewness.                              |        |
| 993      |                                           |                       |                   |                                                                       |        |
| 994      |                                           | <u> </u>              |                   | nulation studies summarized in Singh, Maichle, and Lee (2006).        | _      |
| 995      | However, simulations results will not cov | ver all Real VV       | oria data se      | ts; for additional insight the user may want to consult a statisticia | n.     |
| 996      |                                           |                       |                   |                                                                       |        |
| 997      |                                           |                       |                   |                                                                       |        |
| 998      | Copper                                    |                       |                   |                                                                       |        |
| 999      |                                           |                       | 0                 | Challada                                                              |        |
| 1000     | T . 1 N                                   | Db                    |                   | Statistics                                                            | -      |
| 1001     | Total Number of 0                         | Dservations           | 5                 | Number of Distinct Observations                                       | 5      |
| 1002     |                                           |                       |                   | Number of Missing Observations                                        | 0      |
| 1003     |                                           | Minimum               | 20                | Mean                                                                  | 50.8   |
| 1004     |                                           | Maximum               | 73                | Median                                                                | 61     |
| 1005     |                                           | SD                    | 24.64             | Std. Error of Mean                                                    | 11.02  |
| 1006     |                                           | t of Variation        | 0.485             | Skewness                                                              | -0.538 |
| 1007     | Mean of                                   | logged Data           | 3.805             | SD of logged Data                                                     | 0.588  |
| 1008     |                                           |                       |                   |                                                                       |        |
| 1009     | ·                                         |                       |                   | f data are collected using ISM approach                               |        |
| 1010     |                                           |                       |                   | JCL to estimate EPC (ITRC, 2012).                                     |        |
| 1011     | Chebyshev UCL                             | . can be com          | outed using       | the Nonparametric and All UCL Options.                                |        |
| 1012     |                                           |                       |                   |                                                                       |        |
| 1013     |                                           | Nonparame             | tric Distribu     | tion Free UCL Statistics                                              |        |
| 1014     | Dat                                       | a appear Nor          | mal Distribu      | ited at 5% Significance Level                                         |        |
| 1015     |                                           |                       |                   |                                                                       |        |
| . 1015   |                                           |                       |                   |                                                                       |        |

SLR Page 21 of 32

|                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|                                                                                                                                                                                                              | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E IC                                                                                                                                                                                                         | F<br>I Statistics                                                        | for Data Sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Η<br>with Non-Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | )<br>Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                       | K                                        | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                                |
| 1                                                                                                                                                                                                            | ТОПРЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              | L Otationico                                                             | TOI Data Octo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Widi Non-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7010013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 2                                                                                                                                                                                                            | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 3                                                                                                                                                                                                            | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/13/2020 2::                                                                                                                                                                                               | 22:32 PM                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 4                                                                                                                                                                                                            | From File WorkSheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 5                                                                                                                                                                                                            | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 6<br>7                                                                                                                                                                                                       | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 8                                                                                                                                                                                                            | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 9                                                                                                                                                                                                            | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 10                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1016                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ass                                                                                                                                                                                                          | suming Nor                                                               | mal Distributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1017                                                                                                                                                                                                         | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | UCLs (Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ljusted f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or Skev                                 | wness                                    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |
| 1018                                                                                                                                                                                                         | 95% Stu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dent's-t UCL                                                                                                                                                                                                 | 74.29                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5% Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted-CLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UCL (0                                  | Chen-1                                   | 1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.09                                            |
| 1019                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% Modi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fied-t UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CL (Joh                                 | nson-                                    | 1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73.85                                            |
| 1020                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1021                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nonpar                                                                                                                                                                                                       | ametric Dis                                                              | stribution Free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1022                                                                                                                                                                                                         | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % CLT UCL                                                                                                                                                                                                    | 68.93                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5% Jac                                  | ckknife                                  | UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.29                                            |
| 1023                                                                                                                                                                                                         | 95% Standard Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otstrap UCL                                                                                                                                                                                                  | 67.04                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Boot                                  | strap-t                                  | UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.49                                            |
| 1024                                                                                                                                                                                                         | 95% Hall's Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ootstrap UCL                                                                                                                                                                                                 | 60.79                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 Percen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | itile Boo                               | otstrap                                  | UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67.4                                             |
| 1025                                                                                                                                                                                                         | 95% BCA Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ootstrap UCL                                                                                                                                                                                                 | 63.8                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1026                                                                                                                                                                                                         | 90% Chebyshev(Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | an, Sd) UCL                                                                                                                                                                                                  | 83.86                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chebysh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       | . ,                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98.83                                            |
| 1027                                                                                                                                                                                                         | 97.5% Chebyshev(Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an, Sd) UCL                                                                                                                                                                                                  | 119.6                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99% C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chebysh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ev(Mea                                  | n, Sd)                                   | UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160.4                                            |
| 1028                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1029                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          | UCL to Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1030                                                                                                                                                                                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a appear Nor                                                                                                                                                                                                 | mal, May w                                                               | vant to try No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rmal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1000                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1031                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
|                                                                                                                                                                                                              | Note: Suggestions regarding the selec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ppropria                                | ate 95°                                  | % UCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 1031                                                                                                                                                                                                         | Recommenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ations are bas                                                                                                                                                                                               | ed upon da                                                               | ta size, data d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1031<br>1032                                                                                                                                                                                                 | Recommendations are based u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ations are bas<br>upon the resu                                                                                                                                                                              | sed upon da                                                              | ta size, data d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iess.<br>jh, Maich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nle, and                                | l Lee (                                  | 2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 1031<br>1032<br>1033                                                                                                                                                                                         | Recommenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ations are bas<br>upon the resu                                                                                                                                                                              | sed upon da                                                              | ta size, data d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | listribution, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | iess.<br>jh, Maich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nle, and                                | l Lee (                                  | 2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
| 1031<br>1032<br>1033<br>1034                                                                                                                                                                                 | Recommendations are based to However, simulations results will not cover the second second second second second second second second second second second second second second second second second second second second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | sed upon dar<br>Its of the sin                                           | ta size, data d<br>mulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iess.<br>jh, Maich<br>ay want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035                                                                                                                                                                         | Recommendations are based of the However, simulations results will not continue.  Note: For highly negatively-skewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | ed upon da<br>Its of the sin<br>orld data se                             | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037                                                                                                                                                         | Recommendations are based to However, simulations results will not cover the second second second second second second second second second second second second second second second second second second second second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | ed upon da<br>Its of the sin<br>orld data se                             | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039                                                                                                                                         | Recommendations are based of the However, simulations results will not continue.  Note: For highly negatively-skewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | ed upon da<br>Its of the sin<br>orld data se                             | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039                                                                                                                                         | Recommenda These recommendations are based to However, simulations results will not cov  Note: For highly negatively-skewer reliable. Chen's and of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | ed upon da<br>Its of the sin<br>orld data se                             | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039<br>1040                                                                                                                                 | Recommendations are based of the However, simulations results will not continue.  Note: For highly negatively-skewer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | ed upon da<br>Its of the sin<br>orld data se                             | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039<br>1040<br>1041<br>1042                                                                                                                 | Recommenda These recommendations are based to However, simulations results will not cov  Note: For highly negatively-skewer reliable. Chen's and of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ations are bas<br>upon the resu<br>ver all Real W                                                                                                                                                            | sed upon dar<br>Its of the sin<br>forld data se<br>dence limits          | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>ed in Sing<br>e user ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ness.<br>gh, Maich<br>gy want t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nle, and<br>o consu                     | l Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043                                                                                                                 | Recommenda These recommendations are based to However, simulations results will not cov  Note: For highly negatively-skewer reliable. Chen's and of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ations are bas<br>upon the resu<br>ver all Real W<br>d data, confid<br>Johnson's me                                                                                                                          | sed upon dar<br>Its of the sin<br>forld data se<br>dence limits          | ta size, data d<br>nulation studie<br>ets; for addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn<br>led in Sing<br>le user ma<br>le user ma | ess.<br>ph, Maich<br>by want t<br>and Ga<br>red data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o consumma) i sets.                     | I Lee (i                                 | 2006).<br>atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | an.                                              |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039<br>1040<br>1041<br>1042<br>1043                                                                                                         | Recommendations are based of These recommendations are based of However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of th | ations are bas<br>upon the resu<br>ver all Real W<br>d data, confid<br>Johnson's me                                                                                                                          | lts of the sin<br>orld data se<br>dence limits<br>ethods provi           | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess.  jh, Maich  y want t  and Ga  ed data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nle, and<br>o consu                     | d Lee (: ult a st                        | 2006). atistici ot be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an.                                              |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045                                                                                                 | Recommendations are based of These recommendations are based of However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of th | ations are bas<br>upon the resu<br>ver all Real W<br>d data, confid<br>Johnson's me                                                                                                                          | ded upon dar lits of the sin orld data se dence limits athods provi      | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess.<br>ph, Maich<br>by want t<br>and Ga<br>red data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nle, and<br>o consu                     | may no                                   | 2006). atistici ot be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>0                                           |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046                                                                                         | Recommendations are based of These recommendations are based of However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of th | ations are bas upon the resu ver all Real W d data, confid Johnson's me                                                                                                                                      | dence limits  General  5                                                 | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess.  jh, Maich  y want t  and Ga  ed data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nle, and<br>o consu                     | d Lee (i<br>ult a st<br>may no<br>bserva | 2006). atistici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>42.82                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1039<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047                                                                         | Recommendations are based of These recommendations are based of However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of the Chen's and of th | ations are bas<br>upon the resu<br>ver all Real W<br>d data, confid<br>Johnson's me                                                                                                                          | dence limits  General  5  6.1                                            | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess.  jh, Maich  y want t  and Ga  ed data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nhle, and<br>o consumma) i<br>sets.     | bserva                                   | atisticion ot be ations ations ations Mean median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5<br>0<br>42.82<br>29                            |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047                                                                                 | Recommenda These recommendations are based to However, simulations results will not cov  Note: For highly negatively-skewer reliable. Chen's and to  Lead  Total Number of 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ations are bas upon the resu ver all Real W d data, confid Johnson's me                                                                                                                                      | dence limits  General  5                                                 | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ess.  jh, Maich  y want t  and Ga  ed data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nle, and<br>o consu                     | bserva                                   | 2006) atistici ot be ations ations Mean Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5<br>0<br>42.82                                  |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048                                                                         | Recommendations are based of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickne | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation                                                                                  | General 5 6.1 100 37.39                                                  | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iness.  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich | nhle, and<br>o consumma) i<br>sets.     | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72                   |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1045<br>1046<br>1047<br>1048<br>1049<br>1050                                                                 | Recommendations are based of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickne | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD                                                                                                 | General 5 6.1 100 37.39 0.873                                            | ta size, data d<br>nulation studie<br>ets; for addition<br>(e.g., Chen,<br>ide adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | distribution, a<br>es summariz<br>nal insight th<br>Johnson, Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iness.  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich  Inh, Maich | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1049<br>1050<br>1051                                                         | Recommendations are based of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickness of the thickne | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data                                                                      | General 5 6.1 100 37.39 0.873 3.371                                      | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | distribution, as summarizes summarized insight the Johnson, Lonts for posite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iess.  ih, Maich y want t  and Ga  red data  beer of Diser of Mis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1049<br>1050<br>1051<br>1052                                                 | Recommenda These recommendations are based to However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and to the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the  | ations are bas upon the resu uper all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data                                                                     | General 5 6.1 100 37.39 0.873 3.371                                      | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | distribution, as summarizes summarized insight the Johnson, Lonts for position in the Johnson in | and skewn ed in Sing e user ma ognormal, vely skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and Ga ared data  per of Diser of Miser | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1049<br>1050<br>1051<br>1052                                                 | Recommenda These recommendations are based to However, simulations results will not continue to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Total Number of Coefficien  Coefficien Mean of Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen t | ations are bas upon the resu uper all Real W d data, confid Johnson's me  Dbservations  Minimum  Maximum  SD t of Variation logged Data                                                                      | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), ichebyshev l            | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment  Statistics  If data are co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distribution, as summarizes summarized and insight the Johnson, Longton position of the Johnson positi | nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1049<br>1050<br>1051<br>1052                                         | Recommenda These recommendations are based to However, simulations results will not continue.  Note: For highly negatively-skewer reliable. Chen's and to the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the  | ations are bas upon the resu uper all Real W d data, confid Johnson's me  Dbservations  Minimum  Maximum  SD t of Variation logged Data                                                                      | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), ichebyshev l            | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment  Statistics  If data are co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distribution, as summarizes summarized and insight the Johnson, Longton position of the Johnson positi | nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1050<br>1051<br>1052<br>1053                                         | Recommenda These recommendations are based to However, simulations results will not continue to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Total Number of Coefficien  Coefficien Mean of Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen to the Note: Sample seyou may we would not be seen t | ations are bas upon the resu uper all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C                                      | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), I                       | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment  Statistics  If data are co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distribution, as summarizes summarized and insight the Johnson, Louist for position of the Johnson nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1050<br>1051<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056                         | Recommenda These recommendations are based to However, simulations results will not continued to the Note: For highly negatively-skewer reliable. Chen's and to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Sample so the Note: Sample so you may we Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C can be com                            | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), I                       | ta size, data o mulation studie sts; for addition (e.g., Chen, ide adjustment  Statistics  If data are col UCL to estima g the Nonpara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | distribution, as summarizes summarized and insight the Johnson, Louist for position of the Johnson nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1050<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056<br>1057         | Recommenda These recommendations are based to However, simulations results will not continued to the Note: For highly negatively-skewer reliable. Chen's and to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Sample so the Note: Sample so you may we Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C can be com                            | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), I                       | ta size, data of mulation studies tas; for addition studies tas; for addition of (e.g., Chen, ide adjustment) ide adjustment statistics  Statistics  If data are coluct to estimate the Nonparation Free UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | distribution, as summarizes summarized and insight the Johnson, Louist for position of the Johnson nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1048<br>1050<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056<br>1057<br>1058 | Recommenda These recommendations are based to However, simulations results will not continued to the Note: For highly negatively-skewer reliable. Chen's and to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Sample so the Note: Sample so you may we Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C  can be com  Nonparame a appear Nor   | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), ichebyshev Uputed using | ta size, data of mulation studies tas; for addition studies tas; for addition of (e.g., Chen, ide adjustment) ide adjustment statistics  Statistics  If data are coluct to estimate the Nonparation Free UC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | distribution, as summarizes summarizes summarized and insight the Johnson, Louise for position of the Johnson, Louise for position of the Johnson, Louise for position of the Johnson of t | nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga and Ga an | mle, and o consumma) if sets.           | bserva  Merror of I                      | 2006) atistici ot be  ations ations Mean edian Mean vness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1047<br>1050<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056<br>1057<br>1058<br>1058 | Recommenda These recommendations are based to However, simulations results will not continued to the Note: For highly negatively-skewer reliable. Chen's and to the Note: For highly negatively-skewer reliable. Chen's and to the Note: Sample so the Note: Sample so you may we Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C  can be com  Nonparame a appear Nor   | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), ichebyshev Uputed using | ta size, data of mulation studie ets; for addition studie ets; for addition studie ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addi | distribution, as summarizes summarizes summarized and insight the Johnson, Louise for position of the Johnson, Louise for position of the Johnson, Louise for position of the Johnson of t | nd skewn ed in Sing e user ma ognormal, vely skew  Numb  Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and Gared data  per of Diser of Miser o | mma) in sets.  Std. Err                 | bserva I Skew                            | atisticis ot be attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded attituded | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1050<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056<br>1057<br>1058<br>1059<br>1060 | Recommenda These recommendations are based to However, simulations results will not continue to the Note: For highly negatively-skewer reliable. Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen' | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C  . can be com  Nonparame a appear Nor | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), ichebyshev Uputed using | ta size, data of mulation studie ets; for addition studie ets; for addition studie ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addi | distribution, as summarizes summarizes summarizes summarized and insight the Johnson, Long the for position of the summarized summarized summarized and summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized summarized su | nand skewn ed in Sing e user ma cognormal, vely skew  Numb  Numb  g ISM app RC, 2012; All UCL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and Gared data  per of Diser of Miser o | nle, and o consumma) if sets.  Std. Err | bserva<br>bserva<br>I Skew<br>ogged      | 2006). atistici ot be  ations ations Mean edian Mean vness Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>42.82<br>29<br>16.72<br>1.014          |
| 1031<br>1032<br>1033<br>1034<br>1035<br>1036<br>1037<br>1038<br>1040<br>1041<br>1042<br>1043<br>1044<br>1045<br>1046<br>1050<br>1051<br>1052<br>1053<br>1054<br>1055<br>1056<br>1057<br>1058<br>1058<br>1059 | Recommenda These recommendations are based to However, simulations results will not continue to the Note: For highly negatively-skewer reliable. Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and to the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen's and the Chen' | ations are bas upon the resu ver all Real W d data, confid Johnson's me  Disservations  Minimum  Maximum  SD t of Variation logged Data  size is small ( want to use C can be com  Nonparame a appear Nor    | General 5 6.1 100 37.39 0.873 3.371 Ge.g., <10), Ichebyshev Uputed using | ta size, data of mulation studie ets; for addition studie ets; for addition studie ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addition of the ets; for addi | distribution, as summarized and insight the Johnson, Lounts for position of the Johnson of the J | nd skewn ed in Sing e user ma cognormal, vely skew  Numb  Numb  g ISM app RC, 2012; All UCL C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | per of Diser of Miser | o consumma) in sets.  Std. Err SD of Id | bserva bserva I Skew ogged               | 2006). atistici ot be  ations ations Mean median Mean mess Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5<br>0<br>42.82<br>29<br>16.72<br>1.014<br>1.073 |

SLR Page 22 of 32

|                                                                                                                                                                      | A B C                                                                  | D E                                                                                                                                                                                                                                                   | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G H I J K                                                                                                                                                                                                                                                                                                                                      | L                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1                                                                                                                                                                    |                                                                        |                                                                                                                                                                                                                                                       | L Statistics for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                  | _                                                                                    |
| 2                                                                                                                                                                    |                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 3                                                                                                                                                                    | User Selected Options                                                  |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 4                                                                                                                                                                    | Date/Time of Computation F                                             | ProUCL 5.11/13/2020 2:2                                                                                                                                                                                                                               | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 5                                                                                                                                                                    | From File V                                                            | WorkSheet.xls                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 6                                                                                                                                                                    | Full Precision (                                                       | OFF                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 7                                                                                                                                                                    | Confidence Coefficient 9                                               | 95%                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 8                                                                                                                                                                    | Number of Bootstrap Operations 2                                       | 2000                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 9                                                                                                                                                                    |                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 10                                                                                                                                                                   |                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1064                                                                                                                                                                 | 1                                                                      | <u> </u>                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ribution Free UCLs                                                                                                                                                                                                                                                                                                                             |                                                                                      |
| 1065                                                                                                                                                                 |                                                                        | 95% CLT UCL                                                                                                                                                                                                                                           | 70.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                              | 78.47                                                                                |
| 1066                                                                                                                                                                 |                                                                        | standard Bootstrap UCL                                                                                                                                                                                                                                | 66.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                            | 130.5                                                                                |
| 1067                                                                                                                                                                 |                                                                        | % Hall's Bootstrap UCL                                                                                                                                                                                                                                | 282.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                   | 69.4                                                                                 |
| 1068                                                                                                                                                                 |                                                                        | 5% BCA Bootstrap UCL                                                                                                                                                                                                                                  | 71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1069                                                                                                                                                                 | 1                                                                      | byshev(Mean, Sd) UCL                                                                                                                                                                                                                                  | 92.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * ' '                                                                                                                                                                                                                                                                                                                                          | 115.7                                                                                |
| 1070                                                                                                                                                                 | 97.5% Chel                                                             | byshev(Mean, Sd) UCL                                                                                                                                                                                                                                  | 147.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                    | 209.2                                                                                |
| 1071                                                                                                                                                                 |                                                                        |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101 - 11                                                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 1072                                                                                                                                                                 |                                                                        |                                                                                                                                                                                                                                                       | Suggested U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1073                                                                                                                                                                 | 3                                                                      | Data appear Nor                                                                                                                                                                                                                                       | mai, May wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Int to try Normal Distribution                                                                                                                                                                                                                                                                                                                 |                                                                                      |
| 1074                                                                                                                                                                 |                                                                        | ng the colection of a OFO                                                                                                                                                                                                                             | LICI ar-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | wided to help the upor to colect the most annual of CCC LICE                                                                                                                                                                                                                                                                                   |                                                                                      |
| 1075                                                                                                                                                                 | 9                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                 |                                                                                      |
| 1076                                                                                                                                                                 | 2                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                       |                                                                                      |
| 1077                                                                                                                                                                 |                                                                        | ·                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                  | _                                                                                    |
| 1078                                                                                                                                                                 | However, simulations results                                           | will not cover all Real vv                                                                                                                                                                                                                            | oria data sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s; for additional insight the user may want to consult a statisticial                                                                                                                                                                                                                                                                          | n.                                                                                   |
| 1079                                                                                                                                                                 | 9                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1080                                                                                                                                                                 | Molybdenum                                                             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1081                                                                                                                                                                 | Molybaenum                                                             |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1082                                                                                                                                                                 |                                                                        |                                                                                                                                                                                                                                                       | General S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Statistics                                                                                                                                                                                                                                                                                                                                     |                                                                                      |
| 1083                                                                                                                                                                 | Total N                                                                | Number of Observations                                                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                |                                                                                      |
| 1084                                                                                                                                                                 |                                                                        | variable of Observations                                                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Number of Missing Observations                                                                                                                                                                                                                                                                                                                 | 14                                                                                   |
| 1085                                                                                                                                                                 | 5                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                | 14                                                                                   |
| 1086                                                                                                                                                                 |                                                                        | Minimum                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean                                                                                                                                                                                                                                                                                                                                           | 0                                                                                    |
|                                                                                                                                                                      | 6                                                                      | Minimum                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mean Median                                                                                                                                                                                                                                                                                                                                    | 0                                                                                    |
| 1087                                                                                                                                                                 | 7                                                                      | Maximum                                                                                                                                                                                                                                               | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Median                                                                                                                                                                                                                                                                                                                                         | 0<br>1<br>0.9                                                                        |
| 1087<br>1088                                                                                                                                                         | 5<br>7<br>8                                                            | Maximum<br>SD                                                                                                                                                                                                                                         | 3.3<br>0.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median<br>Std. Error of Mean                                                                                                                                                                                                                                                                                                                   | 0<br>1<br>0.9<br>0.158                                                               |
| 1087<br>1088<br>1089                                                                                                                                                 | 5<br>7<br>8                                                            | Maximum<br>SD<br>Coefficient of Variation                                                                                                                                                                                                             | 3.3<br>0.722<br>0.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Median Std. Error of Mean Skewness                                                                                                                                                                                                                                                                                                             | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1089<br>1090                                                                                                                                         | 5<br>7<br>8<br>9                                                       | Maximum<br>SD                                                                                                                                                                                                                                         | 3.3<br>0.722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median<br>Std. Error of Mean                                                                                                                                                                                                                                                                                                                   | 0<br>1<br>0.9<br>0.158                                                               |
| 1087<br>1088<br>1089<br>1090<br>1091                                                                                                                                 | 5<br>7<br>8<br>9                                                       | Maximum<br>SD<br>Coefficient of Variation<br>Mean of logged Data                                                                                                                                                                                      | 3.3<br>0.722<br>0.722<br>-0.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                           | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092                                                                                                                         | 5<br>7<br>8<br>9                                                       | Maximum SD Coefficient of Variation Mean of logged Data Nonparame                                                                                                                                                                                     | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                           | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093                                                                                                                 | 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                | Maximum SD Coefficient of Variation Mean of logged Data Nonparame                                                                                                                                                                                     | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                           | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093                                                                                                                 | 5<br>7<br>8<br>9<br>9                                                  | Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan                                                                                                                                                                     | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Median Std. Error of Mean Skewness SD of logged Data                                                                                                                                                                                                                                                                                           | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093<br>1094                                                                                                         | OEW Man                                                                | Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan                                                                                                                                                                     | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level                                                                                                                                                                                                                                     | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095                                                                                                         | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan                                                                                                                                                                     | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Median Std. Error of Mean Skewness SD of logged Data ion Free UCL Statistics ted at 5% Significance Level                                                                                                                                                                                                                                      | 0<br>1<br>0.9<br>0.158<br>1.938                                                      |
| 1087<br>1088<br>1099<br>1090<br>1091<br>1093<br>1094<br>1095<br>1096                                                                                                 | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Ass                                                                                                                                                                 | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributionma Distributionma Distributionma Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Median Std. Error of Mean Skewness SD of logged Data  Ion Free UCL Statistics ted at 5% Significance Level  and Distribution 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                  | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771                                             |
| 1087<br>1088<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097                                                                                         | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data Nonparame Data appear Gan Ass                                                                                                                                                                 | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributionma Distributionma Distributionma Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  al Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                 | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771                                             |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1093<br>1094<br>1095<br>1096<br>1097<br>1098                                                                                 | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL                                                                                                                                   | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributiona Distributiona Distributional Normalizational Normali | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  al Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                 | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771                                             |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1098<br>1099<br>1100                                                         | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL                                                                                                                                   | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributiona Distributiona Distributional Normalizational Normali | Median Std. Error of Mean Skewness SD of logged Data  Ston Free UCL Statistics ted at 5% Significance Level  all Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                           | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771                                             |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101                                                                | 95% Non                                                                | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL  Nonparame                                                                                                                        | 3.3 0.722 0.722 -0.241 tric Distributiona Distributiona Norm 1.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Median Std. Error of Mean Skewness SD of logged Data  fon Free UCL Statistics ted at 5% Significance Level  10                                                                                                                                                                                                                                 | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771                                             |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1098<br>1100<br>11101                                                        | 95% S                                                                  | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Tmal UCL 95% Student's-t UCL  Nonpar                                                                                                                         | 3.3 0.722 0.722 -0.241  tric Distributiona Distributiona Norm 1.272  ametric Distr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  all Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs                                                                                          | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283                            |
| 1087<br>1088<br>1089<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101<br>1102<br>1103                                                | 95% Non 95% S 95% S                                                    | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Thail UCL 95% Student's-t UCL  Nonpar  95% CLT UCL  Standard Bootstrap UCL                                                                                   | 3.3 0.722 0.722 -0.241  tric Distributiona Distributiona Distributiona Distributiona Distributiona Distributiona Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributional Distributiona             | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  all Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL                                                  | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283                            |
| 1087<br>1088<br>1099<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101<br>1102<br>1103<br>1104                                        | 95% Non  95% Non  95% S  95% S                                         | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Thail UCL 95% Student's-t UCL  Nonpar 95% CLT UCL standard Bootstrap UCL Hall's Bootstrap UCL                                                                | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributions Distributions Distributions Norm  1.272  ametric Distributions 1.259 1.259 1.25 2.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  all Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL                                                  | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283                            |
| 1087<br>1088<br>1099<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101<br>11102<br>11103<br>11104<br>11105                            | 95% Non  95% Non  95% S  95% S  95% S                                  | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Thail UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL Hall's Bootstrap UCL 5% BCA Bootstrap UCL                                           | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distributions Distributions Norm  1.272  ametric Distributions 1.259  1.259  1.25  2.724  1.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL                                                           | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283<br>1.272<br>1.435<br>1.267 |
| 1087<br>1088<br>1099<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101<br>1102<br>1103<br>1104<br>1105<br>1106                                | 95% Non  95% Non  95% S  95% S  95% S  95% S  95% S  975% S  975% Chet | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass  Thail UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL % Hall's Bootstrap UCL 5% BCA Bootstrap UCL byshev(Mean, Sd) UCL                    | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut<br>mma Distribut<br>1.272<br>ametric Distribut<br>1.259<br>1.25<br>2.724<br>1.329<br>1.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs  95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL                              | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283<br>1.272<br>1.435<br>1.267 |
| 1087<br>1088<br>1099<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>11101<br>1102<br>1103<br>1104<br>1105<br>1106<br>1106<br>1107                | 95% Non  95% Non  95% S  95% S  95% S  95% S  95% S  95% S             | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL Hall's Bootstrap UCL SW Hall's Bootstrap UCL byshev(Mean, Sd) UCL byshev(Mean, Sd) UCL | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut<br>mma Distribut<br>1.272<br>ametric Distribut<br>1.259<br>1.25<br>2.724<br>1.329<br>1.473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL   | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283<br>1.272<br>1.435<br>1.267 |
| 1087<br>1088<br>1099<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>1101<br>1102<br>1103<br>1104<br>1105<br>1106<br>1107<br>1106<br>1107<br>1108 | 95% Non  95% Non  95% S 95% S 95% S 95% S 95% S 97.5% Chet             | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL W Hall's Bootstrap UCL SW BCA Bootstrap UCL byshev(Mean, Sd) UCL byshev(Mean, Sd) UCL  | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut<br>ma Distribut<br>1.272<br>ametric Distr<br>1.259<br>1.25<br>2.724<br>1.329<br>1.473<br>1.984<br>Suggested U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL   | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283<br>1.272<br>1.435<br>1.267 |
| 1087<br>1088<br>1099<br>1090<br>1091<br>1092<br>1093<br>1094<br>1095<br>1096<br>1097<br>1100<br>1110<br>1102<br>1103<br>1104<br>1105<br>1106<br>1106<br>1107         | 95% Non  95% Non  95% S  95% S  95% S  95% S  95% S  97.5% Chet        | Maximum SD Coefficient of Variation Mean of logged Data  Nonparame Data appear Gan  Ass mal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL W Hall's Bootstrap UCL SW BCA Bootstrap UCL byshev(Mean, Sd) UCL byshev(Mean, Sd) UCL  | 3.3<br>0.722<br>0.722<br>-0.241<br>tric Distribut<br>ma Distribut<br>1.272<br>ametric Distr<br>1.259<br>1.25<br>2.724<br>1.329<br>1.473<br>1.984<br>Suggested U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median Std. Error of Mean Skewness SD of logged Data  ion Free UCL Statistics ted at 5% Significance Level  ps% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  ribution Free UCLs  95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL | 0<br>1<br>0.9<br>0.158<br>1.938<br>0.771<br>1.33<br>1.283<br>1.272<br>1.435<br>1.267 |

SLR Page 23 of 32

|                                                                                                                                                                                      | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 2                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
|                                                                                                                                                                                      | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 3                                                                                                                                                                                    | Date/Time of Computation ProUCL 5.11/13/2020 2::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 4                                                                                                                                                                                    | From File WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 5                                                                                                                                                                                    | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 6                                                                                                                                                                                    | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 7                                                                                                                                                                                    | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 8                                                                                                                                                                                    | Number of Bookstap operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 9                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 10                                                                                                                                                                                   | Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UCL are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1111                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |
| 1113                                                                                                                                                                                 | These recommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Its of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  |
| 1114                                                                                                                                                                                 | However, simulations results will not cover all Real W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n.                                               |
| 1115                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1116                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1117                                                                                                                                                                                 | Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1118                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1119                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| 1120                                                                                                                                                                                 | Total Number of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                |
| 1121                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                |
| 1122                                                                                                                                                                                 | Minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.4                                             |
| 1123                                                                                                                                                                                 | Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18                                               |
| 1124                                                                                                                                                                                 | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.293                                            |
| 1125                                                                                                                                                                                 | Coefficient of Variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.607                                           |
| 1126                                                                                                                                                                                 | Mean of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.33                                             |
| 1127                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1128                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f data are collected using ISM approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |
|                                                                                                                                                                                      | vou mov wont to use C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1129                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| 1129<br>1130                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JCL to estimate EPC (ITRC, 2012). the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |
|                                                                                                                                                                                      | Chebyshev UCL can be com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | puted using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 1130                                                                                                                                                                                 | Chebyshev UCL can be com Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | puted using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.  tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |
| 1130<br>1131<br>1132<br>1133                                                                                                                                                         | Chebyshev UCL can be com Nonparame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | puted using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134                                                                                                                                                 | Chebyshev UCL can be com  Nonparame  Data appear Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | puted using<br>stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the Nonparametric and All UCL Options.  tion Free UCL Statistics  uted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135                                                                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | puted using<br>stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the Nonparametric and All UCL Options.  tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136                                                                                                                                 | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | puted using<br>tric Distribu<br>mal Distribu<br>suming Nori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.  tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.51                                            |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137                                                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | puted using<br>stric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the Nonparametric and All UCL Options.  tion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.51                                            |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138                                                                                                                 | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | puted using<br>tric Distribu<br>mal Distribu<br>suming Nori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.  tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139                                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | puted using<br>tric Distribu<br>mal Distribu<br>suming Non<br>22.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the Nonparametric and All UCL Options.  tion Free UCL Statistics  uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139                                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | puted using<br>tric Distribu<br>mal Distribu<br>suming Non<br>22.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the Nonparametric and All UCL Options.  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Fr |                                                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140                                                                                                 | Chebyshev UCL can be com  Nonparame Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | puted using tric Distribu mal Distribu suming Non 22.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the Nonparametric and All UCL Options.  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCLs (Adjusted for Skewness)  Ition Free UCLs  Ition Free UCLs  Ition Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.19                                            |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | puted using tric Distribu mal Distribu suming Non 22.29 rametric Dis 21.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the Nonparametric and All UCL Options.  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCL Statistics  Ition Free UCLs (Adjusted for Skewness)  Ition Free UCLs  Ition Free UCLs  Ition Free UCLs  Ition Free UCLs  Ition Free UCLs  Ition Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.19                                            |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141<br>1142<br>1143                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | puted using tric Distribu mal Distribu suming Non 22.29 rametric Dis 21.17 20.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | titon Free UCL Statistics  and All UCL Options.  tition Free UCL Statistics  and at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.19<br>22.29<br>21.48                          |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141                                                                                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | puted using tric Distribu mal Distribu suming Non 22.29 ametric Dis 21.17 20.79 20.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | titon Free UCL Statistics  and All UCL Options.  tition Free UCL Statistics  and at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.19<br>22.29<br>21.48                          |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141<br>1142<br>1143                                                                         | Nonparame Data appear Nor  Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | puted using tric Distribu mal Distribu suming Non 22.29  ametric Dis 21.17 20.79 20.89 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tition Free UCL Statistics  and All UCL Options.  tition Free UCL Statistics  and at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141<br>1142<br>1143<br>1144<br>1144                                                         | Nonparame Data appear Nor  Pata appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA BOotstrap UCL  90% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | puted using tric Distribu mal Distribu suming Non  22.29  rametric Dis 21.17 20.79 20.89 20 24.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | titon Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146                                                         | Chebyshev UCL can be com  Nonparame Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | puted using tric Distribu mal Distribu suming Non  22.29  rametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tition Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1139<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146                                                 | Chebyshev UCL can be com  Nonparame Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% CLT UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | puted using tric Distribu mal Distribu suming Non  22.29  rametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tition Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147                                                 | Nonparame Data appear Nor  Personal UCL  95% Normal UCL  95% Student's-t UCL  Nonpar  95% CLT UCL  95% Standard Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | puted using tric Distribu mal Distribu suming Non 22.29  rametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tition Free UCL Statistics uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  sant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1148<br>1149                                 | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  Note: Suggestions regarding the selection of a 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | puted using tric Distribution Distribution  22.29  Pametric Distribution  22.29  Pametric Distribution  21.17  20.79  20.89  20  24.28  31.72  Suggested Trial, May we build the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of the properties of t | tition Free UCL Statistics uted at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  rant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1148<br>1149<br>1150                         | Chebyshev UCL can be com  Nonparame  Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% CLT UCL  95% Standard Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  Note: Suggestions regarding the selection of a 95%  Recommendations are base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | puted using mal Distribu suming Non 22.29  ametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are priced upon date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Free UCL Statistics  Ited at 5% Significance Level  Imal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  Itribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  OUCL to Use  International Distribution  UCL to Use International Distribution  Ovided to help the user to select the most appropriate 95% UCL.  Italia size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.19<br>22.29<br>21.48<br>20.6                  |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1148<br>1149<br>1150                         | Chebyshev UCL can be com  Nonparame Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | puted using mal Distribu suming Non  22.29  ametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are pr sed upon dat lits of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Free UCL Statistics  Ited at 5% Significance Level  Imal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  Itribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  Imal Distribution  Image: Percentile Strap UCL  Image: Percentile Strap UCL  95% Chebyshev(Mean, Sd) UCL  95% Chebyshev(Mean, Sd) UCL  95% Image: Percentile Strap UCL  95% Chebyshev(Mean, Sd) UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image: Percentile Strap UCL  95% Image | 22.19<br>22.29<br>21.48<br>20.6<br>27.4<br>40.22 |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1148<br>1149<br>1150                         | Chebyshev UCL can be com  Nonparame Data appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  The serecommendations are based upon the resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | puted using mal Distribu suming Non  22.29  ametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are pr sed upon dat lits of the sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Free UCL Statistics  Ited at 5% Significance Level  Imal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  Itribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  OUCL to Use  International Distribution  UCL to Use International Distribution  Ovided to help the user to select the most appropriate 95% UCL.  Italia size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22.19<br>22.29<br>21.48<br>20.6<br>27.4<br>40.22 |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1138<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1150<br>1151<br>1152                         | Nonparame Data appear Nor  P5% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  P7.5% Chebyshev(Mean, Sd) UCL  P7.5% Chebyshev(Mean, Sd) UCL  P7.5% Chebyshev(Mean, Sd) UCL  P85% Chebyshev(Mean, Sd) UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA Bootstrap UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  P85% BCA BOOTSTRAP UCL  BCA BOOTSTRAP UCL  BCA BOOTSTRAP UCL  BCA BOOTSTRAP UCL  BCA BOOTSTRAP UCL  BCA BOOTS | puted using tric Distribu mal Distribu suming Non  22.29  ametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are pr sed upon dat lts of the sin orld data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  tant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL.  ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.19<br>22.29<br>21.48<br>20.6<br>27.4<br>40.22 |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1150<br>1151<br>1151<br>1152<br>1153<br>1154<br>1155 | Nonparame Data appear Nor  Pata appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean appear Nor  Note: Suggestions regarding the selection of a 95%  Recommendations are base  These recommendations are based upon the resu  However, simulations results will not cover all Real W  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears | puted using tric Distribu mal Distribu suming Non  22.29  rametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are prised upon data set of the sim ord data set dence limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticia  (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.19<br>22.29<br>21.48<br>20.6<br>27.4<br>40.22 |
| 1130<br>1131<br>1132<br>1133<br>1134<br>1135<br>1136<br>1137<br>1140<br>1141<br>1142<br>1143<br>1144<br>1145<br>1146<br>1147<br>1148<br>1149<br>1150<br>1151<br>1152<br>1153         | Nonparame Data appear Nor  Pata appear Nor  Ass  95% Normal UCL  95% Student's-t UCL  95% Student's-t UCL  95% Standard Bootstrap UCL  95% Hall's Bootstrap UCL  95% BCA Bootstrap UCL  95% BCA Bootstrap UCL  90% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean, Sd) UCL  97.5% Chebyshev(Mean appear Nor  Note: Suggestions regarding the selection of a 95%  Recommendations are base  These recommendations are based upon the resu  However, simulations results will not cover all Real W  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore  Note: For highly negatively-skewed data, confidential appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears Nore appears | puted using tric Distribu mal Distribu suming Non  22.29  rametric Dis 21.17 20.79 20.89 20 24.28 31.72  Suggested mal, May w  UCL are prised upon data lits of the sim ord data se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Free UCL Statistics  ated at 5% Significance Level  mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  UCL to Use  tant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL.  ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).  ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.19<br>22.29<br>21.48<br>20.6<br>27.4<br>40.22 |

SLR Page 24 of 32

|                                                                                                                              | A B C                                                                                                           | D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F                                                                                                                                | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1                                                                                                                            | A   B   U                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |
| 2                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 3                                                                                                                            | User Selected Options                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 4                                                                                                                            | Date/Time of Computation P                                                                                      | ProUCL 5.11/13/2020 2:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22:32 PM                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 5                                                                                                                            | From File V                                                                                                     | WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 6                                                                                                                            | Full Precision C                                                                                                | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 7                                                                                                                            | Confidence Coefficient 9                                                                                        | 95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 8                                                                                                                            | Number of Bootstrap Operations 2                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 9                                                                                                                            |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 10                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1159                                                                                                                         | Selenium                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1160                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1161                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | General                                                                                                                          | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |
| 1162                                                                                                                         | Total N                                                                                                         | lumber of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                                                                                                               | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                              |
| 1163                                                                                                                         |                                                                                                                 | Number of Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                | Number of Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                             |
| 1164                                                                                                                         | Num                                                                                                             | nber of Distinct Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                | Number of Distinct Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                              |
| 1165                                                                                                                         |                                                                                                                 | Minimum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                              | Minimum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7                                                            |
| 1166                                                                                                                         |                                                                                                                 | Maximum Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                              | Maximum Non-Detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7                                                            |
| 1167                                                                                                                         |                                                                                                                 | Variance Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.213                                                                                                                            | Percent Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 85.71%                                                         |
| 1168                                                                                                                         |                                                                                                                 | Mean Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.967                                                                                                                            | SD Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.462                                                          |
| 1169                                                                                                                         |                                                                                                                 | Median Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                              | CV Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.478                                                          |
| 1170                                                                                                                         |                                                                                                                 | Skewness Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.732                                                                                                                            | Kurtosis Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                            |
| 1171                                                                                                                         | M                                                                                                               | lean of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.103                                                                                                                           | SD of Logged Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.44                                                           |
| 1172                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1173                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | only 3 Detected Values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| 1174                                                                                                                         | This                                                                                                            | s is not enough to comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ute meanin                                                                                                                       | gful or reliable statistics and estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |
| 1175                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1176                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| 1177                                                                                                                         |                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                  | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |
| 1178                                                                                                                         | Detec                                                                                                           | cted Data appear Appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ximate Nor                                                                                                                       | rmal Distributed at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| 1179                                                                                                                         | IZ-ul M                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | N. 1741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                |
| 1180                                                                                                                         | каріап-ме                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | Critical Values and other Nonparametric UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |
| 1181                                                                                                                         |                                                                                                                 | Mean<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.738                                                                                                                            | Standard Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0455                                                         |
| 1182                                                                                                                         |                                                                                                                 | 2D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  | 95% KM (BCA) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0455                                                         |
| 1183                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  | 0E% KM (Percentile Restatran) LICI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                                                            |
| 1184                                                                                                                         |                                                                                                                 | 95% KM (t) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.817                                                                                                                            | 95% KM (Percentile Bootstrap) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A                                                     |
| . 7                                                                                                                          | 000                                                                                                             | 95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.817                                                                                                                            | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A                                              |
| 1185                                                                                                                         |                                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.817<br>0.813<br>0.875                                                                                                          | 95% KM Bootstrap t UCL<br>95% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>N/A<br>0.937                                     |
| 1186                                                                                                                         |                                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.817                                                                                                                            | 95% KM Bootstrap t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A                                              |
| 1186<br>1187                                                                                                                 | 97.5°                                                                                                           | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL<br>% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.817<br>0.813<br>0.875<br>1.022                                                                                                 | 95% KM Bootstrap t UCL<br>95% KM Chebyshev UCL<br>99% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A<br>0.937                                     |
| 1186<br>1187<br>1188                                                                                                         | 97.5° Statistic                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL<br>% KM Chebyshev UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.817<br>0.813<br>0.875<br>1.022                                                                                                 | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL Data and Assuming Lognormal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>0.937<br>1.191                            |
| 1186<br>1187<br>1188<br>1189                                                                                                 | 97.54 Statistic                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL<br>% KM Chebyshev UCL<br>cs using KM estimates of<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.817<br>0.813<br>0.875<br>1.022<br>on Logged I                                                                                  | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>0.937<br>1.191                            |
| 1186<br>1187<br>1188<br>1189<br>1190                                                                                         | 97.5° Statistic                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL<br>% KM Chebyshev UCL<br>cs using KM estimates (<br>KM SD (logged)<br>KM Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.817<br>0.813<br>0.875<br>1.022                                                                                                 | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191                            |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191                                                                                 | 97.5° Statistic                                                                                                 | 95% KM (t) UCL<br>95% KM (z) UCL<br>% KM Chebyshev UCL<br>% KM Chebyshev UCL<br>cs using KM estimates of<br>KM SD (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.817<br>0.813<br>0.875<br>1.022<br>on Logged I<br>0.162<br>-0.32                                                                | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log)                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726          |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192                                                                         | 97.5° Statistic KM Standard                                                                                     | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL So using KM estimates of KM SD (logged) KM Mean (logged) Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.817<br>0.813<br>0.875<br>1.022<br>on Logged I<br>0.162<br>-0.32<br>0.0434                                                      | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL  Pata and Assuming Lognormal Distribution 95% Critical H Value (KM-Log)  KM Geo Mean 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726          |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193                                                                 | 97.5° Statistic KM Standard                                                                                     | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL So using KM estimates of KM SD (logged) KM Mean (logged) Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.817 0.813 0.875 1.022 on Logged I 0.162 -0.32 0.0434 Suggested                                                                 | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726          |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194                                                         | 97.59  Statistic  KM Standard                                                                                   | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL KM Chebyshev UCL KM SD (logged) KM SD (logged) KM Mean (logged) Error of Mean (logged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.817 0.813 0.875 1.022  on Logged I 0.162 -0.32 0.0434  Suggested rmal, May v                                                   | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL  Pata and Assuming Lognormal Distribution 95% Critical H Value (KM-Log)  KM Geo Mean 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195                                                 | 97.5°  Statistic  KM Standard  Note: Suggestions regarding                                                      | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM Chebyshev UCL Es using KM estimates of KM SD (logged) KM Mean (logged) Error of Mean (logged)  Data appear No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.817 0.813 0.875 1.022  Don Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr                                       | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196                                                 | 97.59  Statistic  KM Standard  Note: Suggestions regarding                                                      | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM SD (logged) Error of Mean (logged) Error of Mean (logged)  Data appear No g the selection of a 95% commendations are bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.817 0.813 0.875 1.022  Don Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr ed upon date                          | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. ovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196                                         | Note: Suggestions regarding Rec These recommendations as                                                        | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022  on Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr ed upon dat its of the sin             | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198                         | Note: Suggestions regarding Rec These recommendations as                                                        | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022  on Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr ed upon dat its of the sin             | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199                 | Note: Suggestions regarding Rec These recommendations as                                                        | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022  on Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr ed upon dat its of the sin             | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200         | Note: Suggestions regarding Rec These recommendations a However, simulations results                            | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022  on Logged I 0.162 -0.32 0.0434  Suggested rmal, May v UCL are pr ed upon dat its of the sin             | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201 | Note: Suggestions regarding Rec These recommendations a However, simulations results of                         | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022 on Logged I 0.162 -0.32 0.0434 Suggested rmal, May v UCL are pr ed upon dat its of the sim               | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                     | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201 | Statistic  KM Standard  Note: Suggestions regarding Rec These recommendations a However, simulations results    | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM SD (logged) KM Mean (logged) Error of Mean (logged) Error of Mean of a 95% commendations are based upon the result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.817 0.813 0.875 1.022 on Logged I 0.162 -0.32 0.0434 Suggested rmal, May v UCL are pr ed upon dat its of the sim               | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. roulation studies summarized in Singh, Maichle, and Lee (2006). rts; for additional insight the user may want to consult a statisticia                                             | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201<br>1202 | Statistic  KM Standard  Note: Suggestions regarding Rec These recommendations a However, simulations results of | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL KM Chebyshev UCL Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard | 0.817 0.813 0.875 1.022 on Logged I 0.162 -0.32 0.0434 Suggested rmal, May v UCL are pr ed upon dat its of the sin orld data se  | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). tts; for additional insight the user may want to consult a statisticia                                               | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |
| 1186<br>1187<br>1188<br>1189<br>1190<br>1191<br>1192<br>1193<br>1194<br>1195<br>1196<br>1197<br>1198<br>1199<br>1200<br>1201 | Statistic  KM Standard  Note: Suggestions regarding Rec These recommendations a However, simulations results of | 95% KM (t) UCL 95% KM (z) UCL % KM Chebyshev UCL % KM Chebyshev UCL % KM Chebyshev UCL Es using KM estimates of KM SD (logged) KM Mean (logged) Error of Mean (logged)  Data appear No g the selection of a 95% commendations are base are based upon the resul will not cover all Real Well umber of Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.817 0.813 0.875 1.022 on Logged I 0.162 -0.32 0.0434 Suggested rmal, May v UCL are pr ed upon dat this of the sim orld data se | 95% KM Bootstrap t UCL 95% KM Chebyshev UCL 99% KM Chebyshev UCL 99% KM Chebyshev UCL  Data and Assuming Lognormal Distribution 95% Critical H Value (KM-Log) KM Geo Mean 95% H-UCL (KM -Log)  UCL to Use want to try Normal Distribution. ovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). htts; for additional insight the user may want to consult a statisticia  Statistics  Number of Distinct Observations | N/A<br>N/A<br>N/A<br>0.937<br>1.191<br>1.751<br>0.726<br>0.784 |

SLR Page 25 of 32

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | A B C  User Selected Options  Date/Time of Computation | D E Nonparametric UC        | L Statistics   | G H I J K or Data Sets with Non-Detects                              |         |
|--------------------------------------|--------------------------------------------------------|-----------------------------|----------------|----------------------------------------------------------------------|---------|
| 2<br>3<br>4<br>5<br>6<br>7<br>8      | ·                                                      |                             |                |                                                                      |         |
| 3<br>4<br>5<br>6<br>7<br>8<br>9      | ·                                                      |                             |                |                                                                      |         |
| 4<br>5<br>6<br>7<br>8<br>9           | Date/Time of Computation                               |                             |                |                                                                      |         |
| 5<br>6<br>7<br>8<br>9                | Date/Time of Computation                               | ProUCL 5.11/13/2020 2::     | 22:32 PM       |                                                                      |         |
| 6<br>7<br>8<br>9                     | From File                                              | WorkSheet.xls               |                |                                                                      |         |
| 7<br>8<br>9                          | Full Precision                                         | OFF                         |                |                                                                      |         |
| 8                                    | Confidence Coefficient                                 | 95%                         |                |                                                                      |         |
| 9                                    | Number of Bootstrap Operations                         | 2000                        |                |                                                                      |         |
|                                      |                                                        |                             |                |                                                                      |         |
| 10                                   |                                                        |                             |                |                                                                      |         |
| 1207                                 |                                                        | Maximum Detect              | 27             | Maximum Non-Detect                                                   | 0.05    |
| 1208                                 |                                                        | Variance Detects            | 42.21          | Percent Non-Detects                                                  | 4.762%  |
| 1209                                 |                                                        | Mean Detects                | 4.997          | SD Detects                                                           | 6.497   |
| 1210                                 |                                                        | Median Detects              | 3.25           | CV Detects                                                           | 1.3     |
| 1211                                 |                                                        | Skewness Detects            | 2.521          | Kurtosis Detects                                                     | 6.922   |
| 1212                                 | ı                                                      | Mean of Logged Detects      | 0.859          | SD of Logged Detects                                                 | 1.439   |
| 1213                                 |                                                        |                             |                |                                                                      |         |
| 1214                                 |                                                        | Nonparame                   | tric Distribu  | ion Free UCL Statistics                                              |         |
| 1215                                 |                                                        | Detected Data appear        | Gamma Di       | stributed at 5% Significance Level                                   |         |
| 1216                                 |                                                        |                             |                |                                                                      |         |
| 1217                                 | Kaplan-N                                               | Meier (KM) Statistics usin  | g Normal C     | ritical Values and other Nonparametric UCLs                          |         |
| 1218                                 |                                                        | Mean                        | 4.761          | Standard Error of Mean                                               | 1.404   |
| 1219                                 |                                                        | SD                          | 6.269          | 95% KM (BCA) UCL                                                     | 7.471   |
| 1220                                 |                                                        | 95% KM (t) UCL              | 7.182          | 95% KM (Percentile Bootstrap) UCL                                    | 7.155   |
| 1221                                 |                                                        | 95% KM (z) UCL              | 7.07           | 95% KM Bootstrap t UCL                                               | 9.62    |
| 1222                                 | 9                                                      | 0% KM Chebyshev UCL         | 8.972          | 95% KM Chebyshev UCL                                                 | 10.88   |
| 1223                                 | 97.                                                    | 5% KM Chebyshev UCL         | 13.53          | 99% KM Chebyshev UCL                                                 | 18.73   |
| 1224                                 |                                                        |                             |                |                                                                      |         |
| 1225                                 | Statist                                                | ics using KM estimates      | on Logged I    | Pata and Assuming Lognormal Distribution                             |         |
| 1226                                 |                                                        | KM SD (logged)              | 1.596          | 95% Critical H Value (KM-Log)                                        | 3.466   |
| 1227                                 |                                                        | KM Mean (logged)            | 0.676          | KM Geo Mean                                                          | 1.965   |
| 1228                                 | KM Standard                                            | d Error of Mean (logged)    | 0.357          | 95% H-UCL (KM -Log)                                                  | 24.21   |
| 1229                                 |                                                        |                             |                |                                                                      |         |
| 1230                                 |                                                        |                             | Suggested      | UCL to Use                                                           |         |
| 1231                                 |                                                        | Data appear Ga              | mma, May v     | vant to try Gamma Distribution                                       |         |
| 1232                                 | Note: Suggestions regardi                              | ng the selection of a 95%   | UCL are pr     | ovided to help the user to select the most appropriate 95% UCL.      |         |
| 1233                                 | R                                                      | ecommendations are bas      | ed upon dat    | a size, data distribution, and skewness.                             |         |
| 1234                                 | These recommendations                                  | are based upon the resu     | Its of the sim | ulation studies summarized in Singh, Maichle, and Lee (2006).        |         |
| 1235                                 | However, simulations results                           | s will not cover all Real W | orld data se   | s; for additional insight the user may want to consult a statisticia | n.      |
| 1236                                 |                                                        |                             |                |                                                                      |         |
|                                      | Thallium                                               |                             |                |                                                                      |         |
| 1239                                 |                                                        |                             |                |                                                                      |         |
| 1240                                 |                                                        |                             | General        | Statistics                                                           |         |
| 1241                                 | Total                                                  | Number of Observations      | 21             | Number of Distinct Observations                                      | 12      |
| 1242                                 |                                                        |                             |                | Number of Missing Observations                                       | 0       |
| 1243                                 |                                                        | Minimum                     | 0.04           | Mean                                                                 | 0.122   |
| 1244                                 |                                                        | Maximum                     | 0.25           | Median                                                               | 0.11    |
| 1245                                 |                                                        | SD                          | 0.0441         | Std. Error of Mean                                                   | 0.00963 |
| 1245                                 |                                                        | Coefficient of Variation    | 0.362          | Skewness                                                             | 0.999   |
| 1247                                 |                                                        | Mean of logged Data         | -2.169         | SD of logged Data                                                    | 0.382   |
| 1247                                 |                                                        | •                           |                |                                                                      |         |
| 1249                                 |                                                        | Nonparame                   | tric Distribu  | ion Free UCL Statistics                                              |         |
| 1250                                 |                                                        | Data appear Nor             | mal Distribu   | ted at 5% Significance Level                                         |         |
| 1251                                 |                                                        |                             |                |                                                                      |         |
| 1252                                 |                                                        | Ass                         | suming Nori    | nal Distribution                                                     |         |
| 1253                                 | 95% No                                                 | rmal UCL                    |                | 95% UCLs (Adjusted for Skewness)                                     |         |
| 1254                                 |                                                        | 95% Student's-t UCL         | 0.139          | 95% Adjusted-CLT UCL (Chen-1995)                                     | 0.14    |
| 1204                                 |                                                        |                             |                | 95% Modified-t UCL (Johnson-1978)                                    | 0.139   |

SLR Page 26 of 32

|                              | A B C                                   | D E                                            | F             | G H I J K I                                                            |        |
|------------------------------|-----------------------------------------|------------------------------------------------|---------------|------------------------------------------------------------------------|--------|
| 1                            | ABC                                     |                                                |               | for Data Sets with Non-Detects                                         |        |
| 2                            |                                         | <del>-</del>                                   |               |                                                                        |        |
| 3                            | User Selected Options                   |                                                |               |                                                                        |        |
| 4                            | Date/Time of Computation                | ProUCL 5.11/13/2020 2:2                        | 22:32 PM      |                                                                        |        |
| 5                            | From File                               | WorkSheet.xls                                  |               |                                                                        |        |
| 6                            | Full Precision                          | OFF                                            |               |                                                                        |        |
| 7                            | Confidence Coefficient                  | 95%                                            |               |                                                                        |        |
| 8                            | Number of Bootstrap Operations          | 2000                                           |               |                                                                        |        |
| 9                            |                                         |                                                |               |                                                                        |        |
| 10                           |                                         |                                                |               |                                                                        |        |
| 1256                         |                                         |                                                |               |                                                                        |        |
| 1257                         |                                         | Nonpar                                         | ametric Dis   | tribution Free UCLs                                                    |        |
| 1258                         |                                         | 95% CLT UCL                                    | 0.138         | 95% Jackknife UCL                                                      | 0.139  |
| 1259                         |                                         | Standard Bootstrap UCL                         | 0.137         | 95% Bootstrap-t UCL                                                    | 0.141  |
| 1260                         | 9.                                      | 5% Hall's Bootstrap UCL                        | 0.147         | 95% Percentile Bootstrap UCL                                           | 0.138  |
| 1261                         |                                         | 5% BCA Bootstrap UCL                           | 0.14          |                                                                        |        |
| 1262                         |                                         | ebyshev(Mean, Sd) UCL                          | 0.151         | 95% Chebyshev(Mean, Sd) UCL                                            | 0.164  |
| 1263                         | 97.5% Ch                                | ebyshev(Mean, Sd) UCL                          | 0.182         | 99% Chebyshev(Mean, Sd) UCL                                            | 0.218  |
| 1264                         |                                         |                                                |               |                                                                        |        |
| 1265                         |                                         |                                                |               | UCL to Use                                                             |        |
| 1266                         |                                         | Data appear Nor                                | mal, May w    | ant to try Normal Distribution                                         |        |
| 1267                         |                                         |                                                |               |                                                                        |        |
| 1268                         | • • • • • • • • • • • • • • • • • • • • |                                                |               | ovided to help the user to select the most appropriate 95% UCL.        |        |
| 1269                         |                                         |                                                |               | ta size, data distribution, and skewness.                              |        |
| 1270                         |                                         |                                                |               | nulation studies summarized in Singh, Maichle, and Lee (2006).         |        |
| 1271                         | However, simulations result             | s will not cover all Real W                    | orid data se  | ts; for additional insight the user may want to consult a statistician | n.     |
| 1272                         |                                         |                                                |               |                                                                        |        |
| 1273                         | Uranium                                 |                                                |               |                                                                        |        |
| 1274                         | Oraniani                                |                                                |               |                                                                        |        |
| 1275                         |                                         |                                                | General       | Statistics                                                             |        |
| 1276                         | Total                                   | Number of Observations                         | 21            | Number of Distinct Observations                                        | 17     |
| 1277                         |                                         |                                                |               | Number of Missing Observations                                         | 0      |
| 1278<br>1279                 |                                         | Minimum                                        | 0.3           | Mean                                                                   | 0.54   |
| 1280                         |                                         | Maximum                                        | 0.81          | Median                                                                 | 0.53   |
| 1281                         |                                         | SD                                             | 0.135         | Std. Error of Mean                                                     | 0.0294 |
| 1282                         |                                         | Coefficient of Variation                       | 0.25          | Skewness                                                               | 0.323  |
| 1283                         |                                         | Mean of logged Data                            | -0.648        | SD of logged Data                                                      | 0.257  |
| 1284                         |                                         | ,                                              |               |                                                                        |        |
| 1285                         |                                         | Nonparame                                      | tric Distribu | tion Free UCL Statistics                                               |        |
| 1286                         |                                         | Data appear Nor                                | mal Distribu  | ited at 5% Significance Level                                          |        |
| 1287                         |                                         |                                                |               |                                                                        |        |
| 1288                         | *                                       |                                                | suming Nori   | mal Distribution                                                       |        |
| 1289                         | 95% No                                  | rmal UCL                                       |               | 95% UCLs (Adjusted for Skewness)                                       |        |
| 1290                         |                                         | 95% Student's-t UCL                            | 0.59          | 95% Adjusted-CLT UCL (Chen-1995)                                       | 0.59   |
| 1291                         |                                         |                                                |               | 95% Modified-t UCL (Johnson-1978)                                      | 0.591  |
| 1292                         |                                         | <b>8.1</b>                                     | amatul Bi     | Aribustian Free LICLs                                                  |        |
| 1293                         |                                         | Nonpar<br>95% CLT UCL                          | 0.588         | tribution Free UCLs 95% Jackknife UCL                                  | 0.59   |
| 1294                         | OE0/                                    | Standard Bootstrap UCL                         | 0.586         | 95% Jackknie UCL<br>95% Bootstrap-t UCL                                | 0.59   |
| 1295                         |                                         | 5% Hall's Bootstrap UCL                        | 0.586         | 95% Bootstrap-t UCL                                                    | 0.592  |
| 1296                         |                                         | 5% BCA Bootstrap UCL                           | 0.591         | 95 % reidentile bootstrap OCL                                          | 0.000  |
|                              |                                         |                                                | 0.628         | 95% Chebyshev(Mean, Sd) UCL                                            | 0.668  |
| 1297                         | 90% Ch                                  | ebyshev(Mean Sd\IICLI                          | 3.020         |                                                                        | 0.000  |
| 1298                         |                                         | ebyshev(Mean, Sd) UCL                          | 0.723         | 99% Chehyshey(Mean, Sd) LICI                                           | 0.832  |
| 1298<br>1299                 |                                         | ebyshev(Mean, Sd) UCL<br>ebyshev(Mean, Sd) UCL | 0.723         | 99% Chebyshev(Mean, Sd) UCL                                            | 0.832  |
| 1298<br>1299<br>1300         |                                         | ebyshev(Mean, Sd) UCL                          |               |                                                                        | 0.832  |
| 1298<br>1299<br>1300<br>1301 |                                         | ebyshev(Mean, Sd) UCL                          | Suggested     | UCL to Use                                                             | 0.832  |
| 1298<br>1299<br>1300         |                                         | ebyshev(Mean, Sd) UCL                          | Suggested     |                                                                        | 0.832  |

SLR Page 27 of 32

|                                                                                                                                                      | A B C D E                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T E                                                                                                                                      | GHIJK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| l 1 l                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CL Statistics                                                                                                                            | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| 2                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 3                                                                                                                                                    | User Selected Options                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 4                                                                                                                                                    | Date/Time of Computation ProUCL 5.11/13/2020                                                                                                                                                                                                                                                                                                                                                                                                               | 2:22:32 PM                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 5                                                                                                                                                    | From File WorkSheet.xls                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 6                                                                                                                                                    | Full Precision OFF                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 7                                                                                                                                                    | Confidence Coefficient 95%                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 8                                                                                                                                                    | Number of Bootstrap Operations 2000                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 9                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 10                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1304                                                                                                                                                 | Note: Suggestions regarding the selection of a 95                                                                                                                                                                                                                                                                                                                                                                                                          | % UCL are p                                                                                                                              | rovided to help the user to select the most appropriate 95% UCL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| 1305                                                                                                                                                 | Recommendations are b                                                                                                                                                                                                                                                                                                                                                                                                                                      | ased upon da                                                                                                                             | ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          |
| 1306                                                                                                                                                 | These recommendations are based upon the re-                                                                                                                                                                                                                                                                                                                                                                                                               | sults of the sin                                                                                                                         | nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |
| 1307                                                                                                                                                 | However, simulations results will not cover all Real                                                                                                                                                                                                                                                                                                                                                                                                       | World data se                                                                                                                            | ets; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.                                       |
| 1308                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1309                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1310                                                                                                                                                 | Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1311                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1312                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | General                                                                                                                                  | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |
| 1313                                                                                                                                                 | Total Number of Observation                                                                                                                                                                                                                                                                                                                                                                                                                                | s 5                                                                                                                                      | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                        |
| 1314                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                        |
| 1315                                                                                                                                                 | Minimur                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 11                                                                                                                                     | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2                                     |
| 1316                                                                                                                                                 | Maximur                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 19                                                                                                                                     | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                       |
| 1317                                                                                                                                                 | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.347                                                                                                                                    | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.497                                    |
| 1318                                                                                                                                                 | Coefficient of Variatio                                                                                                                                                                                                                                                                                                                                                                                                                                    | n 0.22                                                                                                                                   | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.088                                   |
| 1319                                                                                                                                                 | Mean of logged Dat                                                                                                                                                                                                                                                                                                                                                                                                                                         | a 2.701                                                                                                                                  | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.227                                    |
| 1320                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1321                                                                                                                                                 | Note: Sample size is sma                                                                                                                                                                                                                                                                                                                                                                                                                                   | l (e.g., <10),                                                                                                                           | if data are collected using ISM approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| 1322                                                                                                                                                 | you may want to use                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chebyshev I                                                                                                                              | JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |
| 1323                                                                                                                                                 | Chebyshev UCL can be co                                                                                                                                                                                                                                                                                                                                                                                                                                    | mputed using                                                                                                                             | the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |
| 1324                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1325                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |
| 1326                                                                                                                                                 | Data appear N                                                                                                                                                                                                                                                                                                                                                                                                                                              | ormal Dietrib                                                                                                                            | uted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |
|                                                                                                                                                      | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                        | officer Distribu                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |
| 1327                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
|                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                          | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |
| 1327                                                                                                                                                 | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                             | ssuming Nor                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |
| 1327<br>1328                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ssuming Nor                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.6                                     |
| 1327<br>1328<br>1329                                                                                                                                 | 95% Normal UCL                                                                                                                                                                                                                                                                                                                                                                                                                                             | ssuming Nor                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.6<br>18.38                            |
| 1327<br>1328<br>1329<br>1330                                                                                                                         | 95% Normal UCL<br>95% Student's-t UC                                                                                                                                                                                                                                                                                                                                                                                                                       | ssuming Nor                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |
| 1327<br>1328<br>1329<br>1330<br>1331                                                                                                                 | 95% Normal UCL 95% Student's-t UC Nonp                                                                                                                                                                                                                                                                                                                                                                                                                     | ssuming Nor                                                                                                                              | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.38                                    |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332                                                                                                         | 95% Normal UCL 95% Student's-t UC  Nonp                                                                                                                                                                                                                                                                                                                                                                                                                    | ssuming Nor  18.39  arametric Dis                                                                                                        | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.38                                    |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333                                                                                                 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC                                                                                                                                                                                                                                                                                                                                                                               | 18.39                                                                                                                                    | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.38<br>18.39<br>18.88                  |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334                                                                                         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC                                                                                                                                                                                                                                                                                                                                                       | arametric Dis<br>L 17.66<br>L 17.38<br>L 18.4                                                                                            | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.38                                    |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335                                                                                 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC                                                                                                                                                                                                                                                                                                                                  | arametric Dis<br>L 17.66<br>L 17.38<br>L 18.4<br>L 17.2                                                                                  | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338                                                         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC                                                                                                                                                                                                                                                                                                             | arametric Dis<br>L 17.66<br>L 17.38<br>L 17.2<br>L 19.69                                                                                 | ### Page 195% Chebyshev(Mean, Sd) UCLs (Adjusted for Skewness)  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  **Tribution Free UCLs**  95% Jackknife UCL  95% Percentile Bootstrap-t UCL  95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336                                                                         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC                                                                                                                                                                                                                                                                                                                                  | arametric Dis<br>L 17.66<br>L 17.38<br>L 17.2<br>L 19.69                                                                                 | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340                                         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC                                                                                                                                                                                                                                                                                                             | arametric Dis<br>L 17.66<br>L 17.38<br>L 18.4<br>L 19.69<br>L 24.55                                                                      | ### Page 195% Chebyshev(Mean, Sd) UCL  ### Page 195% Chebyshev(Mean, Sd) UCL  ### Page 195% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341                                 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC                                                                                                                                                                                                                                                                                  | arametric Dis 17.66 17.38 18.4 17.2 19.69 24.55 Suggested                                                                                | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342                         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC                                                                                                                                                                                                                                                                                  | arametric Dis 17.66 17.38 18.4 17.2 19.69 24.55 Suggested                                                                                | ### Page 195% Chebyshev(Mean, Sd) UCL  ### Page 195% Chebyshev(Mean, Sd) UCL  ### Page 195% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1335<br>1336<br>1337<br>1338<br>1339<br>1340<br>1341<br>1342<br>1343                                 | 95% Normal UCL  95% Student's-t UC  Nonp  95% CLT UC  95% Standard Bootstrap UC  95% Hall's Bootstrap UC  95% BCA Bootstrap UC  95% BCA Bootstrap UC  90% Chebyshev(Mean, Sd) UC  97.5% Chebyshev(Mean, Sd) UC                                                                                                                                                                                                                                             | arametric Dis 17.66 17.38 18.4 17.2 19.69 24.55  Suggested ormal, May w                                                                  | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1348<br>1340<br>1341<br>1342<br>1343                         | 95% Normal UCL  95% Student's-t UC  Nonp  95% CLT UC  95% Standard Bootstrap UC  95% Hall's Bootstrap UC  95% BCA Bootstrap UC  95% BCA Bootstrap UC  95% BCA Bootstrap UC  95% Chebyshev(Mean, Sd) UC  97.5% Chebyshev(Mean, Sd) UC  Note: Suggestions regarding the selection of a 95%                                                                                                                                                                   | 18.39   18.39   18.4   17.2   19.69   24.55     Suggested formal, May w                                                                  | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use vant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345                 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC  Data appear N  Note: Suggestions regarding the selection of a 95 Recommendations are becommendations are b                                                                                                                                         | 18.39   18.39   18.4   17.2   19.69   24.55     Suggested ormal, May w                                                                   | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use vant to try Normal Distribution  rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.38<br>18.39<br>18.88<br>17.4          |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1337<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346         | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 97.5% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC  Note: Suggestions regarding the selection of a 95 Recommendations are b These recommendations are based upon the res                                                              | arametric Dis L 17.66 L 17.38 L 18.4 L 17.2 L 19.69 L 24.55  Suggested ormal, May w % UCL are present of the sire.                       | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL vant to try Normal Distribution  Tovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18.39<br>18.88<br>17.4<br>21.72<br>30.09 |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1339<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 97.5% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC  Note: Suggestions regarding the selection of a 95 Recommendations are b These recommendations are based upon the res                                                              | arametric Dis L 17.66 L 17.38 L 18.4 L 17.2 L 19.69 L 24.55  Suggested ormal, May w % UCL are present of the sire.                       | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use vant to try Normal Distribution  rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.39<br>18.88<br>17.4<br>21.72<br>30.09 |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC  97.5% Chebyshev(Mean, Sd) UC  Data appear N  Note: Suggestions regarding the selection of a 95 Recommendations are b These recommendations are based upon the ret However, simulations results will not cover all Real                                     | arametric Dis 18.39  arametric Dis 17.66 17.38 18.4 17.2 19.69 24.55  Suggested ormal, May we will be sire world data see world data see | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 USE 100 Vant to try Normal Distribution  100 Value of the USE of the Work of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of t | 18.39<br>18.88<br>17.4<br>21.72<br>30.09 |
| 1327<br>1328<br>1329<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1339<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC  Data appear N  Note: Suggestions regarding the selection of a 95 Recommendations are b These recommendations are based upon the recommendations results will not cover all Real  Note: For highly negatively-skewed data, con | arametric Distance Ilmits                                                                                                                | mal Distribution  95% UCLs (Adjusted for Skewness)  95% Adjusted-CLT UCL (Chen-1995)  95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Bootstrap-t UCL  95% Percentile Bootstrap UCL  95% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  99% Chebyshev(Mean, Sd) UCL  100 UCL to Use  Frant to try Normal Distribution  101 UCL to Use  102 Instribution Studies and Skewness.  103 Instribution, and Skewness.  104 Instribution studies summarized in Singh, Maichle, and Lee (2006).  105 Its; for additional insight the user may want to consult a statisticial  (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.39<br>18.88<br>17.4<br>21.72<br>30.09 |
| 1327<br>1328<br>1329<br>1330<br>1331<br>1332<br>1333<br>1334<br>1335<br>1336<br>1340<br>1341<br>1342<br>1343<br>1344<br>1345<br>1346<br>1347<br>1348 | 95% Normal UCL 95% Student's-t UC  Nonp 95% CLT UC 95% Standard Bootstrap UC 95% Hall's Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% BCA Bootstrap UC 95% Chebyshev(Mean, Sd) UC 97.5% Chebyshev(Mean, Sd) UC  Data appear N  Note: Suggestions regarding the selection of a 95 Recommendations are b These recommendations are based upon the recommendations results will not cover all Real  Note: For highly negatively-skewed data, con | arametric Distance Ilmits                                                                                                                | mal Distribution  95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  stribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 USE 100 Vant to try Normal Distribution  100 Value of the USE of the Work of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of the USE of t | 18.39<br>18.88<br>17.4<br>21.72<br>30.09 |

SLR Page 28 of 32

|                                                                                                                                                                                      | A B C                                                                                                                                     | D E                                                                                                                                                                                                                                                                                                             | г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | G H I J K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1                                                                                                                                                                                    | ALBIC                                                                                                                                     |                                                                                                                                                                                                                                                                                                                 | L Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for Data Sets with Non-Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |
| 2                                                                                                                                                                                    |                                                                                                                                           | •                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 3                                                                                                                                                                                    | User Selected Options                                                                                                                     |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 4                                                                                                                                                                                    | Date/Time of Computation                                                                                                                  | ProUCL 5.11/13/2020 2::                                                                                                                                                                                                                                                                                         | 22:32 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 5                                                                                                                                                                                    | From File                                                                                                                                 | WorkSheet.xls                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 6                                                                                                                                                                                    | Full Precision                                                                                                                            | OFF                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 7                                                                                                                                                                                    | Confidence Coefficient                                                                                                                    | 95%                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 8                                                                                                                                                                                    | Number of Bootstrap Operations                                                                                                            | 2000                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 9                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 10                                                                                                                                                                                   |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1352                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1353                                                                                                                                                                                 | Zinc                                                                                                                                      |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1354                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1355                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 | General                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    |
| 1356                                                                                                                                                                                 | Total                                                                                                                                     | Number of Observations                                                                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of Distinct Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                  |
| 1357                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Number of Missing Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                  |
| 1358                                                                                                                                                                                 |                                                                                                                                           | Minimum                                                                                                                                                                                                                                                                                                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202                                                |
| 1359                                                                                                                                                                                 |                                                                                                                                           | Maximum                                                                                                                                                                                                                                                                                                         | 339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250                                                |
| 1360                                                                                                                                                                                 |                                                                                                                                           | SD                                                                                                                                                                                                                                                                                                              | 136.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Std. Error of Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.12                                              |
| 1361                                                                                                                                                                                 |                                                                                                                                           | Coefficient of Variation                                                                                                                                                                                                                                                                                        | 0.677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.469                                             |
| 1362                                                                                                                                                                                 |                                                                                                                                           | Mean of logged Data                                                                                                                                                                                                                                                                                             | 4.985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SD of logged Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.04                                               |
| 1363                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |
| 1364                                                                                                                                                                                 | Not                                                                                                                                       | te: Sample size is small (                                                                                                                                                                                                                                                                                      | e.g., <10), i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | f data are collected using ISM approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |
| 1365                                                                                                                                                                                 |                                                                                                                                           | you may want to use C                                                                                                                                                                                                                                                                                           | hebyshev L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JCL to estimate EPC (ITRC, 2012).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 1366                                                                                                                                                                                 | Che                                                                                                                                       | byshev UCL can be com                                                                                                                                                                                                                                                                                           | puted using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | the Nonparametric and All UCL Options.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |
| 1367                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1368                                                                                                                                                                                 |                                                                                                                                           | Nonparame                                                                                                                                                                                                                                                                                                       | tric Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Free UCL Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |
| 1369                                                                                                                                                                                 |                                                                                                                                           | Data appear Nor                                                                                                                                                                                                                                                                                                 | mal Distribu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | uted at 5% Significance Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    |
| 1370                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| _                                                                                                                                                                                    |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |
| 1371                                                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                 | suming Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
|                                                                                                                                                                                      | 95% No                                                                                                                                    | ormal UCL                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |
| 1371                                                                                                                                                                                 | 95% No                                                                                                                                    |                                                                                                                                                                                                                                                                                                                 | 332.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 288.8                                              |
| 1371<br>1372                                                                                                                                                                         | 95% No                                                                                                                                    | ormal UCL                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95% UCLs (Adjusted for Skewness)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 288.8<br>330.2                                     |
| 1371<br>1372<br>1373                                                                                                                                                                 | 95% No                                                                                                                                    | 95% Student's-t UCL                                                                                                                                                                                                                                                                                             | 332.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |
| 1371<br>1372<br>1373<br>1374                                                                                                                                                         | 95% No                                                                                                                                    | ormal UCL<br>95% Student's-t UCL<br>Nonpar                                                                                                                                                                                                                                                                      | 332.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 330.2                                              |
| 1371<br>1372<br>1373<br>1374<br>1375                                                                                                                                                 |                                                                                                                                           | 95% Student's-t UCL  Nonpar                                                                                                                                                                                                                                                                                     | 332.3  **ametric Dis** 302.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330.2                                              |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376                                                                                                                                         | 95%                                                                                                                                       | 95% Student's-t UCL  Nonpar  95% CLT UCL  Standard Bootstrap UCL                                                                                                                                                                                                                                                | 332.3  rametric Dist 302.5 291.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 330.2<br>332.3<br>308.5                            |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1379                                                                                                                 | 95%                                                                                                                                       | 95% Student's-t UCL  Nonpar  95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL                                                                                                                                                                                                                         | 332.3  Tametric Dist 302.5 291.1 261.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 330.2                                              |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1379                                                                                                                 | 95%<br>9                                                                                                                                  | Pormal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL                                                                                                                                                                                         | 332.3  rametric Dist 302.5 291.1 261.3 285.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1379<br>1380                                                                                                         | 95%<br>9.<br>90% Ch                                                                                                                       | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 25% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL                                                                                                                                                                       | 332.3  ametric Distance: 302.5 291.1 261.3 285.6 385.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1379<br>1380<br>1381<br>1382                                                                                         | 95%<br>9.<br>90% Ch                                                                                                                       | Pormal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL                                                                                                                                                                                         | 332.3  rametric Dist 302.5 291.1 261.3 285.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1379<br>1380<br>1381<br>1382<br>1383                                                                                 | 95%<br>9.<br>90% Ch                                                                                                                       | 95% Student's-t UCL  Nonpar  95% CLT UCL  Standard Bootstrap UCL 5% Hall's Bootstrap UCL 25% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL                                                                                                                                                      | 332.3  Tametric Distance 302.5  291.1  261.3  285.6  385.4  583.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384                                                                                 | 95%<br>9.<br>90% Ch                                                                                                                       | Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL                                                                                                                                                                             | 332.3  Tametric Dist 302.5 291.1 261.3 285.6 385.4 583.7  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385                                                                         | 95%<br>9.<br>90% Ch                                                                                                                       | Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL                                                                                                                                                                             | 332.3  Tametric Dist 302.5 291.1 261.3 285.6 385.4 583.7  Suggested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330.2<br>332.3<br>308.5<br>289.8                   |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386                                                                 | 95%<br>9<br>9<br>90% Ch<br>97.5% Ch                                                                                                       | Pormal UCL 95% Student's-t UCL Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL Data appear Nor                                                                                                                              | 332.3  Tametric Distance 302.5 291.1 261.3 285.6 385.4 583.7  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387                                                         | 95%<br>9<br>90% Ch<br>97.5% Ch                                                                                                            | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL Data appear Nor  Data appear Nor                                                                                                                                      | 332.3  Tametric Distance 302.5 291.1 261.3 285.6 385.4 583.7  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL UCL to Use rant to try Normal Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388                                                         | 95% 90% Ch 97.5% Ch                                                                                                                       | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor  ing the selection of a 95% decommendations are base                                                                                                 | 332.3  Tametric Distance 302.5 291.1 261.3 285.6 385.4 583.7  Suggested mal, May w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388                                                 | 95% 90% Ch 97.5% Ch Note: Suggestions regard R These recommendations                                                                      | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL byshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL                                                                                | 332.3  Tametric Dist 302.5 291.1 261.3 285.6 385.4 583.7  Suggested mal, May w  UCL are project upon dat lits of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390                                 | 95% 90% Ch 97.5% Ch Note: Suggestions regard R These recommendations                                                                      | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL byshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL                                                                                | 332.3  Tametric Dist 302.5 291.1 261.3 285.6 385.4 583.7  Suggested mal, May w  UCL are project upon dat lits of the sim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL volume Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Va | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390<br>1391                         | 95% 90% Ch 97.5% Ch  Note: Suggestions regard R These recommendations However, simulations result                                         | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor  Data appear Nor  ing the selection of a 95% decommendations are base are based upon the resu s will not cover all Real W                            | ametric Distance in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in State in S | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL voited to try Normal Distribution  voided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390<br>1391                         | 95% 90% Ch 97.5% Ch  Note: Suggestions regard These recommendations However, simulations result                                           | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 55% Hall's Bootstrap UCL 25% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% eccommendations are base are based upon the resu is will not cover all Real W                  | ametric Distance Imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness.  nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390<br>1391<br>1392                 | 95% 90% Ch 97.5% Ch  Note: Suggestions regard These recommendations However, simulations result                                           | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 55% Hall's Bootstrap UCL 25% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% eccommendations are base are based upon the resu is will not cover all Real W                  | ametric Distance Imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390<br>1391<br>1392<br>1393<br>1394 | 95% 90% Ch 97.5% Ch  Note: Suggestions regard These recommendations However, simulations result                                           | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 55% Hall's Bootstrap UCL 25% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% eccommendations are base are based upon the resu is will not cover all Real W                  | ametric Distance Imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1389<br>1390<br>1391<br>1392<br>1393<br>1394<br>1395 | 95% 9 9 90% Ch 97.5% Ch  Note: Suggestions regard R These recommendations However, simulations result  Note: For highly negati            | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% elecommendations are base are based upon the resu is will not cover all Real W                  | ametric Distance Imits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1378<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1390<br>1391<br>1392<br>1393<br>1394<br>1395<br>1396 | 95% 9 9 90% Ch 97.5% Ch  Note: Suggestions regard R These recommendations However, simulations result  Note: For highly negati            | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% elecommendations are base are based upon the resu is will not cover all Real W                  | 332.3  Tametric Distance Ilmits sthods provided and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and sec | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticia (e.g., Chen, Johnson, Lognormal, and Gamma) may not be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1390<br>1391<br>1392<br>1393<br>1394<br>1395<br>1397         | 95% 90% Ch 97.5% Ch  Note: Suggestions regard R These recommendations However, simulations result  Note: For highly negative reliable. Co | Primal UCL 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL 95% BCA Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor ing the selection of a 95% elecommendations are base are based upon the resu is will not cover all Real W                  | 332.3  Tametric Distance Ilmits sthods provided and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and second and sec | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL  UCL to Use rant to try Normal Distribution  ovided to help the user to select the most appropriate 95% UCL ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statisticial (e.g., Chen, Johnson, Lognormal, and Gamma) may not be ide adjustments for positively skewed data sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |
| 1371<br>1372<br>1373<br>1374<br>1375<br>1376<br>1377<br>1380<br>1381<br>1382<br>1383<br>1384<br>1385<br>1386<br>1387<br>1388<br>1390<br>1391<br>1392<br>1393<br>1394<br>1395<br>1396 | 95% 90% Ch 97.5% Ch  Note: Suggestions regard R These recommendations However, simulations result  Note: For highly negative reliable. Co | Nonpar 95% Student's-t UCL  Nonpar 95% CLT UCL Standard Bootstrap UCL 5% Hall's Bootstrap UCL ebyshev(Mean, Sd) UCL ebyshev(Mean, Sd) UCL  Data appear Nor  Data appear Nor  ing the selection of a 95% eccommendations are base are based upon the resu s will not cover all Real W  ively-skewed data, confid | ametric Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Distance Dist | 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 95% Modified-t UCL (Johnson-1978)  tribution Free UCLs  95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL 100 UCL to Use 100 to try Normal Distribution  100 to try Normal Distribution  100 to try Normal Distribution, and skewness.  101 to studies summarized in Singh, Maichle, and Lee (2006).  101 tas; for additional insight the user may want to consult a statistical (e.g., Chen, Johnson, Lognormal, and Gamma) may not be 10de adjustments for positively skewed data sets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 330.2<br>332.3<br>308.5<br>289.8<br>468.4<br>810.2 |

SLR Page 29 of 32

|              |                                | D   E                    | 1 -               |                     | I                  |             |            |           | 1.        | ,       |      |        |
|--------------|--------------------------------|--------------------------|-------------------|---------------------|--------------------|-------------|------------|-----------|-----------|---------|------|--------|
| 1            | A B C                          | D E  Nonparametric       | F<br>UCL Statisti | G<br>cs for Data So | H<br>ets with Non- | Detects     |            | J         | k         |         |      | L      |
| 2            |                                | · ·                      |                   |                     |                    |             |            |           |           |         |      |        |
| 3            | User Selected Options          |                          |                   |                     |                    |             |            |           |           |         |      |        |
| 4            | Date/Time of Computation       | ProUCL 5.11/13/202       | 0 2:22:32 PN      |                     |                    |             |            |           |           |         |      |        |
| 5            | From File                      | WorkSheet.xls            |                   |                     |                    |             |            |           |           |         |      |        |
| 6            | Full Precision                 | OFF                      |                   |                     |                    |             |            |           |           |         |      |        |
| 7            |                                | 95%                      |                   |                     |                    |             |            |           |           |         |      |        |
| 8            | Number of Bootstrap Operations | 2000                     |                   |                     |                    |             |            |           |           |         |      |        |
| 9            |                                |                          |                   |                     |                    |             |            |           |           |         |      |        |
| 10           | Ni                             | ımber of Distinct Dete   | cts 2             |                     |                    | Num         | ber of Di  | ictinat N | Non De    | tooto   | 1    | 1      |
| 1400         | INC                            | Minimum Det              |                   |                     |                    | Nulli       |            | nimum     |           |         |      |        |
| 1401         |                                | Maximum Det              |                   |                     |                    |             |            | ximum     |           |         |      |        |
| 1402<br>1403 |                                | Variance Dete            |                   |                     |                    |             |            | ercent N  |           |         |      | 3.81%  |
| 1403         |                                | Mean Dete                | cts 150           |                     |                    |             |            |           | SD De     | etects  | 5    | 1.64   |
| 1405         |                                | Median Dete              | cts 150           |                     |                    |             |            |           | CV De     | etects  | (    | 0.344  |
| 1406         |                                | Skewness Dete            | cts 0             |                     |                    |             |            | Kurto     | osis De   | etects  | -2   | 2.308  |
| 1407         |                                | Mean of Logged Dete      | cts 4.952         |                     |                    |             | SD         | of Log    | ged De    | etects  | C    | 0.358  |
| 1408         |                                |                          |                   | -                   |                    |             |            |           |           |         |      | _      |
| 1409         |                                | <u> </u>                 |                   | bution Free U       |                    |             |            |           |           |         |      |        |
| 1410         |                                | Data do not follow       | a Discernible     | Distribution a      | at 5% Signific     | cance Lev   | el         |           |           |         |      |        |
| 1411         | Varion 1                       | Aning (ICAA) Continues   | ualma Namos       | l Cuitical Valu     |                    | Nonnonon    |            | 21.5      |           |         |      |        |
| 1412         | каріап-к                       | Meier (KM) Statistics    | an 138.1          | Critical Valu       | es and otner       | Nonparar    |            | dard Ei   | rror of l | Moan    | 1    | 0.94   |
| 1413         |                                |                          | SD 48.56          |                     |                    |             |            | 5% KM     |           |         | N/   |        |
| 1414         |                                | 95% KM (t) U             |                   |                     |                    | 95% KM      |            |           | . ,       |         | N/   |        |
| 1415<br>1416 |                                | 95% KM (z) U             |                   |                     |                    |             | 95% K      |           |           |         | N/   |        |
| 1417         | 9                              | 0% KM Chebyshev U        | CL 170.9          |                     |                    |             | 95% KI     | M Chel    | byshev    | UCL     | 18   | 5.8    |
| 1418         | 97.                            | 5% KM Chebyshev U        | CL 206.4          |                     |                    |             | 99% KI     | M Chel    | byshev    | UCL     | 24   | 7      |
| 1419         |                                |                          |                   |                     |                    |             |            |           |           |         |      |        |
| 1420         | Statist                        | ics using KM estima      | es on Logge       | d Data and A        | ssuming Log        | normal Di   | stributio  | n         |           |         |      |        |
| 1421         |                                | KM SD (logg              | -                 |                     |                    | 95%         | 6 Critical |           | ` _       |         |      | 1.858  |
| 1422         |                                | KM Mean (logg            |                   |                     |                    |             |            |           | /I Geo I  |         |      | 30.2   |
| 1423         | KM Standard                    | d Error of Mean (logg    | ed) 0.075         | 9                   |                    |             | 95%        | H-UC      | L (KM     | -Log)   | 15   | 8.5    |
| 1424         |                                |                          | Suggest           | ed UCL to Us        | •                  |             |            |           |           |         |      |        |
| 1425         |                                | 95% KM (t) U             |                   | o oce to os         | 9                  |             |            |           | KM H      | -UCI    | 15   | 8.5    |
| 1426         |                                | 95% KM (BCA) U           |                   |                     |                    |             |            |           | 100011    |         | - 10 |        |
| 1427<br>1428 |                                | Warning: One             |                   | ommended U          | CL(s) not av       | ailablel    |            |           |           |         |      |        |
| 1429         | Note: Suggestions regardi      |                          |                   |                     |                    |             | e most a   | ppropri   | ate 95    | % UC    | L.   |        |
| 1430         | R                              | ecommendations are       | based upon        | data size, data     | a distribution,    | and skewr   | ness.      |           |           |         |      |        |
| 1431         | These recommendations          | are based upon the       | esults of the     | simulation stu      | dies summari       | zed in Sinç | gh, Maich  | nle, and  | d Lee (   | 2006)   | 1.   |        |
| 1432         | However, simulations results   | s will not cover all Rea | l World data      | sets; for addit     | ional insight t    | he user ma  | ay want t  | o cons    | ult a st  | atistic | ian. |        |
| 1433         |                                |                          |                   |                     |                    |             |            |           |           |         |      |        |
| 1434         | Kjeldahl Nitrogen Total        |                          |                   |                     |                    |             |            |           |           |         |      |        |
| 1435         |                                |                          | 0                 | al Ctatistics       |                    |             |            |           |           |         |      |        |
| 1436         | Total                          | Number of Observation    |                   | al Statistics       |                    | Numb        | per of Dis | etinct (  | )hearys   | tions   | 1:   | 3      |
| 1437         | rotar                          | Number of Dete           |                   |                     |                    | - Tuni      |            | ber of N  |           |         |      |        |
| 1438         | Nu                             | ımber of Distinct Dete   |                   |                     |                    | Num         | ber of Di  |           |           |         |      |        |
| 1439<br>1440 |                                | Minimum Det              |                   |                     |                    |             |            | nimum     |           |         |      |        |
| 1441         |                                | Maximum Det              | ect 1500          |                     |                    |             | Ma         | ximum     | Non-D     | etect   | 10   | 0      |
| 1442         |                                | Variance Dete            | cts 142605        |                     |                    |             | Pe         | rcent N   | Non-De    | etects  | 4    | 4.762% |
| 1443         |                                | Mean Dete                | cts 795           |                     |                    |             |            |           | SD De     | etects  | 37   | 7.6    |
| 1444         |                                | Median Dete              |                   |                     |                    |             |            |           | CV De     |         |      | 0.475  |
| 1445         |                                | Skewness Dete            |                   |                     |                    |             |            |           | osis De   |         |      | 0.605  |
| 1446         |                                | Mean of Logged Dete      | cts 6.544         |                     |                    |             | SD         | of Log    | ged De    | etects  | C    | 0.577  |
| 1447         |                                |                          |                   |                     |                    |             |            |           |           |         |      |        |

SLR Page 30 of 32

|              | A B C                                 | БІГІ                       | F              |                                                                      |       |
|--------------|---------------------------------------|----------------------------|----------------|----------------------------------------------------------------------|-------|
|              | A B C                                 | D E Nonparametric UC       |                | G H I J K I for Data Sets with Non-Detects                           | L     |
| 1            |                                       |                            |                |                                                                      |       |
| 2            | User Selected Options                 |                            |                |                                                                      |       |
| 3            | ·                                     | ProUCL 5.11/13/2020 2::    | 22:32 PM       |                                                                      |       |
| 4            |                                       | WorkSheet.xls              |                |                                                                      |       |
| 5            |                                       | OFF                        |                |                                                                      |       |
| 6            |                                       | 95%                        |                |                                                                      |       |
| 7            |                                       | 2000                       |                |                                                                      |       |
| 8            | ramber of Bookstap operations         |                            |                |                                                                      |       |
| 9            |                                       |                            |                |                                                                      |       |
| 10           |                                       | Nonnarame                  | tric Distribu  | tion Free UCL Statistics                                             |       |
| 1448         |                                       | •                          |                | stributed at 5% Significance Level                                   |       |
| 1449         |                                       | Dottottoa Data appoa       | T TTOTILIGI DI | Surpared at 0 % Organication Europ                                   |       |
| 1450         | Kaplan-M                              | eier (KM) Statistics usin  | a Normal C     | ritical Values and other Nonparametric UCLs                          |       |
| 1451         |                                       | Mean                       | 761.9          | Standard Error of Mean                                               | 86.98 |
| 1452         |                                       | SD                         | 388.5          | 95% KM (BCA) UCL                                                     | 895.2 |
| 1453         |                                       | 95% KM (t) UCL             | 911.9          | 95% KM (Percentile Bootstrap) UCL                                    | 900   |
| 1454         |                                       | 95% KM (z) UCL             | 905            | 95% KM Bootstrap t UCL                                               | 914.4 |
| 1455         | 90                                    | % KM Chebyshev UCL         | 1023           | 95% KM Chebyshev UCL                                                 | 1141  |
| 1456         |                                       | % KM Chebyshev UCL         | 1305           | 99% KM Chebyshev UCL                                                 | 1627  |
| 1457         | 37.0                                  | 555,61107 001              |                | 55% TAIL GRODYSHOV GGE                                               |       |
| 1458         | Statistic                             | cs using KM estimates      | on Loaged      | Data and Assuming Lognormal Distribution                             |       |
| 1459         | Citaba                                | KM SD (logged)             | 0.687          | 95% Critical H Value (KM-Log)                                        | 2.177 |
| 1460         |                                       | KM Mean (logged)           | 6.452          | KM Geo Mean                                                          | 633.7 |
| 1461         | KM Standard                           | Error of Mean (logged)     | 0.154          | 95% H-UCL (KM -Log)                                                  | 1121  |
| 1462         | · · · · · · · · · · · · · · · · · · · | z.i.o. o. ilioa.i (loggoa) |                | 3373 11 332 (11111 233)                                              |       |
| 1463         |                                       |                            | Suggested      | UCL to Use                                                           |       |
| 1464         |                                       |                            |                | vant to try Normal Distribution.                                     |       |
| 1465         | Note: Suggestions regardin            |                            |                | ovided to help the user to select the most appropriate 95% UCL       |       |
| 1466         |                                       |                            |                | a size, data distribution, and skewness.                             |       |
| 1467         |                                       |                            |                | nulation studies summarized in Singh, Maichle, and Lee (2006).       |       |
| 1468         |                                       |                            |                | ts; for additional insight the user may want to consult a statistici | an.   |
| 1469         |                                       |                            |                |                                                                      |       |
| 1470         |                                       |                            |                |                                                                      |       |
| 1471         | Phosphorus                            |                            |                |                                                                      |       |
| 1472         |                                       |                            |                |                                                                      |       |
| 1473         |                                       |                            | General        | Statistics                                                           |       |
| 1474<br>1475 | Total N                               | lumber of Observations     | 21             | Number of Distinct Observations                                      | 21    |
| 1475         |                                       |                            |                | Number of Missing Observations                                       | 0     |
| 1477         |                                       | Minimum                    | 563            | Mean                                                                 | 1033  |
| 1477         |                                       | Maximum                    | 1820           | Median                                                               | 937   |
| 1479         |                                       | SD                         | 330.8          | Std. Error of Mean                                                   | 72.19 |
| 1480         |                                       | Coefficient of Variation   | 0.32           | Skewness                                                             | 1.092 |
| 1481         |                                       | Mean of logged Data        | 6.895          | SD of logged Data                                                    | 0.304 |
| 1482         |                                       |                            |                | - 1                                                                  |       |
| 1483         |                                       | Nonparame                  | tric Distribu  | tion Free UCL Statistics                                             |       |
| 1484         |                                       | Data appear Gan            | nma Distrib    | uted at 5% Significance Level                                        |       |
| 1485         |                                       |                            |                |                                                                      |       |
| 1486         |                                       | Ass                        | suming Non     | mal Distribution                                                     |       |
| 1487         | 95% Nor                               |                            |                | 95% UCLs (Adjusted for Skewness)                                     |       |
| 1488         |                                       | 95% Student's-t UCL        | 1157           | 95% Adjusted-CLT UCL (Chen-1995)                                     | 1170  |
| 1489         |                                       |                            |                | 95% Modified-t UCL (Johnson-1978)                                    | 1160  |
|              |                                       |                            |                | . 1                                                                  |       |
| 1490         |                                       |                            |                |                                                                      |       |

SLR Page 31 of 32

SLR Project No.: 209.40666 January 2020

|      | Α                                                                                                                                         | В                  | С            | D            | Е           | F            | G             | Н           |         | J             | K            | L    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--------------|-------------|--------------|---------------|-------------|---------|---------------|--------------|------|
| 1    |                                                                                                                                           |                    |              | Nonpa        | rametric UC | L Statistics | for Data Set  | s with Non- | Detects |               |              |      |
| 2    |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 3    |                                                                                                                                           | User Sele          | cted Options |              |             |              |               |             |         |               |              |      |
| 4    | Dat                                                                                                                                       | e/Time of Co       | omputation   | ProUCL 5.1   | 1/13/2020 2 | :22:32 PM    |               |             |         |               |              |      |
| 5    |                                                                                                                                           |                    | From File    | WorkSheet.   | xls         |              |               |             |         |               |              |      |
| 6    |                                                                                                                                           | Full Precision OFF |              |              |             |              |               |             |         |               |              |      |
| 7    |                                                                                                                                           | Confidence         | Coefficient  | 95%          |             |              |               |             |         |               |              |      |
| 8    | Number o                                                                                                                                  | f Bootstrap        | Operations   | 2000         |             |              |               |             |         |               |              |      |
| 9    |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 10   |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 1491 |                                                                                                                                           |                    |              |              | Nonpa       | rametric Dis | tribution Fre | e UCLs      |         |               |              |      |
| 1492 |                                                                                                                                           |                    |              | 95           | % CLT UCL   | 1151         |               |             |         | 95% Ja        | ckknife UCL  | 1157 |
| 1493 |                                                                                                                                           |                    | 95%          | Standard Bo  | otstrap UCL | 1149         |               |             |         | 95% Boo       | tstrap-t UCL | 1186 |
| 1494 |                                                                                                                                           |                    |              | 5% Hall's Bo | <u>'</u>    |              |               |             | 95% F   | Percentile Bo | otstrap UCL  | 1160 |
| 1495 |                                                                                                                                           |                    |              | 95% BCA Bo   | <u>'</u>    |              |               |             |         |               |              |      |
| 1496 |                                                                                                                                           |                    | 90% Ch       | ebyshev(Me   | an, Sd) UCL | 1249         |               |             | 95% Ch  | ebyshev(Me    | an, Sd) UCL  | 1347 |
| 1497 |                                                                                                                                           |                    | 97.5% Ch     | ebyshev(Me   | an, Sd) UCL | 1484         |               |             | 99% Ch  | ebyshev(Me    | an, Sd) UCL  | 1751 |
| 1498 |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 1499 |                                                                                                                                           |                    |              |              |             |              | UCL to Use    |             |         |               |              |      |
| 1500 |                                                                                                                                           |                    |              | Data         | appear Gar  | mma, May w   | ant to try Ga | ımma Distri | bution  |               |              |      |
| 1501 |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 1502 | N                                                                                                                                         | lote: Sugges       |              | •            |             | 6 UCL are pr |               | <u>'</u>    |         | - '' '        | iate 95% UC  | L.   |
| 1503 |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 1504 |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |
| 1505 | However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician. |                    |              |              |             |              |               |             |         |               |              |      |
| 1506 |                                                                                                                                           |                    |              |              |             |              |               |             |         |               |              |      |

SLR Page 32 of 32

SLR Project No.: 209.40666 January 2020

|    | А В                     | С           | D               | Е            | F            | G             | Н           | I           | J       | K         | L      | M     |
|----|-------------------------|-------------|-----------------|--------------|--------------|---------------|-------------|-------------|---------|-----------|--------|-------|
| 1  |                         |             | General Sta     | tistics on U | ncensored D  | Data          |             |             |         |           |        |       |
| 2  | Date/Time of Co         | mputation   | ProUCL 5.1      | 1/28/2020 3: | 53:17 PM     |               |             |             |         |           |        |       |
| 3  | User Select             | ted Options |                 |              |              |               |             |             |         |           |        |       |
| 4  |                         | From File   | SED 0-0.15r     | mbg Chemis   | try_input_v7 | .xls          |             |             |         |           |        |       |
| 5  | Full                    | Precision   | OFF             |              |              |               |             |             |         |           |        |       |
| 6  |                         |             |                 |              |              |               |             |             |         |           |        |       |
| 7  | From File: SED 0-0.15m  | bg Chemist  | try_input_v7.   | xls          |              |               |             |             |         |           |        |       |
| 8  |                         |             |                 |              |              |               |             |             |         |           |        |       |
| 9  |                         | Ger         | neral Statistic | s for Censo  | red Data Se  | et (with NDs) | using Kapla | an Meier Me | thod    |           |        |       |
| 10 |                         |             |                 |              |              |               |             |             |         |           |        |       |
| 11 | Variable                | NumObs      | # Missing       | Num Ds       | NumNDs       | % NDs         | Min ND      | Max ND      | KM Mean | KM Var    | KM SD  | KM CV |
| 12 | aluminum                | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 10842   | 2569377   | 1603   | 0.148 |
| 13 | antimony                | 22          | 1               | 7            | 15           | 68.18%        | 0.8         | 0.8         | 0.723   | 0.0717    | 0.268  | 0.37  |
| 14 | arsenic                 | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 4.551   | 3.314     | 1.82   | 0.4   |
| 15 | barium                  | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 103.8   | 1069      | 32.69  | 0.315 |
| 16 | beryllium               | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.44    | 0.01      | 0.1    | 0.227 |
| 17 | boron                   | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 17.35   | 15.85     | 3.981  | 0.229 |
| 18 | cadmium                 | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.354   | 4.166     | 2.041  | 1.507 |
| 19 | chromium (III+VI)       | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 24.88   | 46.11     | 6.79   | 0.273 |
| 20 | copper                  | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 70.43   | 1269      | 35.63  | 0.506 |
| 21 | iron                    | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 22650   | 6135000   | 2477   | 0.109 |
| 22 | lead                    | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 37.67   | 381.1     | 19.52  | 0.518 |
| 23 | manganese               | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 551.8   | 6909      | 83.12  | 0.151 |
| 24 | mercury                 | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 0.136   | 0.00549   | 0.0741 | 0.544 |
| 25 | molybdenum              | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.216   | 0.256     | 0.506  | 0.416 |
| 26 | nickel                  | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 21.27   | 8.589     | 2.931  | 0.138 |
|    | selenium                | 22          | 1               | 5            | 17           | 77.27%        | 0.5         | 0.7         | 0.579   | 0.025     | 0.158  | 0.273 |
| 27 | silver                  | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.721   | 0.777     | 0.881  | 1.223 |
| 28 | sodium                  | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 300     | 8910      | 94.39  | 0.315 |
| 30 | thallium                | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.158   | 0.00284   | 0.0533 | 0.338 |
|    | tin                     | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 3.605   | 3.855     | 1.963  | 0.545 |
| 31 | titanium                | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 126.8   | 279       | 16.7   | 0.132 |
| 32 | uranium                 | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.645   | 0.0139    | 0.118  | 0.183 |
| 33 | vanadium                | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 19.33   | 18.6      | 4.313  | 0.223 |
| 34 | zinc                    | 15          | 8               | 15           | 0            | 0.00%         | N/A         | N/A         | 298.1   | 12894     | 113.6  | 0.381 |
| 35 | acenaphthylene          | 22          | 1               | 8            | 14           | 63.64%        | 0.1         | 0.1         | 0.0273  | 0.00151   | 0.0389 | 1.425 |
| 36 | acenaphthene            | 22          | 1               | 11           | 11           | 50.00%        | 0.1         | 0.1         | 0.189   | 0.111     | 0.333  | 1.764 |
| 37 | anthracene              | 22          | 1               | 16           | 6            | 27.27%        | 0.1         | 0.1         | 0.426   | 0.917     | 0.957  | 2.248 |
| 38 | benz(a)anthracene       | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.133   | 1.946     | 1.395  | 1.232 |
| 39 | benzo(b)fluoranthene    | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.593   | 2.987     | 1.728  | 1.085 |
| 40 | penzo(b+j)fluoranthenes | 6           | 17              | 6            | 0            | 0.00%         | N/A         | N/A         | 1.163   | 0.0401    | 0.2    | 0.172 |
| 41 | benzo(g,h,i)perylene    | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.699   | 0.764     | 0.2    | 1.251 |
| 42 | benzo(k)fluoranthene    | 22          | 1               | 17           | 5            | 22.73%        | 0.2         | 0.2         | 0.033   | 0.704     | 0.485  | 0.945 |
| 43 | benzo(a)pyrene          | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.068   | 1.515     | 1.231  | 1.153 |
| 44 | chrysene                | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 1.379   | 2.151     | 1.467  | 1.064 |
| 45 | dibenz(a,h)anthracene   | 22          | 1               | 13           | 9            | 40.91%        | 0.1         | 0.1         | 0.172   | 0.0226    | 0.15   | 0.875 |
| 46 | fluoranthene            | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 3.49    | 25.55     | 5.055  | 1.449 |
| 47 |                         | 22          | 1               | 13           |              | 40.91%        | 0.1         | 0.1         | 0.229   | 0.146     | 0.382  | 1.449 |
| 48 | fluorene                |             |                 |              | 9            |               |             |             |         |           |        |       |
| 49 | indeno(1,2,3-cd)pyrene  | 22          | 1               | 22           | 0            | 0.00%         | N/A         | N/A         | 0.603   | 0.487     | 0.698  | 1.157 |
| 50 | methylnaphthalene, 1-   | 16          | 7               | 2            | 14           | 87.50%        | 0.1         | 0.1         | 0.109   | 6.9336E-4 | 0.0263 | 0.241 |
| 51 | methylnaphthalene, 2-   | 22          | 1               | 9            | 13           | 59.09%        | 0.1         | 0.1         | 0.0554  | 0.00655   | 0.0809 | 1.462 |
| 52 | naphthalene             | 22          | 1               | 11           | 11           | 50.00%        | 0.1         | 0.1         | 0.0975  | 0.0419    | 0.205  | 2.1   |

SLR Page 1 of 4

SLR Project No.: 209.40666 January 2020

|    | А В                     | С          | D           | Е                | F            | G          | Н           |          | J      | К         | L        | М     |
|----|-------------------------|------------|-------------|------------------|--------------|------------|-------------|----------|--------|-----------|----------|-------|
| 1  |                         |            | General Sta | tistics on U     | ncensored [  |            |             |          |        |           |          |       |
| 2  | Date/Time of Con        | nputation  | ProUCL 5.1  | 1/28/2020 3:     | 53:17 PM     |            |             |          |        |           |          |       |
| 3  | User Selecte            | ed Options |             |                  |              |            |             |          |        |           |          |       |
| 4  | I                       | From File  | SED 0-0.15  | mbg Chemis       | try_input_v7 | .xls       |             |          |        |           |          |       |
| 5  | Full                    | Precision  | OFF         |                  |              |            |             |          |        |           |          |       |
| 6  |                         |            |             |                  |              |            |             |          |        |           |          |       |
| 53 | phenanthrene            | 22         | 1           | 22               | 0            | 0.00%      | N/A         | N/A      | 2.293  | 14.18     | 3.766    | 1.642 |
| 54 | pyrene                  | 22         | 1           | 22               | 0            | 0.00%      | N/A         | N/A      | 2.696  | 15.11     | 3.887    | 1.441 |
| 55 | PAHs (sum of total)     | 22         | 1           | 22               | 0            | 0.00%      | N/A         | N/A      | 14.8   | 428.8     | 20.71    | 1.399 |
| -  | a and ammonium (as N)   | 16         | 7           | 6                | 10           | 62.50%     | 100         | 100      | 150    | 7500      | 86.6     | 0.577 |
| 57 | ammonia as N            | 6          | 17          | 6                | 0            | 0.00%      | N/A         | N/A      | 64.93  | 5858      | 76.54    | 1.179 |
| 58 | kjeldahl nitrogen total | 22         | 1           | 22               | 0            | 0.00%      | N/A         | N/A      | 654.2  | 245131    | 495.1    | 0.757 |
| 59 | nitrogen (total)        | 6          | 17          | 3                | 3            | 50.00%     | 2000        | 2000     | 2667   | 555556    | 745.4    | 0.28  |
| 60 | organic phosphorus      | 6          | 17          | 5                | 1            | 16.67%     | 1           | 1        | 2.317  | 1.571     | 1.254    | 0.541 |
| 61 | phosphorus              | 22         | 1           | 22               | 0            | 0.00%      | N/A         | N/A      | 904.4  | 81035     | 284.7    | 0.315 |
| 62 | Fecal Coliforms         | 17         | 6           | 16               | 1            | 5.88%      | 1000        | 1000     | 20294  | 1.793E+8  | 13389    | 0.66  |
| 63 |                         |            |             |                  |              |            |             |          |        |           |          |       |
| 64 |                         |            | Genera      | l Statistics for | or Raw Data  | Sets using | Detected Da | ata Only |        |           |          |       |
| 65 |                         |            |             |                  |              |            |             |          |        |           |          |       |
| 66 | Variable                | NumObs     | # Missing   | Minimum          | Maximum      | Mean       | Median      | Var      | SD     | MAD/0.675 | Skewness | CV    |
| 67 | aluminum                | 6          | 17          | 9030             | 13200        | 10842      | 10600       | 2569377  | 1603   | 2039      | 0.492    | 0.148 |
| 68 | antimony                | 7          | 1           | 0.53             | 1.54         | 0.997      | 0.92        | 0.124    | 0.352  | 0.385     | 0.257    | 0.353 |
| 69 | arsenic                 | 22         | 1           | 3                | 12           | 4.551      | 4           | 3.314    | 1.82   | 0.593     | 3.536    | 0.4   |
| 70 | barium                  | 22         | 1           | 69               | 210          | 103.8      | 95.5        | 1069     | 32.69  | 26.83     | 1.703    | 0.315 |
| 71 | beryllium               | 22         | 1           | 0.28             | 0.67         | 0.44       | 0.425       | 0.01     | 0.1    | 0.089     | 0.645    | 0.227 |
| 72 | boron                   | 15         | 8           | 11               | 23.5         | 17.35      | 17          | 15.85    | 3.981  | 4.448     | 0.358    | 0.229 |
| 73 | cadmium                 | 22         | 1           | 0.27             | 8.5          | 1.354      | 0.616       | 4.166    | 2.041  | 0.297     | 2.883    | 1.507 |
| 74 | chromium (III+VI)       | 22         | 1           | 16               | 41           | 24.88      | 22          | 46.11    | 6.79   | 3.855     | 1.077    | 0.273 |
| 75 | copper                  | 15         | 8           | 30               | 170          | 70.43      | 63          | 1269     | 35.63  | 19.27     | 1.855    | 0.506 |
| 76 | iron                    | 6          | 17          | 18800            | 25600        | 22650      | 22800       | 6135000  | 2477   | 2743      | -0.496   | 0.109 |
| 77 | lead                    | 15         | 8           | 13               | 87           | 37.67      | 34          | 381.1    | 19.52  | 17.94     | 1.073    | 0.518 |
| 78 | manganese               | 6          | 17          | 390              | 623          | 551.8      | 577         | 6909     | 83.12  | 32.62     | -1.96    | 0.151 |
| 79 | mercury                 | 6          | 17          | 0.057            | 0.255        | 0.136      | 0.104       | 0.00549  | 0.0741 | 0.0378    | 0.953    | 0.544 |
| 80 | molybdenum              | 22         | 1           | 0.6              | 2.4          | 1.216      | 1.075       | 0.256    | 0.506  | 0.282     | 1.258    | 0.416 |
| 81 | nickel                  | 15         | 8           | 16               | 26.6         | 21.27      | 21          | 8.589    | 2.931  | 1.927     | -0.0158  | 0.138 |
| 82 | selenium                | 5          | 1           | 0.7              | 1            | 0.848      | 0.8         | 0.0205   | 0.143  | 0.148     | 0.342    | 0.169 |
| 83 | silver                  | 22         | 1           | 0.083            | 3.3          | 0.721      | 0.379       | 0.777    | 0.881  | 0.289     | 2.171    | 1.223 |
| 84 | sodium                  | 6          | 17          | 209              | 447          | 300        | 283         | 8910     | 94.39  | 105.3     | 0.678    | 0.315 |
| 85 | thallium                | 22         | 1           | 0.08             | 0.263        | 0.158      | 0.135       | 0.00284  | 0.0533 | 0.0445    | 0.554    | 0.338 |
| 86 | tin                     | 6          | 17          | 1.36             | 6.31         | 3.605      | 3.64        | 3.855    | 1.963  | 2.535     | 0.154    | 0.545 |
| 87 | titanium                | 6          | 17          | 101              | 150          | 126.8      | 125         | 279      | 16.7   | 13.34     | -0.208   | 0.132 |
| 88 | uranium                 | 22         | 1           | 0.46             | 0.886        | 0.645      | 0.645       | 0.0139   | 0.118  | 0.0964    | 0.525    | 0.183 |
| 89 | vanadium                | 15         | 8           | 13               | 28.7         | 19.33      | 18          | 18.6     | 4.313  | 3.558     | 0.489    | 0.223 |
| 90 | zinc                    | 15         | 8           | 167              | 532          | 298.1      | 272         | 12894    | 113.6  | 88.95     | 0.983    | 0.381 |
| 91 | acenaphthylene          | 8          | 1           | 0.011            | 0.18         | 0.0479     | 0.018       | 0.00396  | 0.0629 | 0.00815   | 1.787    | 1.314 |
| 92 | acenaphthene            | 11         | 1           | 0.03             | 1.49         | 0.329      | 0.25        | 0.201    | 0.448  | 0.298     | 2.143    | 1.364 |
| 93 | anthracene              | 16         | 1           | 0.08             | 4.69         | 0.556      | 0.155       | 1.279    | 1.131  | 0.0964    | 3.687    | 2.035 |
| 94 | benz(a)anthracene       | 22         | 1           | 0.18             | 6.6          | 1.133      | 0.645       | 1.946    | 1.395  | 0.363     | 3.208    | 1.232 |
| 95 | benzo(b)fluoranthene    | 22         | 1           | 0.32             | 8.37         | 1.593      | 1           | 2.987    | 1.728  | 0.549     | 3.171    | 1.085 |
|    | penzo(b+j)fluoranthenes | 6          | 17          | 0.9              | 1.4          | 1.163      | 1.2         | 0.0401   | 0.2    | 0.222     | -0.236   | 0.172 |
| 97 | benzo(g,h,i)perylene    | 22         | 1           | 0.13             | 4.36         | 0.699      | 0.435       | 0.764    | 0.874  | 0.245     | 3.822    | 1.251 |
| 98 | benzo(k)fluoranthene    | 17         | 1           | 0.23             | 2.29         | 0.606      | 0.41        | 0.284    | 0.533  | 0.237     | 2.328    | 0.879 |

SLR Page 2 of 4

SLR Project No.: 209.40666 January 2020

| ш                                                                                                                                 | A B                                                                                                                                                                 | С                                                                                      | D                                                                                 | Е                                                                                                                                                                       | F                                                                                                                                      | G                                                                                                                               | Н                                                                                                                  | I                                                                                                                                                                    | J                                                                                                                                                                       | K                                                                                                                       | L                                                                                                                                                | M                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                 |                                                                                                                                                                     |                                                                                        | General Sta                                                                       | atistics on U                                                                                                                                                           | ncensored I                                                                                                                            | Data                                                                                                                            |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 2                                                                                                                                 | Date/Time of Co                                                                                                                                                     | mputation                                                                              | ProUCL 5.1                                                                        | 1/28/2020 3:                                                                                                                                                            | :53:17 PM                                                                                                                              |                                                                                                                                 |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 3                                                                                                                                 | User Selec                                                                                                                                                          | ted Options                                                                            |                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 4                                                                                                                                 |                                                                                                                                                                     | From File                                                                              | SED 0-0.15                                                                        | mbg Chemis                                                                                                                                                              | try_input_v7                                                                                                                           | .xls                                                                                                                            |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 5                                                                                                                                 | Full                                                                                                                                                                | Precision                                                                              | OFF                                                                               |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 6                                                                                                                                 |                                                                                                                                                                     |                                                                                        |                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 99                                                                                                                                | benzo(a)pyrene                                                                                                                                                      | 22                                                                                     | 1                                                                                 | 0.18                                                                                                                                                                    | 6.01                                                                                                                                   | 1.068                                                                                                                           | 0.69                                                                                                               | 1.515                                                                                                                                                                | 1.231                                                                                                                                                                   | 0.408                                                                                                                   | 3.391                                                                                                                                            | 1.153                                                                                                                                                                                |
| 100                                                                                                                               | chrysene                                                                                                                                                            | 22                                                                                     | 1                                                                                 | 0.26                                                                                                                                                                    | 7.15                                                                                                                                   | 1.379                                                                                                                           | 0.875                                                                                                              | 2.151                                                                                                                                                                | 1.467                                                                                                                                                                   | 0.615                                                                                                                   | 3.209                                                                                                                                            | 1.064                                                                                                                                                                                |
| 101                                                                                                                               | dibenz(a,h)anthracene                                                                                                                                               | 13                                                                                     | 1                                                                                 | 0.1                                                                                                                                                                     | 0.79                                                                                                                                   | 0.222                                                                                                                           | 0.16                                                                                                               | 0.0348                                                                                                                                                               | 0.187                                                                                                                                                                   | 0.0593                                                                                                                  | 2.723                                                                                                                                            | 0.843                                                                                                                                                                                |
| 102                                                                                                                               | fluoranthene                                                                                                                                                        | 22                                                                                     | 1                                                                                 | 0.59                                                                                                                                                                    | 24.5                                                                                                                                   | 3.49                                                                                                                            | 1.955                                                                                                              | 25.55                                                                                                                                                                | 5.055                                                                                                                                                                   | 1.223                                                                                                                   | 3.783                                                                                                                                            | 1.449                                                                                                                                                                                |
| 103                                                                                                                               | fluorene                                                                                                                                                            | 13                                                                                     | 1                                                                                 | 0.047                                                                                                                                                                   | 1.76                                                                                                                                   | 0.343                                                                                                                           | 0.11                                                                                                               | 0.232                                                                                                                                                                | 0.482                                                                                                                                                                   | 0.0934                                                                                                                  | 2.493                                                                                                                                            | 1.405                                                                                                                                                                                |
| 104                                                                                                                               | indeno(1,2,3-cd)pyrene                                                                                                                                              | 22                                                                                     | 1                                                                                 | 0.11                                                                                                                                                                    | 3.45                                                                                                                                   | 0.603                                                                                                                           | 0.42                                                                                                               | 0.487                                                                                                                                                                | 0.698                                                                                                                                                                   | 0.237                                                                                                                   | 3.547                                                                                                                                            | 1.157                                                                                                                                                                                |
| 105                                                                                                                               | methylnaphthalene, 1-                                                                                                                                               | 2                                                                                      | 7                                                                                 | 0.15                                                                                                                                                                    | 0.2                                                                                                                                    | 0.175                                                                                                                           | 0.175                                                                                                              | 0.00125                                                                                                                                                              | 0.0354                                                                                                                                                                  | 0.0371                                                                                                                  | N/A                                                                                                                                              | 0.202                                                                                                                                                                                |
| 106                                                                                                                               | methylnaphthalene, 2-                                                                                                                                               | 9                                                                                      | 1                                                                                 | 0.0096                                                                                                                                                                  | 0.3                                                                                                                                    | 0.096                                                                                                                           | 0.034                                                                                                              | 0.0142                                                                                                                                                               | 0.119                                                                                                                                                                   | 0.0362                                                                                                                  | 1.382                                                                                                                                            | 1.244                                                                                                                                                                                |
| 107                                                                                                                               | naphthalene                                                                                                                                                         | 11                                                                                     | 1                                                                                 | 0.0089                                                                                                                                                                  | 0.98                                                                                                                                   | 0.177                                                                                                                           | 0.13                                                                                                               | 0.0782                                                                                                                                                               | 0.28                                                                                                                                                                    | 0.159                                                                                                                   | 2.779                                                                                                                                            | 1.578                                                                                                                                                                                |
| 108                                                                                                                               | phenanthrene                                                                                                                                                        | 22                                                                                     | 1                                                                                 | 0.25                                                                                                                                                                    | 16.5                                                                                                                                   | 2.293                                                                                                                           | 0.875                                                                                                              | 14.18                                                                                                                                                                | 3.766                                                                                                                                                                   | 0.415                                                                                                                   | 3.124                                                                                                                                            | 1.642                                                                                                                                                                                |
| 109                                                                                                                               | pyrene                                                                                                                                                              | 22                                                                                     | 1                                                                                 | 0.47                                                                                                                                                                    | 18.9                                                                                                                                   | 2.696                                                                                                                           | 1.49                                                                                                               | 15.11                                                                                                                                                                | 3.887                                                                                                                                                                   | 0.912                                                                                                                   | 3.804                                                                                                                                            | 1.441                                                                                                                                                                                |
| 110                                                                                                                               | PAHs (sum of total)                                                                                                                                                 | 22                                                                                     | 1                                                                                 | 2.97                                                                                                                                                                    | 98.7                                                                                                                                   | 14.8                                                                                                                            | 7.55                                                                                                               | 428.8                                                                                                                                                                | 20.71                                                                                                                                                                   | 3.773                                                                                                                   | 3.549                                                                                                                                            | 1.399                                                                                                                                                                                |
| 111                                                                                                                               | a and ammonium (as N)                                                                                                                                               | 6                                                                                      | 7                                                                                 | 100                                                                                                                                                                     | 400                                                                                                                                    | 233.3                                                                                                                           | 200                                                                                                                | 10667                                                                                                                                                                | 103.3                                                                                                                                                                   | 74.13                                                                                                                   | 0.666                                                                                                                                            | 0.443                                                                                                                                                                                |
| 112                                                                                                                               | ammonia as N                                                                                                                                                        | 6                                                                                      | 17                                                                                | 3.6                                                                                                                                                                     | 190                                                                                                                                    | 64.93                                                                                                                           | 26.5                                                                                                               | 5858                                                                                                                                                                 | 76.54                                                                                                                                                                   | 26.98                                                                                                                   | 1.169                                                                                                                                            | 1.179                                                                                                                                                                                |
| 113                                                                                                                               | kjeldahl nitrogen total                                                                                                                                             | 22                                                                                     | 1                                                                                 | 5.8                                                                                                                                                                     | 1900                                                                                                                                   | 654.2                                                                                                                           | 600                                                                                                                | 245131                                                                                                                                                               | 495.1                                                                                                                                                                   | 444.8                                                                                                                   | 0.85                                                                                                                                             | 0.757                                                                                                                                                                                |
| 114                                                                                                                               | nitrogen (total)                                                                                                                                                    | 3                                                                                      | 17                                                                                | 3000                                                                                                                                                                    | 4000                                                                                                                                   | 3333                                                                                                                            | 3000                                                                                                               | 333333                                                                                                                                                               | 577.4                                                                                                                                                                   | 0                                                                                                                       | 1.732                                                                                                                                            | 0.173                                                                                                                                                                                |
| 115                                                                                                                               | organic phosphorus                                                                                                                                                  | 5                                                                                      | 17                                                                                | 1.1                                                                                                                                                                     | 4.6                                                                                                                                    | 2.58                                                                                                                            | 2.4                                                                                                                | 1.837                                                                                                                                                                | 1.355                                                                                                                                                                   | 1.038                                                                                                                   | 0.745                                                                                                                                            | 0.525                                                                                                                                                                                |
| 116                                                                                                                               | phosphorus                                                                                                                                                          | 22                                                                                     | 1                                                                                 | 598                                                                                                                                                                     | 1622                                                                                                                                   | 904.4                                                                                                                           | 816                                                                                                                | 81035                                                                                                                                                                | 284.7                                                                                                                                                                   | 209                                                                                                                     | 1.383                                                                                                                                            | 0.315                                                                                                                                                                                |
| 117                                                                                                                               | Fecal Coliforms                                                                                                                                                     | 16                                                                                     | 6                                                                                 | 3000                                                                                                                                                                    | 45000                                                                                                                                  | 21500                                                                                                                           | 18000                                                                                                              | 1.768E+8                                                                                                                                                             | 13297                                                                                                                                                                   | 11861                                                                                                                   | 0.572                                                                                                                                            | 0.618                                                                                                                                                                                |
| 118                                                                                                                               |                                                                                                                                                                     |                                                                                        |                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 |                                                                                                                    | 1                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                         | 1                                                                                                                                                |                                                                                                                                                                                      |
| 119                                                                                                                               |                                                                                                                                                                     |                                                                                        | Perc                                                                              | entiles usin                                                                                                                                                            | g all Detects                                                                                                                          | (Ds) and N                                                                                                                      | on-Detects (                                                                                                       | (NDs)                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 120                                                                                                                               |                                                                                                                                                                     |                                                                                        |                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 |                                                                                                                    |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 120                                                                                                                               |                                                                                                                                                                     |                                                                                        |                                                                                   |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                 | T                                                                                                                  |                                                                                                                                                                      |                                                                                                                                                                         |                                                                                                                         |                                                                                                                                                  |                                                                                                                                                                                      |
| 121                                                                                                                               | Variable                                                                                                                                                            | NumObs                                                                                 | # Missing                                                                         | 10%ile                                                                                                                                                                  | 20%ile                                                                                                                                 | ` '                                                                                                                             | ` '                                                                                                                | 75%ile(Q3)                                                                                                                                                           |                                                                                                                                                                         | 90%ile                                                                                                                  | 95%ile                                                                                                                                           | 99%ile                                                                                                                                                                               |
|                                                                                                                                   | aluminum                                                                                                                                                            | 6                                                                                      | 17                                                                                | 9225                                                                                                                                                                    | 9420                                                                                                                                   | 9690                                                                                                                            | 10600                                                                                                              | 11825                                                                                                                                                                | 12200                                                                                                                                                                   | 12700                                                                                                                   | 12950                                                                                                                                            | 13150                                                                                                                                                                                |
| 121                                                                                                                               | aluminum<br>antimony                                                                                                                                                | 6 22                                                                                   | 17                                                                                | 9225<br>0.8                                                                                                                                                             | 9420                                                                                                                                   | 9690                                                                                                                            | 10600                                                                                                              | 11825                                                                                                                                                                | 12200<br>0.896                                                                                                                                                          | 12700<br>1.091                                                                                                          | 12950<br>1.291                                                                                                                                   | 13150<br>1.49                                                                                                                                                                        |
| 121<br>122                                                                                                                        | aluminum<br>antimony<br>arsenic                                                                                                                                     | 6<br>22<br>22                                                                          | 17<br>1<br>1                                                                      | 9225<br>0.8<br>3.564                                                                                                                                                    | 9420<br>0.8<br>3.62                                                                                                                    | 9690<br>0.8<br>3.703                                                                                                            | 10600<br>0.8<br>4                                                                                                  | 11825<br>0.8<br>4.675                                                                                                                                                | 12200<br>0.896<br>4.916                                                                                                                                                 | 12700<br>1.091<br>5.68                                                                                                  | 12950<br>1.291<br>5.757                                                                                                                          | 13150<br>1.49<br>10.69                                                                                                                                                               |
| 121<br>122<br>123                                                                                                                 | aluminum<br>antimony<br>arsenic<br>barium                                                                                                                           | 6<br>22<br>22<br>22                                                                    | 17<br>1<br>1                                                                      | 9225<br>0.8<br>3.564<br>75.65                                                                                                                                           | 9420<br>0.8<br>3.62<br>78.24                                                                                                           | 9690<br>0.8<br>3.703<br>80                                                                                                      | 10600<br>0.8<br>4<br>95.5                                                                                          | 11825<br>0.8<br>4.675<br>122.3                                                                                                                                       | 12200<br>0.896<br>4.916<br>128.6                                                                                                                                        | 12700<br>1.091<br>5.68<br>133.6                                                                                         | 12950<br>1.291<br>5.757<br>140.7                                                                                                                 | 13150<br>1.49<br>10.69<br>195.5                                                                                                                                                      |
| 121<br>122<br>123<br>124                                                                                                          | aluminum<br>antimony<br>arsenic<br>barium<br>beryllium                                                                                                              | 6<br>22<br>22<br>22<br>22<br>22                                                        | 17<br>1<br>1<br>1<br>1                                                            | 9225<br>0.8<br>3.564<br>75.65<br>0.332                                                                                                                                  | 9420<br>0.8<br>3.62<br>78.24<br>0.362                                                                                                  | 9690<br>0.8<br>3.703<br>80<br>0.373                                                                                             | 10600<br>0.8<br>4<br>95.5<br>0.425                                                                                 | 11825<br>0.8<br>4.675<br>122.3<br>0.513                                                                                                                              | 12200<br>0.896<br>4.916<br>128.6<br>0.546                                                                                                                               | 12700<br>1.091<br>5.68<br>133.6<br>0.568                                                                                | 12950<br>1.291<br>5.757<br>140.7<br>0.599                                                                                                        | 13150<br>1.49<br>10.69<br>195.5<br>0.655                                                                                                                                             |
| 121<br>122<br>123<br>124<br>125                                                                                                   | aluminum antimony arsenic barium beryllium boron                                                                                                                    | 6<br>22<br>22<br>22<br>22<br>22<br>15                                                  | 17<br>1<br>1<br>1<br>1<br>1<br>8                                                  | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4                                                                                                                          | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72                                                                                         | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95                                                                                    | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17                                                                           | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9                                                                                                                      | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88                                                                                                                      | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08                                                                       | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43                                                                                               | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49                                                                                                                                    |
| 121<br>122<br>123<br>124<br>125<br>126                                                                                            | aluminum antimony arsenic barium beryllium boron cadmium                                                                                                            | 6<br>22<br>22<br>22<br>22<br>22<br>15<br>22                                            | 17<br>1<br>1<br>1<br>1<br>1<br>8                                                  | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39                                                                                                                  | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44                                                                                 | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95<br>0.56                                                                            | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616                                                                  | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848                                                                                                             | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903                                                                                                             | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922                                                              | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95                                                                                       | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996                                                                                                                           |
| 121<br>122<br>123<br>124<br>125<br>126<br>127                                                                                     | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI)                                                                                          | 6<br>22<br>22<br>22<br>22<br>22<br>15<br>22<br>22                                      | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1                                             | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08                                                                                                         | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20                                                                           | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95<br>0.56<br>20.25                                                                   | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22                                                            | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75                                                                                                    | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4                                                                                                     | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922<br>35.51                                                     | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95                                                                              | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16                                                                                                                  |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128                                                                              | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI)                                                                                          | 6<br>22<br>22<br>22<br>22<br>22<br>15<br>22<br>22<br>25                                | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1<br>1<br>8                                   | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7                                                                                                 | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92                                                                  | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95<br>0.56<br>20.25<br>50.5                                                           | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63                                                      | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76                                                                                              | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94                                                                                            | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922<br>35.51<br>109.3                                            | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5                                                                     | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7                                                                                                         |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129                                                                       | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron                                                                              | 6<br>22<br>22<br>22<br>22<br>22<br>15<br>22<br>22<br>25<br>15                          | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1<br>1<br>1<br>8                              | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7                                                                                                 | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100                                                         | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95<br>0.56<br>20.25<br>50.5<br>21475                                                  | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63<br>22800                                             | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350                                                                                     | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800                                                                                   | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922<br>35.51<br>109.3<br>25200                                   | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400                                                            | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560                                                                                                |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130                                                                | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead                                                                         | 6<br>22<br>22<br>22<br>22<br>15<br>22<br>22<br>15<br>6<br>15                           | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1<br>1<br>1<br>8<br>1<br>1<br>8               | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6                                                                                | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6                                                 | 9690<br>0.8<br>3.703<br>80<br>0.373<br>14.95<br>0.56<br>20.25<br>50.5<br>21475<br>23.25                                         | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63<br>22800<br>34                                       | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05                                                                            | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26                                                                          | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922<br>35.51<br>109.3<br>25200<br>55.92                          | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4                                                    | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08                                                                                       |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131                                                         | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese                                                               | 6 22 22 22 15 22 25 15 6 15 6                                                          | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1<br>1<br>8<br>1<br>1<br>8<br>17              | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470                                                                         | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550                                          | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554                                                        | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63<br>22800<br>34<br>577                                | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5                                                                   | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594                                                                   | 12700<br>1.091<br>5.68<br>133.6<br>0.568<br>23.08<br>2.922<br>35.51<br>109.3<br>25200<br>55.92<br>608.5                 | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8                                           | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6                                                                              |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131                                                         | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury                                                       | 6<br>22<br>22<br>22<br>22<br>15<br>22<br>22<br>15<br>6<br>15<br>6                      | 17<br>1<br>1<br>1<br>1<br>1<br>8<br>1<br>1<br>8<br>17<br>8<br>17                  | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785                                                               | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550<br>0.1                                   | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101                                                 | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63<br>22800<br>34<br>577<br>0.104                       | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174                                                          | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197                                                          | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226                                            | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8<br>0.241                                  | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252                                                                     |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133                                           | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum                                            | 6<br>22<br>22<br>22<br>22<br>15<br>22<br>22<br>15<br>6<br>15<br>6                      | 17 1 1 1 1 1 8 1 1 8 17 1 8 17 17 17                                              | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8                                                        | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550<br>0.1<br>0.876                          | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9                                            | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075                                        | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418                                                 | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498                                                 | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98                                       | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8<br>0.241<br>2.323                         | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387                                                            |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133                                           | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel                                     | 6 22 22 22 15 22 15 6 15 6 6 22 15                                                     | 17 1 1 1 1 1 1 8 1 1 8 17 8 17 17 18 17 18                                        | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4                                                | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550<br>0.1<br>0.876<br>19.6                  | 9690 0.8 3.703 80 0.373 14.95 0.56 20.25 50.5 21475 23.25 554 0.101 0.9 20                                                      | 10600<br>0.8<br>4<br>95.5<br>0.425<br>17<br>0.616<br>22<br>63<br>22800<br>34<br>577<br>0.104<br>1.075              | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65                                        | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2                                         | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96                                 | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8<br>0.241<br>2.323<br>25.9                 | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46                                                   |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134                                    | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium                            | 6 22 22 22 15 22 15 6 15 6 15 6 22 15 22 22                                            | 17 1 1 1 1 1 1 8 1 1 8 17 8 17 17 17 1 8 1                                        | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5                                         | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550<br>0.1<br>0.876<br>19.6<br>0.54          | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7                                   | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7                               | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7                                 | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7                                  | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794                           | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8<br>0.241<br>2.323<br>25.9<br>0.99         | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46                                                   |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136                      | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium                            | 6 22 22 22 15 22 15 6 15 6 15 6 22 15 22 22 22 22 22 22 22 22 22 22 22 22              | 17 1 1 1 1 1 1 1 8 1 1 8 17 17 17 18 17 11 8 11 1                                 | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112                                | 9420<br>0.8<br>3.62<br>78.24<br>0.362<br>14.72<br>0.44<br>20<br>48.92<br>21100<br>21.6<br>550<br>0.1<br>0.876<br>19.6<br>0.54<br>0.205 | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265                            | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7  0.379                        | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7<br>0.6                          | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7<br>1.065                         | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57                      | 12950<br>1.291<br>5.757<br>140.7<br>0.599<br>23.43<br>5.95<br>36.95<br>138.5<br>25400<br>67.4<br>615.8<br>0.241<br>2.323<br>25.9<br>0.99<br>2.93 | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237                                     |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136                      | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium silver                     | 6 22 22 22 15 22 15 6 15 6 15 6 22 15 22 22 6                                          | 17 1 1 1 1 1 1 8 1 1 8 17 17 17 1 1 8 17 17 17 17 17 17 17 17 17 17 17 17 17      | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112                                | 9420 0.8 3.62 78.24 0.362 14.72 0.44 20 48.92 21100 21.6 550 0.1 0.876 19.6 0.54 0.205                                                 | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265  222.5                     | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.379  283                        | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7<br>0.6<br>352.5                 | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7<br>1.065<br>363                  | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57                      | 12950 1.291 5.757 140.7 0.599 23.43 5.95 36.95 138.5 25400 67.4 615.8 0.241 2.323 25.9 0.99 2.93                                                 | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237                                     |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137               | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium silver sodium thallium     | 6 22 22 22 15 22 15 6 15 6 15 6 22 15 22 22 15 6 22 22 22 22 22 22 22 22 22 22 22 22 2 | 17 1 1 1 1 1 1 8 1 1 8 17 17 18 17 11 8 17 11 11 17 11                            | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112<br>212<br>0.11                 | 9420 0.8 3.62 78.24 0.362 14.72 0.44 20 48.92 21100 21.6 550 0.1 0.876 19.6 0.54 0.205 215 0.112                                       | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265  222.5  0.12               | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7  0.379  283  0.135            | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7<br>0.6<br>352.5<br>0.2          | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7<br>1.065<br>363<br>0.203         | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57 405 0.228            | 12950 1.291 5.757 140.7 0.599 23.43 5.95 36.95 138.5 25400 67.4 615.8 0.241 2.323 25.9 0.99 2.93 426 0.254                                       | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237<br>442.8<br>0.261                   |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>129<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138        | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium silver sodium thallium     | 6 22 22 22 15 22 15 6 15 6 6 22 15 6 22 15 6 22 15                                     | 17 1 1 1 1 1 1 8 1 1 8 17 17 18 17 17 1 18 17 17 17 17 17 17 17 17 17 17 17 17 17 | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112<br>212<br>0.11<br>1.495        | 9420 0.8 3.62 78.24 0.362 14.72 0.44 20 48.92 21100 21.6 550 0.1 0.876 19.6 0.54 0.205 215 0.112 1.63                                  | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265  222.5  0.12  1.963        | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7  0.379  283  0.135  3.64      | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7<br>0.6<br>352.5<br>0.2<br>4.868 | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7<br>1.065<br>363<br>0.203<br>5.05 | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57 405 0.228 5.68       | 12950 1.291 5.757 140.7 0.599 23.43 5.95 36.95 138.5 25400 67.4 615.8 0.241 2.323 25.9 0.99 2.93 426 0.254 5.995                                 | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237<br>442.8<br>0.261<br>6.247          |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140 | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium silver sodium thallium tin | 6 22 22 22 15 22 15 6 15 6 15 6 22 15 22 22 6 22 6                                     | 17 1 1 1 1 1 1 1 1 8 1 1 1 8 17 17 1 1 8 17 17 17 17 17                           | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112<br>212<br>0.11<br>1.495<br>111 | 9420 0.8 3.62 78.24 0.362 14.72 0.44 20 48.92 21100 21.6 550 0.1 0.876 19.6 0.54 0.205 215 0.112 1.63                                  | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265  222.5  0.12  1.963  121.8 | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7  0.379  283  0.135  3.64  125 | 11825 0.8 4.675 122.3 0.513 20.9 0.848 29.75 76 24350 48.05 592.5 0.174 1.418 22.65 0.7 0.6 352.5 0.2 4.868 135.8                                                    | 12200 0.896 4.916 128.6 0.546 21.88 0.903 31.4 81.94 24800 50.26 594 0.197 1.498 23.2 0.7 1.065 363 0.203 5.05                                                          | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57 405 0.228 5.68 144.5 | 12950 1.291 5.757 140.7 0.599 23.43 5.95 36.95 138.5 25400 67.4 615.8 0.241 2.323 25.9 0.99 2.93 426 0.254 5.995 147.3                           | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237<br>442.8<br>0.261<br>6.247<br>149.5 |
| 121<br>122<br>123<br>124<br>125<br>126<br>127<br>128<br>130<br>131<br>132<br>133<br>134<br>135<br>136<br>137<br>138<br>139<br>140 | aluminum antimony arsenic barium beryllium boron cadmium chromium (III+VI) copper iron lead manganese mercury molybdenum nickel selenium silver sodium thallium     | 6 22 22 22 15 22 15 6 15 6 6 22 15 6 22 15 6 22 15                                     | 17 1 1 1 1 1 1 8 1 1 8 17 17 18 17 17 1 18 17 17 17 17 17 17 17 17 17 17 17 17 17 | 9225<br>0.8<br>3.564<br>75.65<br>0.332<br>13.4<br>0.39<br>19.08<br>40.7<br>19950<br>17.6<br>470<br>0.0785<br>0.8<br>17.4<br>0.5<br>0.112<br>212<br>0.11<br>1.495        | 9420 0.8 3.62 78.24 0.362 14.72 0.44 20 48.92 21100 21.6 550 0.1 0.876 19.6 0.54 0.205 215 0.112 1.63                                  | 9690  0.8  3.703  80  0.373  14.95  0.56  20.25  50.5  21475  23.25  554  0.101  0.9  20  0.7  0.265  222.5  0.12  1.963        | 10600  0.8  4  95.5  0.425  17  0.616  22  63  22800  34  577  0.104  1.075  21  0.7  0.379  283  0.135  3.64      | 11825<br>0.8<br>4.675<br>122.3<br>0.513<br>20.9<br>0.848<br>29.75<br>76<br>24350<br>48.05<br>592.5<br>0.174<br>1.418<br>22.65<br>0.7<br>0.6<br>352.5<br>0.2<br>4.868 | 12200<br>0.896<br>4.916<br>128.6<br>0.546<br>21.88<br>0.903<br>31.4<br>81.94<br>24800<br>50.26<br>594<br>0.197<br>1.498<br>23.2<br>0.7<br>1.065<br>363<br>0.203<br>5.05 | 12700 1.091 5.68 133.6 0.568 23.08 2.922 35.51 109.3 25200 55.92 608.5 0.226 1.98 24.96 0.794 1.57 405 0.228 5.68       | 12950 1.291 5.757 140.7 0.599 23.43 5.95 36.95 138.5 25400 67.4 615.8 0.241 2.323 25.9 0.99 2.93 426 0.254 5.995                                 | 13150<br>1.49<br>10.69<br>195.5<br>0.655<br>23.49<br>7.996<br>40.16<br>163.7<br>25560<br>83.08<br>621.6<br>0.252<br>2.387<br>26.46<br>1<br>3.237<br>442.8<br>0.261<br>6.247          |

SLR Page 3 of 4

SLR Project No.: 209.40666 January 2020

|     | А В                   | С             | D          | E             | F            | G      | Н     |       | J     | K     | L     | М     |
|-----|-----------------------|---------------|------------|---------------|--------------|--------|-------|-------|-------|-------|-------|-------|
| 1   |                       |               | General St | atistics on U | ncensored [  |        |       | •     |       |       | _     |       |
| 2   | Date/Time of          | Computation   | ProUCL 5.1 | 1/28/2020 3   | 53:17 PM     |        |       |       |       |       |       |       |
| 3   | User Se               | ected Options | 3          |               |              |        |       |       |       |       |       |       |
| 4   |                       | From File     | SED 0-0.15 | mbg Chemis    | try_input_v7 | .xls   |       |       |       |       |       |       |
| 5   |                       | ull Precision | OFF        |               |              |        |       |       |       |       |       |       |
| 6   |                       |               |            |               |              |        |       |       |       |       |       |       |
| 145 | Z                     | nc 15         | 8          | 193           | 211.6        | 214.5  | 272   | 335.5 | 356.6 | 473.8 | 513.1 | 528.2 |
| 146 | acenaphthyle          | ne 22         | 1          | 0.0133        | 0.0202       | 0.0408 | 0.1   | 0.1   | 0.1   | 0.1   | 0.11  | 0.165 |
| 147 | acenaphthe            | ne 22         | 1          | 0.0454        | 0.0872       | 0.1    | 0.1   | 0.213 | 0.258 | 0.27  | 0.802 | 1.351 |
| 148 | anthrace              | ne 22         | 1          | 0.1           | 0.1          | 0.1    | 0.12  | 0.28  | 0.4   | 0.664 | 0.975 | 3.913 |
| 149 | benz(a)anthrace       | ne 22         | 1          | 0.38          | 0.424        | 0.443  | 0.645 | 1.1   | 1.572 | 1.97  | 2.912 | 5.836 |
| 150 | benzo(b)fluoranthe    | ne 22         | 1          | 0.54          | 0.642        | 0.695  | 1     | 1.73  | 2.08  | 2.763 | 3.55  | 7.366 |
|     | penzo(b+j)fluoranther | es 6          | 17         | 0.94          | 0.98         | 1.01   | 1.2   | 1.3   | 1.3   | 1.35  | 1.375 | 1.395 |
| 152 | benzo(g,h,i)peryle    | ne 22         | 1          | 0.221         | 0.322        | 0.373  | 0.435 | 0.713 | 0.764 | 0.989 | 1.427 | 3.749 |
| 153 | benzo(k)fluoranthe    | ne 22         | 1          | 0.2           | 0.206        | 0.23   | 0.305 | 0.603 | 0.686 | 0.963 | 1.351 | 2.097 |
| 154 | benzo(a)pyre          | ne 22         | 1          | 0.363         | 0.408        | 0.485  | 0.69  | 1.023 | 1.41  | 1.708 | 2.366 | 5.252 |
| 155 | chryse                | ne 22         | 1          | 0.452         | 0.532        | 0.665  | 0.875 | 1.46  | 1.708 | 2.118 | 3.185 | 6.329 |
| 156 | dibenz(a,h)anthrace   | ne 22         | 1          | 0.1           | 0.1          | 0.1    | 0.115 | 0.168 | 0.194 | 0.256 | 0.365 | 0.702 |
| 157 | fluoranthe            | ne 22         | 1          | 1.101         | 1.202        | 1.418  | 1.955 | 3.148 | 3.6   | 5.175 | 8.889 | 21.26 |
| 158 | fluore                | ne 22         | 1          | 0.0641        | 0.0896       | 0.1    | 0.1   | 0.223 | 0.284 | 0.454 | 0.822 | 1.567 |
| 159 | indeno(1,2,3-cd)pyre  |               | 1          | 0.191         | 0.254        | 0.27   | 0.42  | 0.608 | 0.646 | 0.898 | 1.318 | 3.007 |
| 160 | methylnaphthalene     | 1- 16         | 7          | 0.1           | 0.1          | 0.1    | 0.1   | 0.1   | 0.1   | 0.125 | 0.163 | 0.193 |
| 161 | methylnaphthalene     | 2- 22         | 1          | 0.0153        | 0.0406       | 0.0753 | 0.1   | 0.1   | 0.1   | 0.1   | 0.29  | 0.3   |
| 162 | naphthale             |               | 1          | 0.0149        | 0.0432       | 0.1    | 0.1   | 0.123 | 0.138 | 0.213 | 0.239 | 0.825 |
| 163 | phenanthre            | ne 22         | 1          | 0.463         | 0.6          | 0.62   | 0.875 | 2.165 | 3.084 | 3.599 | 9.235 | 15.04 |
| 164 | pyre                  |               | 1          | 0.851         | 0.956        | 1.108  | 1.49  | 2.638 | 2.902 | 4.002 | 6.616 | 16.35 |
| 165 | PAHs (sum of to       | <i>'</i>      | 1          | 4.921         | 5.3          | 5.4    | 7.55  | 15.25 | 16    | 22.75 | 41.24 | 86.84 |
| 166 | a and ammonium (as    | N) 16         | 7          | 100           | 100          | 100    | 100   | 200   | 200   | 250   | 325   | 385   |
| 167 | ammonia as            |               | 17         | 8.3           | 13           | 16.25  | 26.5  | 104.3 | 130   | 160   | 175   | 187   |
| 168 | kjeldahl nitrogen to  |               | 1          | 51.8          | 210          | 347.5  | 600   | 900   | 980   | 1180  | 1580  | 1837  |
| 169 | nitrogen (to          | <i>'</i>      | 17         | 2000          | 2000         | 2000   | 2500  | 3000  | 3000  | 3500  | 3750  | 3950  |
| 170 | organic phospho       |               | 17         | 1.05          | 1.1          | 1.25   | 2.05  | 2.925 | 3.1   | 3.85  | 4.225 | 4.525 |
| 171 | phospho               | us 22         | 1          | 643.8         | 695          | 715.8  | 816   | 989.3 | 1095  | 1251  | 1545  | 1609  |
| 172 | Fecal Colifor         | ns 17         | 6          | 6000          | 10000        | 10000  | 17000 | 30000 | 35600 | 40000 | 43400 | 44680 |

SLR Page 4 of 4

SLR Project No.: 209.40666 January 2020

|    | А В                         | С           | D             | Е            | F            | G             | Н            | ı           | J             | K                 | L              | М             |
|----|-----------------------------|-------------|---------------|--------------|--------------|---------------|--------------|-------------|---------------|-------------------|----------------|---------------|
| 1  |                             |             | General Sta   | tistics on U | ncensored D  | ata           |              |             | •             | •                 |                |               |
| 2  | Date/Time of Co             | mputation   | ProUCL 5.1    | 1/28/2020 3: | 56:56 PM     |               |              |             |               |                   |                |               |
| 3  | User Select                 | ted Options |               |              |              |               |              |             |               |                   |                |               |
| 4  |                             | From File   | SED 0.15+n    | nbg Chemist  | ry_input_v2. | kls           |              |             |               |                   |                |               |
| 5  | Full                        | Precision   | OFF           |              |              |               |              |             |               |                   |                |               |
| 6  |                             |             |               |              |              |               |              |             |               |                   |                |               |
| 7  | From File: SED 0.15+mb      | og Chemistr | y_input_v2.>  | ds           |              |               |              |             |               |                   |                |               |
| 8  |                             |             |               |              |              |               |              |             |               |                   |                |               |
| 9  |                             | G           | eneral Statis | tics for Cen | sored Data S | Set (with NDs | s) using Kap | lan Meier M | ethod         |                   |                |               |
| 10 |                             |             |               |              |              |               |              |             |               |                   |                |               |
| 11 | Variable                    | NumObs      | # Missing     | Num Ds       | NumNDs       | % NDs         | Min ND       | Max ND      | KM Mean       | KM Var            | KM SD          | KM CV         |
| 12 | antimony                    | 21          | 0             | 11           | 10           | 47.62%        | 8.0          | 0.8         | 1.019         | 0.109             | 0.33           | 0.324         |
| 13 | arsenic                     | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 5.867         | 9.009             | 3.002          | 0.512         |
| 14 | barium                      | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 160.7         | 11144             | 105.6          | 0.657         |
| 15 | beryllium                   | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 0.398         | 0.0205            | 0.143          | 0.36          |
| 16 | boron                       | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 22.1          | 146.8             | 12.12          | 0.548         |
| 17 | cadmium                     | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 13.43         | 301.1             | 17.35          | 1.292         |
| 18 | chromium (III+VI)           | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 35.89         | 524               | 22.89          | 0.638         |
| 19 | copper                      | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 106.2         | 6333              | 79.58          | 0.749         |
| 20 | lead                        | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 112           | 4636              | 68.09          | 0.608         |
| 21 | molybdenum                  | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 1             | 0.521             | 0.722          | 0.722         |
| 22 | nickel                      | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 38.93         | 574.7             | 23.97          | 0.616         |
| 23 | selenium<br>                | 21          | 0             | 3            | 18           | 85.71%        | 0.7          | 0.7         | 0.738         | 0.029             | 0.17           | 0.231         |
| 24 | silver                      | 21          | 0             | 20           | 1            | 4.76%         | 0.05         | 0.05        | 4.761         | 39.3              | 6.269          | 1.317         |
| 25 | thallium                    | 21          | 0             | 21           | 0            | 0.00%         | N/A<br>N/A   | N/A         | 0.122<br>0.54 | 0.00195<br>0.0181 | 0.0441         | 0.362<br>0.25 |
| 26 | uranium                     | 21          | 0             |              | -            | 0.00%         | N/A<br>N/A   | N/A         | 17.95         | 24.45             | 0.135          | 0.25          |
| 27 | vanadium                    | 21          | 0             | 21           | 0            | 0.00%         | N/A<br>N/A   | N/A<br>N/A  | 361.5         | 48645             | 4.944<br>220.6 | 0.275         |
| 28 | zinc ia and ammonium (as N) | 21          | 0             | 16           | 5            | 23.81%        | 100          | 100         | 138.1         | 2358              | 48.56          | 0.81          |
| 29 | kjeldahl nitrogen total     | 21          | 0             | 20           | 1            | 4.76%         | 100          | 100         | 761.9         | 150930            | 388.5          | 0.552         |
| 30 | phosphorus                  | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 1033          | 109452            | 330.8          | 0.32          |
| 31 | Fecal Coliforms             | 21          | 0             | 3            | 18           | 85.71%        | 1000         | 1000        | 1381          | 2902494           | 1704           | 1.234         |
| 32 | acenaphthylene              | 21          | 0             | 0            | 21           | 100.00%       | 0.05         | 0.1         | N/A           | N/A               | N/A            | N/A           |
| 33 | acenaphthene                | 21          | 0             | 13           | 8            | 38.10%        | 0.05         | 0.1         | 0.253         | 0.085             | 0.292          | 1.153         |
| 34 | anthracene                  | 21          | 0             | 17           | 4            | 19.05%        | 0.05         | 0.1         | 0.291         | 0.0834            | 0.289          | 0.991         |
| 35 | benz(a)anthracene           | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 0.937         | 0.604             | 0.777          | 0.829         |
| 36 | benzo(b)fluoranthene        | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 1.376         | 1.134             | 1.065          | 0.774         |
| 37 | benzo(g,h,i)perylene        | 21          | 0             | 18           | 3            | 14.29%        | 0.1          | 0.1         | 0.515         | 0.0902            | 0.3            | 0.583         |
| 38 | benzo(k)fluoranthene        | 21          | 0             | 18           | 3            | 14.29%        | 0.05         | 0.2         | 0.436         | 0.114             | 0.337          | 0.773         |
| 39 | benzo(a)pyrene              | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 0.864         | 0.458             | 0.677          | 0.783         |
| 40 | chrysene                    | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 1.076         | 0.769             | 0.877          | 0.815         |
| 41 | dibenz(a,h)anthracene       | 21          | 0             | 13           | 8            | 38.10%        | 0.06         | 0.1         | 0.123         | 0.00548           | 0.074          | 0.601         |
| 42 | fluoranthene                | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 2.589         | 5.153             | 2.27           | 0.877         |
| 43 | fluorene                    | 21          | 0             | 16           | 5            | 23.81%        | 0.05         | 0.1         | 0.327         | 0.0882            | 0.297          | 0.908         |
| 45 | indeno(1,2,3-cd)pyrene      | 21          | 0             | 18           | 3            | 14.29%        | 0.1          | 0.1         | 0.441         | 0.0788            | 0.281          | 0.636         |
| 46 | methylnaphthalene, 1-       | 21          | 0             | 13           | 8            | 38.10%        | 0.05         | 0.1         | 0.277         | 0.0763            | 0.276          | 0.998         |
| 47 | methylnaphthalene, 2-       | 21          | 0             | 13           | 8            | 38.10%        | 0.05         | 0.2         | 0.555         | 0.387             | 0.622          | 1.121         |
| 48 | naphthalene                 | 21          | 0             | 10           | 11           | 52.38%        | 0.05         | 0.1         | 0.168         | 0.0662            | 0.257          | 1.527         |
| 49 | phenanthrene                | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 2.248         | 5.606             | 2.368          | 1.053         |
| 50 | pyrene                      | 21          | 0             | 19           | 2            | 9.52%         | 0.05         | 0.05        | 2.096         | 3.093             | 1.759          | 0.839         |
| 51 | Total PAHs                  | 21          | 0             | 21           | 0            | 0.00%         | N/A          | N/A         | 12.5          | 118.6             | 10.89          | 0.871         |
| 52 |                             |             | I .           | <u> </u>     | I            | I             | I            | <u>I</u>    | 1             | 1                 | 1              |               |
| JZ |                             |             |               |              |              |               |              |             |               |                   |                |               |

SLR Page 1 of 3

SLR Project No.: 209.40666 January 2020

| П  | А В                     | С           | D           | Е              | F             | G            | Н          | 1        | J      | К         | L        | М     |
|----|-------------------------|-------------|-------------|----------------|---------------|--------------|------------|----------|--------|-----------|----------|-------|
| 1  | •                       |             | General Sta | tistics on U   | ncensored D   | ata          |            |          |        | •         |          |       |
| 2  | Date/Time of Co         | mputation   | ProUCL 5.1  | 1/28/2020 3:   | 56:56 PM      |              |            |          |        |           |          |       |
| 3  | User Selec              | ted Options |             |                |               |              |            |          |        |           |          |       |
| 4  |                         | From File   | SED 0.15+n  | nbg Chemist    | ry_input_v2.x | ds           |            |          |        |           |          |       |
| 5  | Full                    | Precision   | OFF         |                |               |              |            |          |        |           |          |       |
| 6  |                         |             | ,           |                |               |              |            |          |        |           |          |       |
| 53 |                         |             | Gene        | ral Statistics | for Raw Dat   | a Sets using | Detected D | ata Only |        |           |          |       |
| 54 |                         |             |             |                |               |              |            |          |        |           | '        |       |
| 55 | Variable                | NumObs      | # Missing   | Minimum        | Maximum       | Mean         | Median     | Var      | SD     | MAD/0.675 | Skewness | CV    |
| 56 | antimony                | 11          | 0           | 0.8            | 1.9           | 1.218        | 1.1        | 0.138    | 0.371  | 0.445     | 0.615    | 0.305 |
| 57 | arsenic                 | 21          | 0           | 1.7            | 16            | 5.867        | 5.4        | 9.009    | 3.002  | 2.076     | 1.942    | 0.512 |
| 58 | barium                  | 21          | 0           | 16             | 398           | 160.7        | 143        | 11144    | 105.6  | 97.85     | 0.925    | 0.657 |
| 59 | beryllium               | 21          | 0           | 0.16           | 0.85          | 0.398        | 0.39       | 0.0205   | 0.143  | 0.119     | 1.336    | 0.36  |
| 60 | boron                   | 21          | 0           | 4              | 45            | 22.1         | 21         | 146.8    | 12.12  | 11.86     | 0.328    | 0.548 |
| 61 | cadmium                 | 21          | 0           | 0.07           | 68            | 13.43        | 7.6        | 301.1    | 17.35  | 9.637     | 2.073    | 1.292 |
| 62 | chromium (III+VI)       | 21          | 0           | 6.3            | 97            | 35.89        | 32         | 524      | 22.89  | 19.27     | 1.36     | 0.638 |
| 63 | copper                  | 21          | 0           | 18             | 358           | 106.2        | 82         | 6333     | 79.58  | 42.99     | 1.991    | 0.749 |
| 64 | lead                    | 21          | 0           | 6.1            | 241           | 112          | 115        | 4636     | 68.09  | 71.16     | 0.155    | 0.608 |
| 65 | molybdenum              | 21          | 0           | 0.1            | 3.3           | 1            | 0.9        | 0.521    | 0.722  | 0.445     | 1.938    | 0.722 |
| 66 | nickel                  | 21          | 0           | 7.5            | 93            | 38.93        | 35         | 574.7    | 23.97  | 25.2      | 0.853    | 0.616 |
| 67 | selenium                | 3           | 0           | 0.7            | 1.5           | 0.967        | 0.7        | 0.213    | 0.462  | 0         | 1.732    | 0.478 |
| 68 | silver                  | 20          | 0           | 0.06           | 27            | 4.997        | 3.25       | 42.21    | 6.497  | 3.284     | 2.521    | 1.3   |
| 69 | thallium                | 21          | 0           | 0.04           | 0.25          | 0.122        | 0.11       | 0.00195  | 0.0441 | 0.0297    | 0.999    | 0.362 |
| 70 | uranium                 | 21          | 0           | 0.3            | 0.81          | 0.54         | 0.53       | 0.0181   | 0.135  | 0.104     | 0.323    | 0.25  |
| 71 | vanadium                | 21          | 0           | 11             | 30            | 17.95        | 18         | 24.45    | 4.944  | 5.93      | 0.789    | 0.275 |
| 72 | zinc                    | 21          | 0           | 30             | 922           | 361.5        | 324        | 48645    | 220.6  | 117.1     | 0.957    | 0.61  |
| 73 | a and ammonium (as N)   | 16          | 0           | 100            | 200           | 150          | 150        | 2667     | 51.64  | 74.13     | 0        | 0.344 |
| 74 | kjeldahl nitrogen total | 20          | 0           | 200            | 1500          | 795          | 750        | 142605   | 377.6  | 296.5     | 0.265    | 0.475 |
| 75 | phosphorus              | 21          | 0           | 563            | 1820          | 1033         | 937        | 109452   | 330.8  | 217.9     | 1.092    | 0.32  |
| 76 | Fecal Coliforms         | 3           | 0           | 1000           | 9000          | 3667         | 1000       | 21333333 | 4619   | 0         | 1.732    | 1.26  |
| 77 | acenaphthylene          | 0           | 0           | N/A            | N/A           | N/A          | N/A        | N/A      | N/A    | N/A       | N/A      | N/A   |
| 78 | acenaphthene            | 13          | 0           | 0.11           | 0.97          | 0.378        | 0.23       | 0.105    | 0.323  | 0.104     | 1.308    | 0.856 |
| 79 | anthracene              | 17          | 0           | 0.13           | 1.12          | 0.348        | 0.26       | 0.0915   | 0.303  | 0.119     | 2.066    | 0.869 |
| 80 | benz(a)anthracene       | 19          | 0           | 0.12           | 3.54          | 1.031        | 0.77       | 0.608    | 0.78   | 0.311     | 2.303    | 0.757 |
| 81 | benzo(b)fluoranthene    | 19          | 0           | 0.21           | 4.96          | 1.516        | 1.28       | 1.107    | 1.052  | 0.474     | 2.167    | 0.694 |
| 82 | benzo(g,h,i)perylene    | 18          | 0           | 0.24           | 1.23          | 0.584        | 0.515      | 0.076    | 0.276  | 0.2       | 1.406    | 0.472 |
| 83 | benzo(k)fluoranthene    | 18          | 0           | 0.06           | 1.48          | 0.501        | 0.41       | 0.11     | 0.332  | 0.141     | 1.908    | 0.663 |
| 84 | benzo(a)pyrene          | 19          | 0           | 0.12           | 3.11          | 0.95         | 0.76       | 0.453    | 0.673  | 0.208     | 2.174    | 0.708 |
| 85 | chrysene                | 19          | 0           | 0.11           | 4.04          | 1.184        | 0.96       | 0.768    | 0.876  | 0.356     | 2.205    | 0.74  |
| 86 | dibenz(a,h)anthracene   | 13          | 0           | 0.09           | 0.35          | 0.159        | 0.13       | 0.00582  | 0.0763 | 0.0445    | 1.651    | 0.479 |
| 87 | fluoranthene            | 19          | 0           | 0.3            | 10.3          | 2.856        | 2.39       | 5.22     | 2.285  | 1.082     | 2.196    | 0.8   |
| 88 | fluorene                | 16          | 0           | 0.1            | 1.06          | 0.414        | 0.31       | 0.0899   | 0.3    | 0.215     | 1.23     | 0.724 |
| 89 | indeno(1,2,3-cd)pyrene  | 18          | 0           | 0.19           | 1.25          | 0.498        | 0.405      | 0.0734   | 0.271  | 0.133     | 1.78     | 0.543 |
| 90 | methylnaphthalene, 1-   | 13          | 0           | 0.11           | 0.89          | 0.416        | 0.29       | 0.0782   | 0.28   | 0.267     | 0.601    | 0.672 |
| 91 | methylnaphthalene, 2-   | 13          | 0           | 0.17           | 1.94          | 0.864        | 0.73       | 0.406    | 0.638  | 0.712     | 0.65     | 0.738 |
| 92 | naphthalene             | 10          | 0           | 0.06           | 1.2           | 0.294        | 0.155      | 0.121    | 0.348  | 0.104     | 2.339    | 1.183 |
| 93 | phenanthrene            | 19          | 0           | 0.06           | 10            | 2.479        | 1.95       | 5.947    | 2.439  | 1.438     | 2.036    | 0.984 |
| 94 | pyrene                  | 19          | 0           | 0.25           | 7.83          | 2.312        | 1.89       | 3.095    | 1.759  | 0.726     | 2.071    | 0.761 |
| 95 | Total PAHs              | 21          | 0           | 0.86           | 47.46         | 12.5         | 10.04      | 118.6    | 10.89  | 5.041     | 1.995    | 0.871 |
| 96 |                         |             |             |                |               |              |            |          |        |           |          |       |

SLR Page 2 of 3

SLR Project No.: 209.40666 January 2020

|     | АВ                      | С         | D           | Е              | F            | G             | Н           | I     | J      | K      | L      | М      |
|-----|-------------------------|-----------|-------------|----------------|--------------|---------------|-------------|-------|--------|--------|--------|--------|
| 1   |                         |           | General Sta | itistics on Ui | ncensored D  | ata           |             |       |        |        |        |        |
| 2   | Date/Time of Co         |           | ProUCL 5.1  | 1/28/2020 3:   | 56:56 PM     |               |             |       |        |        |        |        |
| 3   | User Select             | •         |             |                |              |               |             |       |        |        |        |        |
| 4   |                         | From File | SED 0.15+n  | nbg Chemist    | ry_input_v2. | xls           |             |       |        |        |        |        |
| 5   | Full                    | Precision | OFF         |                |              |               |             |       |        |        |        |        |
| 6   |                         |           |             |                |              |               |             |       |        |        |        |        |
| 97  |                         |           | Pe          | rcentiles usi  | ng all Detec | ts (Ds) and N | Ion-Detects | (NDs) |        |        |        |        |
| 98  |                         |           | I           |                |              | T             |             |       |        |        |        |        |
| 99  | Variable                | NumObs    | # Missing   | 10%ile         | 20%ile       | ` '           | 50%ile(Q2)  | ` '   | 80%ile | 90%ile | 95%ile | 99%ile |
| 100 | antimony                | 21        | 0           | 0.8            | 8.0          | 0.8           | 0.8         | 1.1   | 1.3    | 1.5    | 1.7    | 1.86   |
| 101 | arsenic                 | 21        | 0           | 3.1            | 3.7          | 4.2           | 5.4         | 6.8   | 6.9    | 9      | 9.1    | 14.62  |
| 102 | barium                  | 21        | 0           | 40             | 80           | 80            | 143         | 217   | 228    | 265    | 397    | 397.8  |
| 103 | beryllium               | 21        | 0           | 0.24           | 0.3          | 0.31          | 0.39        | 0.45  | 0.48   | 0.51   | 0.52   | 0.784  |
| 104 | boron                   | 21        | 0           | 5              | 13           | 15            | 21          | 32    | 32     | 40     | 40     | 44     |
| 105 | cadmium                 | 21        | 0           | 0.4            | 1.1          | 1.2           | 7.6         | 19    | 20     | 29     | 49     | 64.2   |
| 106 | chromium (III+VI)       | 21        | 0           | 12             | 21           | 23            | 32          | 45    | 49     | 52     | 87     | 95     |
| 107 | copper                  | 21        | 0           | 29             | 65           | 69            | 82          | 126   | 127    | 175    | 265    | 339.4  |
| 108 | lead                    | 21        | 0           | 20             | 59           | 67            | 115         | 141   | 173    | 194    | 228    | 238.4  |
| 109 | molybdenum              | 21        | 0           | 0.3            | 0.6          | 0.6           | 0.9         | 1.1   | 1.2    | 1.5    | 2.4    | 3.12   |
| 110 | nickel                  | 21        | 0           | 15             | 18           | 19            | 35          | 52    | 55     | 65     | 89     | 92.2   |
| 111 | selenium<br>            | 21        | 0           | 0.7            | 0.7          | 0.7           | 0.7         | 0.7   | 0.7    | 0.7    | 0.7    | 1.34   |
| 112 | silver                  | 21        | 0           | 0.37           | 0.47         | 0.87          | 3.2         | 4.5   | 6.7    | 8.3    | 17     | 25     |
| 113 | thallium                | 21        | 0           | 0.08           | 0.1          | 0.1           | 0.11        | 0.14  | 0.15   | 0.17   | 0.18   | 0.236  |
| 114 | uranium                 | 21        | 0           | 0.42           | 0.43         | 0.46          | 0.53        | 0.6   | 0.64   | 0.73   | 0.78   | 0.804  |
| 115 | vanadium                | 21        | 0           | 13             | 14           | 14            | 18          | 20    | 22     | 25     | 26     | 29.2   |
| 116 | zinc                    | 21        | 0           | 86             | 250          | 253           | 324         | 437   | 489    | 546    | 818    | 901.2  |
| 117 | a and ammonium (as N)   | 21        | 0           | 100            | 100          | 100           | 100         | 200   | 200    | 200    | 200    | 200    |
| 118 | kjeldahl nitrogen total | 21        | 0           | 200            | 500          | 600           | 700         | 1000  | 1200   | 1300   | 1400   | 1480   |
| 119 | phosphorus              | 21        | 0           | 637            | 827          | 881           | 937         | 1090  | 1140   | 1444   | 1760   | 1808   |
| 120 | Fecal Coliforms         | 21        | 0           | 1000           | 1000         | 1000          | 1000        | 1000  | 1000   | 1000   | 1000   | 7400   |
| 121 | acenaphthylene          | 21        | 0           | 0.05           | 0.05         | 0.1           | 0.1         | 0.1   | 0.1    | 0.1    | 0.1    | 0.1    |
| 122 | acenaphthene            | 21        | 0           | 0.05           | 0.1          | 0.1           | 0.16        | 0.28  | 0.29   | 0.91   | 0.92   | 0.96   |
| 123 | anthracene              | 21        | 0           | 0.05           | 0.13         | 0.13          | 0.21        | 0.31  | 0.34   | 0.56   | 1.08   | 1.112  |
| 124 | benz(a)anthracene       | 21        | 0           | 0.12           | 0.56         | 0.6           | 0.75        | 0.99  | 1.01   | 1.51   | 2.48   | 3.328  |
| 125 | benzo(b)fluoranthene    | 21        | 0           | 0.21           | 0.93         | 0.96          | 1.18        | 1.5   | 1.6    | 2.37   | 2.92   | 4.552  |
| 126 | benzo(g,h,i)perylene    | 21        | 0           | 0.1            | 0.36         | 0.37          | 0.45        | 0.6   | 0.66   | 0.89   | 1.2    | 1.224  |
| 127 | benzo(k)fluoranthene    | 21        | 0           | 0.06           | 0.28         | 0.3           | 0.34        | 0.5   | 0.52   | 0.77   | 1.11   | 1.406  |
| 128 | benzo(a)pyrene          | 21        | 0           | 0.12           | 0.56         | 0.59          | 0.72        | 0.9   | 0.92   | 1.38   | 2.09   | 2.906  |
| 129 | chrysene                | 21        | 0           | 0.11           | 0.7          | 0.71          | 0.88        | 1.1   | 1.23   | 1.87   | 2.51   | 3.734  |
| 130 | dibenz(a,h)anthracene   | 21        | 0           | 0.06           | 0.1          | 0.1           | 0.1         | 0.14  | 0.14   | 0.21   | 0.27   | 0.334  |
| 131 | fluoranthene            | 21        | 0           | 0.3            | 1.3          | 1.44          | 1.98        | 2.76  | 2.95   | 4.85   | 6.15   | 9.47   |
| 132 | fluorene                | 21        | 0           | 0.05           | 0.1          | 0.1           | 0.25        | 0.44  | 0.54   | 0.67   | 1.04   | 1.056  |
| 133 | indeno(1,2,3-cd)pyrene  | 21        | 0           | 0.1            | 0.31         | 0.31          | 0.36        | 0.5   | 0.51   | 0.71   | 1.04   | 1.208  |
| 134 | methylnaphthalene, 1-   | 21        | 0           | 0.05           | 0.1          | 0.1           | 0.12        | 0.42  | 0.47   | 0.73   | 0.85   | 0.882  |
| 135 | methylnaphthalene, 2-   | 21        | 0           | 0.05           | 0.1          | 0.1           | 0.24        | 0.76  | 1.16   | 1.57   | 1.92   | 1.936  |
| 136 | naphthalene             | 21        | 0           | 0.05           | 0.07         | 0.1           | 0.1         | 0.14  | 0.17   | 0.44   | 0.45   | 1.05   |
| 137 | phenanthrene            | 21        | 0           | 0.06           | 0.62         | 0.85          | 1.31        | 2.9   | 2.92   | 4.39   | 6.88   | 9.376  |
| 138 | pyrene                  | 21        | 0           | 0.25           | 1.24         | 1.24          | 1.64        | 2.24  | 2.31   | 3.69   | 5.35   | 7.334  |
| 139 | Total PAHs              | 21        | 0           | 1.53           | 6.64         | 7.54          | 10.04       | 13.58 | 14.87  | 21.11  | 32.77  | 44.52  |

SLR Page 3 of 3

SLR Project No.: 209.40666 January 2020

SED 0-0.15 mbss

| SED                         | 0-0.15 mbss  |                       |
|-----------------------------|--------------|-----------------------|
| Parameter                   | 95% UCLM     | ProUCL Method applied |
| aluminum                    | 11987        | 95% BCA Bootstrap     |
| antimony                    | 0.932        | 95% KM (BCA)          |
| arsenic                     | 5.517        | 95% BCA Bootstrap     |
| barium                      | 117.9        | 95% BCA Bootstrap     |
| beryllium                   | 0.477        | 95% BCA Bootstrap     |
| boron                       | 19           | 95% BCA Bootstrap     |
| cadmium                     | 2.427        | 95% BCA Bootstrap     |
| chromium (III+VI)           | 27.52        | 95% BCA Bootstrap     |
| copper                      | 91.01        | 95% BCA Bootstrap     |
| iron                        | 23967        | 95% BCA Bootstrap     |
| lead                        | 57.9         | ·                     |
| manganese                   | 589          | •                     |
| mercury                     | 0.187        | •                     |
| molybdenum                  | 1.407        | 95% BCA Bootstrap     |
| nickel                      | 24.34        | 95% BCA Bootstrap     |
| selenium                    | 24.34<br>N/A |                       |
| silver                      | 1.126        |                       |
| sodium                      |              | '                     |
| thallium                    | 360.7        | 95% BCA Bootstrap     |
|                             | 0.177        | 95% BCA Bootstrap     |
| tin                         | 4.822        | 95% BCA Bootstrap     |
| titanium                    | 137.3        | 95% BCA Bootstrap     |
| uranium                     | 0.687        |                       |
| vanadium                    | 21.05        | 95% BCA Bootstrap     |
| zinc                        | 349.3        | 95% BCA Bootstrap     |
| acenaphthylene              | 0.0423       | ` '                   |
| acenaphthene                | 0.341        | '                     |
| anthracene                  | 0.867        | 95% KM (BCA)          |
| benz(a)anthracene           | 1.83         | '                     |
| benzo(b)fluoranthene        | 2.517        | •                     |
| benzo(b+j)fluoranthenes     | 1.267        |                       |
| benzo(g,h,i)perylene        | 1.236        | 95% BCA Bootstrap     |
| benzo(k)fluoranthene        | 0.71         | 95% KM (BCA)          |
| benzo(a)pyrene              | 1.712        | 95% BCA Bootstrap     |
| chrysene                    | 2.155        | 95% BCA Bootstrap     |
| dibenz(a,h)anthracene       | 0.242        | 95% KM (BCA)          |
| fluoranthene                | 6.834        | 95% BCA Bootstrap     |
| fluorene                    | 0.395        | 95% KM (BCA)          |
| indeno(1,2,3-cd)pyrene      | 0.997        | 95% BCA Bootstrap     |
| methylnaphthalene, 1-       | N/A          | -                     |
| methylnaphthalene, 2-       | 0.0877       | 95% KM (BCA)          |
| naphthalene                 | 0.191        | 95% KM (BCA)          |
| phenanthrene                | 4.336        | 95% BCA Bootstrap     |
| pyrene                      | 4.973        | 95% BCA Bootstrap     |
| PAHs (sum of total)         | 26.41        | 95% BCA Bootstrap     |
| ammonia and ammonium (as N) | N/A          | -                     |
| ammonia as N                | 122.7        | 95% BCA Bootstrap     |
| kjeldahl nitrogen total     | 841.8        |                       |
| nitrogen (total)            | N/A          | ·                     |
| organic phosphorus          | 3.25         |                       |
| phosphorus                  | 1020         | ` '                   |
| Fecal Coliforms             | 25529        | •                     |
|                             |              | (20.1)                |

SLR Page 1 of 3

SLR Project No.: 209.40666 January 2020

SED 0.15+ mbss

| SEC                         | 0.15+ mbss |                         |                |
|-----------------------------|------------|-------------------------|----------------|
| Parameter                   | 95% UCLM   | ProUCL Method applied   |                |
| aluminum                    |            |                         |                |
| antimony                    | 1.157      | 95% KM (BCA)            |                |
| arsenic                     | 7.205      | 95% BCA Bootstrap       |                |
| barium                      | 205        | 95% BCA Bootstrap       |                |
| beryllium                   | 0.458      | 95% BCA Bootstrap       |                |
| boron                       | 12.8       | 95% BCA Bootstrap       |                |
| cadmium                     | 21.49      | 95% BCA Bootstrap       |                |
| chromium (III+VI)           | 46.36      | 95% BCA Bootstrap       |                |
| copper                      | 63.8       | 95% BCA Bootstrap       | only 5 samples |
| iron                        |            |                         |                |
| lead                        | 71.6       | 95% BCA Bootstrap       |                |
| manganese                   |            |                         |                |
| mercury                     |            |                         |                |
| molybdenum                  | 1.329      | 95% BCA Bootstrap       |                |
| nickel                      | 20         |                         | only 5 samples |
| selenium                    | NC         | only 3 samples detected |                |
| silver                      | 7.471      | 95% KM (BCA)            |                |
| sodium                      |            |                         |                |
| thallium                    | 0.14       | 95% BCA Bootstrap       |                |
| tin                         |            |                         |                |
| titanium                    |            |                         |                |
| uranium                     | 0.591      | 95% BCA Bootstrap       |                |
| vanadium                    | 17.2       | 95% BCA Bootstrap       | only 5 samples |
| zinc                        | 285.6      | 95% BCA Bootstrap       | only 5 samples |
| acenaphthylene              | NC         | ND .                    |                |
| acenaphthene                | 0.389      | 95% BCA Bootstrap       |                |
| anthracene                  | 0.438      | 95% BCA Bootstrap       |                |
| benz(a)anthracene           | 1.316      | 95% BCA Bootstrap       |                |
| benzo(b)fluoranthene        | 1.88       | 95% BCA Bootstrap       |                |
| benzo(b+j)fluoranthenes     |            |                         |                |
| benzo(g,h,i)perylene        | 0.644      | 95% BCA Bootstrap       |                |
| benzo(k)fluoranthene        | 0.602      | ·                       |                |
| benzo(a)pyrene              | 1.2        | 95% BCA Bootstrap       |                |
| chrysene                    | 1.511      | 95% BCA Bootstrap       |                |
| dibenz(a,h)anthracene       | 0.164      | 95% BCA Bootstrap       |                |
| fluoranthene                | 3.594      | ·                       |                |
| fluorene                    | 0.459      |                         |                |
| indeno(1,2,3-cd)pyrene      | 0.569      | 95% BCA Bootstrap       |                |
| methylnaphthalene, 1-       | 0.4        | ·                       |                |
| methylnaphthalene, 2-       | 0.834      | •                       |                |
| naphthalene                 | 0.33       | •                       |                |
| phenanthrene                | 3.394      | •                       |                |
| pyrene                      | 2.878      | •                       |                |
| PAHs (sum of total)         | 19.31      | ·                       |                |
| ammonia and ammonium (as N) | NC         | •                       |                |
| ammonia as N                |            |                         |                |
| kjeldahl nitrogen total     | 895.2      | 95% BCA Bootstrap       |                |
| nitrogen (total)            | N/A        | ·                       |                |
| organic phosphorus          | , / (      | 95% KM (BCA)            |                |
| phosphorus                  | 1163       |                         |                |
| Fecal Coliforms             | 1100       | 95% KM (BCA)            |                |
| . coar comornio             |            | JOTO KITI (DCA)         |                |

SLR Page 1 of 3

SLR Project No.: 209.40666 January 2020

Deep sample > shallow Deep sample < shallow

#### SED 0-0.15 mbss SED 0.15+ mbss

| Parameter                   | 95% UCLM     | 95% UCLM | Difference (Shallow - Deep) |                 |
|-----------------------------|--------------|----------|-----------------------------|-----------------|
| aluminum                    | 11987        |          | NC, deep not sampled        |                 |
| antimony                    | 0.932        | 1.157    | -0.225                      |                 |
| arsenic                     | 5.517        | 7.205    | -1.688                      |                 |
| parium                      | 117.9        | 205      | -87.1 9                     | 5% UCLM < T1 bk |
| beryllium                   | 0.477        | 0.458    | 0.019                       |                 |
| boron                       | 19           | 12.8     | 6.2                         |                 |
| cadmium                     | 2.427        | 21.49    | -19.063                     |                 |
| chromium (III+VI)           | 27.52        | 46.36    | -18.84                      |                 |
| copper                      | 90.45        | 63.8     | 26.65                       |                 |
| ron                         | 23967        | 03.0     | NC, deep not sampled        |                 |
| ead                         | 47.47        | 71.6     | -24.13                      |                 |
| nanganese                   | 589          | 71.0     | NC, deep not sampled        |                 |
| nercury                     | 0.187        |          | NC, deep not sampled        |                 |
| molybdenum                  | 1.407        | 1.329    | 0.078                       |                 |
| •                           |              |          |                             |                 |
| nickel                      | 22.47        | 20       | 2.47                        |                 |
| selenium                    | N/A          | NC       | NC 95% UCLM not calculated  |                 |
| silver                      | 1.126        | 7.471    |                             |                 |
| sodium                      | 360.7        |          | NC, deep not sampled        |                 |
| thallium                    | 0.177        | 0.14     | 0.037                       |                 |
| tin                         | 4.822        |          | NC, deep not sampled        |                 |
| titanium                    | 137.3        |          | NC, deep not sampled        |                 |
| uranium                     | 0.687        | 0.591    | 0.096                       |                 |
| /anadium                    | 21.05        | 17.2     | 3.85                        |                 |
| zinc                        | 352.1        | 285.6    | 66.5                        |                 |
| acenaphthylene              | 0.0423       | NC       | NC 95% UCLM not calculated  |                 |
| acenaphthene                | 0.341        | 0.389    | -0.048                      |                 |
| anthracene                  | 0.867        | 0.438    | 0.429                       |                 |
| benz(a)anthracene           | 1.83         | 1.316    | 0.514                       |                 |
| benzo(b)fluoranthene        | 2.517        | 1.88     | 0.637                       |                 |
| penzo(b+j)fluoranthenes     | 1.267        |          | NC, deep not sampled        |                 |
| penzo(g,h,i)perylene        | 1.236        | 0.644    | 0.592                       |                 |
| penzo(k)fluoranthene        | 0.71         | 0.602    | 0.108                       |                 |
| penzo(a)pyrene              | 1.712        | 1.2      | 0.512                       |                 |
| chrysene                    | 2.155        | 1.511    | 0.644                       |                 |
| dibenz(a,h)anthracene       | 0.242        | 0.164    | 0.078                       |                 |
| fluoranthene                | 6.834        | 3.594    | 3.24                        |                 |
| fluorene                    | 0.395        | 0.459    | -0.064                      |                 |
| ndeno(1,2,3-cd)pyrene       | 0.997        | 0.569    | 0.428                       |                 |
| methylnaphthalene, 1-       | N/A          | 0.4      | NC 95% UCLM not calculated  |                 |
| methylnaphthalene, 2-       | 0.0877       | 0.834    | -0.7463                     |                 |
| naphthalene                 | 0.191        | 0.33     | -0.139                      |                 |
| phenanthrene                | 4.336        | 3.394    | 0.942                       |                 |
| pyrene                      | 4.973        | 2.878    | 2.095                       |                 |
| PAHs (sum of total)         | 26.41        | 19.31    | 7.1                         |                 |
| ammonia and ammonium (as N) | N/A          | NC       | NC 95% UCLM not calculated  |                 |
| ammonia as N                | 122.7        | IVC      | NC, deep not sampled        |                 |
| kjeldahl nitrogen total     | 841.8        | 895.2    |                             |                 |
|                             | 841.8<br>N/A | N/A      | NC 95% UCLM not calculated  |                 |
| nitrogen (total)            |              | IN/A     |                             |                 |
| organic phosphorus          | 3.25         | 11.02    | NC, deep not sampled        |                 |
| phosphorus                  | 1020         | 1163     | -143                        |                 |
| Fecal Coliforms             | 25529        |          | NC, deep not sampled        |                 |

SLR Page 1 of 3

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 396 of 406

### APPENDIX G TRVs

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

# APPENDIX G SURFACE WATER TOXICITY REFERENCE VALUES

This appendix presents the surface water toxicity reference values (TRVs) used as part of the effects assessment section for aquatic life.

The selection of TRVs for aquatic life included a review of direct contact ecotoxicity values from the following sources:

- Technical supporting documents published by BC MOE as part of the BC AWQG, and WWQG;
- Technical supporting documents published by CCME as part of the Canadian Environmental Quality Guidelines for the protection of aquatic life;
- Technical supporting documents published by the USEPA to support the Ambient Water Quality Guidelines;
- Technical supporting document published by the Ontario Ministry of Energy and Environment as part of the provincial sediment quality standards; and
- Publications of peer reviewed toxicology literature, accessed from Web of Science citation indexing service.

Preferences were given to chronic sublethal toxicity data for reproduction and growth for species representative of a warm water system, if available, when selecting TRVs. For non-listed species, preferences were given to the lowest observed effect level (LOEL) or EC20, where available. In the ERA the goal was not to protect each individual from any toxic effect, but rather to protect enough individuals so that a viable population and community of organisms can be maintained. Therefore, EC20s were considered appropriate TRVs where available for non-listed species. To account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area, a no observed adverse effect level (NOAEL) was also selected for invertebrates following MECP guidance (MECP 2019).

The proposed TRVs are outlined in Table A and discussed below the table.

Table A: Surface Toxicological Reference Values for the Protection of Aquatic Life (µg/L)

| COPC           | Invertebrates                               | Aquatic Plants | Fish  | Amphibians |  |  |
|----------------|---------------------------------------------|----------------|-------|------------|--|--|
| Aluminum       | 320 (community)<br>100 (individual)°        | 460            | 200   | 320        |  |  |
| Iron (total)   | 1740 (community)<br>300 (individual)°       | 1740           | 300ª  | 1740       |  |  |
| nitrite (as N) |                                             | 60b            | 5,000 | 60a        |  |  |
| phosphorus     | 30 μg/L (benchmark to prevent algal growth) |                |       |            |  |  |

- a- PWQO guideline retained as TRV due to limited toxicity information for amphibians
- b- PWQO guideline retained as TRV due to limited ROC-specific toxicity information available.
- c- A NOAEL was selected, where available, to account for the potential presence of SAR (i.e. the Lilliput mussel) in the study area.

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 398 of 406

SLR Project No.: 209.04666 January 2020

#### **Aluminum**

The toxicity of aluminum in surface water varies with pH. The PWQO for aluminum (total) is based on two laboratory studies and one field study for both cold water and warm water fish. The studies used for the PWQO indicated toxicity at 0.150 (LC50 in a 7 day study for goldfish, pH of 7.4) to 0.170 mg/L (LC50 in a 8 day study for large mouth bass, pH of 7.2-7.8) of aluminum. No effect concentrations on fish were reported using 0.045-0.06 mg/L aluminum. Only one study by Freeman and Everhart (1971) was reviewed with a non-lethal endpoint.

One toxicity study for Daphnia Magna was reviewed in the development of the PWQO guideline. The study showed a 16 percent reduction in reproduction for Daphnia Magna following a 21-day exposure to 0.32 mg/L of aluminum (pH of 7.7). Two toxicity studies for algae were reviewed in the development of the PWQO guideline. The results of the studies are summarized below:

- Call et Al. 1984: A 4-day study with aluminum concentrations of 0.46 to< 0.2 mg/L (pH of 7.6 to 7.5) and 0.57 to <0.2 mg/L (pH of 8.2 to 7.5) resulted in EC50 in biomass for Selenastrum carpicornutum.
- Rao and Subramaniam, 1982: A 8-day study with an aluminum concentration of 0.81 mg/L (pH of 7.9) resulted in growth inhibition in diatom *Cyclotella Meneghiana*.

The BC Environment and Climate Change (BC ENV) completed a review of toxicological studies for aluminum in has selected a maximum concentration of 100  $\mu$ g/L for dissolved aluminum as a concentration considered safe for sensitive aquatic life (at pH > 6.5) (Butcher, 1988). The BC ENV guideline is based on the same studies as the PWQO and CCME guideline for waters with pH greater than 6.5 but is expressed in terms of dissolved aluminum. Dissolved aluminum was selected since most of the bio-reactive aluminum is likely to be in the dissolved fraction (BC ENV 2001).

Chronic toxicity data for aluminum reviewed by BC ENV ranged from 10 µg/L (95% survival of brook trout after 14 days exposure at pH 4.4 to 6,700 µg/L for chronic effects to midge larvae at pH 6.6 (endpoint not described). The lowest chronic toxicity value reviewed by BC MOE for pH ≥ 6.5 was 320 µg/L for Daphnia Magna (16% reproductive impairment at pH 7.7). The lowest chronic value for pH ≥ 6.5 for fish was a LC50 of 500 µg/L for rainbow trout obtained after 44 days exposure at pH ranging from 6.5 to 7.4 (Butcher, 1988). A LC20 of 1000 µg/L was reported for brook trout for eyed eggs mortality after 8 days of exposure at pH 6.5 (Butcher, 1988). CCME (1997) indicates that aquatic plants appear to be less sensitive than some invertebrates and reported a 50% reduction in root growth observed at 2500 µg/L at circumneutral pH for the eurasian milfoil (Myriophyllum spicatum L). BC ENV reported a 96-hour EC50 of 570 µg/L for biomass reduction (growth endpoint) for Selenastrum carpicornutum at pH 7.6 and of 460 µg/L at pH 8.2. Chronic toxicity values for aquatic plants obtained at pH higher than 6.5 were higher than the reported acute values. BC ENV also reported that aquatic macrophytes may be relatively tolerant to aluminum and reported that frond production in Lemna minor was not significantly affected after 96-hour exposure in water with aluminum ranging from 300 to 46,000 µg/L aluminum. BC ENV reported non-effect level for embryos of wood frog at total aluminum concentration of 200 µg/L and pH 5.57.

Species-specific TRVs were selected for aluminum. Based on the pH of the receiving environment, the lowest chronic value of 500  $\mu$ g/L (LC50) obtained at pH > 6.5 (Butcher, 1988). This value was converted to an LC20 of **200**  $\mu$ g/L and selected as the fish TRV. Based on the pH of the study area (7.87 – 8.42), the lowest chronic value of **460**  $\mu$ g/L obtained at pH 8.2

Page 399 of 406 SLR Project No.: 209.04666 January 2020

Appendix "A" to Report PW19008(g)/LS19004(g)

(Butcher, 1988) and 7.6 to 7.5 (Call et Al. 1984, as reviewed in MOEE 1988) was selected as the TRV for aquatic plants. The lowest chronic toxicity value of **320 \mug/L** for Daphnia Magna obtained at pH 7.7 was selected as the TRV for invertebrates and amphibians. The BC WQG for dissolved aluminum of **100 \mug/L** was retained as the TRV to benthic invertebrate SAR.

#### Iron

The PWQQO for iron is based on the prevention of the creation of iron "floc" in surface water and subsequent physical effects on aquatic life. No observations of iron precipitate were documented at the site, therefore species-specific TRVs were selected. Uncertainty related to the precipitation of iron is discussed in Section 8.0.

The MECP completed a review of toxicological data for iron during the development of the PWQO in 1979, however, additional studies have been completed since this work was completed. The BC ENV updated their water quality guideline for Iron in 2008. The BC new water quality guideline for the protection of aquatic life is 1000  $\mu$ g/L for total iron and 350  $\mu$ g/L for dissolved iron (Phibben et al., 2008).

The guideline for total iron is based on recent field-based research of Linton *et al.* (2007). Linton *et al.* (2007) derived two benchmarks on change in community structure to establish the guideline. The first benchmark of 210  $\mu$ g/L corresponds to no or minimal changes in aquatic community structure and function. The second benchmark of 1740  $\mu$ g/L allows for a slight to moderate changes in community population (i.e., loss of some rare species and/or replacement of sensitive ubiquitous taxa with more tolerant taxa). Phibben et al (2008) selected 1000  $\mu$ g/L as the value for the BC guideline based on the precautionary principle and noted that this value may be overprotective in some instances. They indicated that other recent research has recommended 1700  $\mu$ g/L as a guideline for total iron.

The BCWQ guideline for dissolved iron is based toxicity tests conducted by the Pacific Environmental Science Center (PESC) for the BC MOE. The test species included rainbow trout, the amphipod *Hyalella azteca*, the chironomid *Chironomus tentans*, *Daphnia magna*, and *Selanastrum capricornutum*. The lowest toxicity value obtained with the above species was the acute LC<sub>50</sub> of 3500  $\mu$ g/L reported for *Hyalella* in soft water. The EC<sub>50</sub> for *Hyalella* was divided by a safety factor of 10 and rounded down to 350  $\mu$ g/L to derive the BC dissolved iron guideline (Phibben *et al.*, 2008). The LC50 for rainbow trout in soft water was >6400  $\mu$ g/L and the LC50 for *selenastrum capricornatum* was 3600  $\mu$ g/L.

Based on the above information the benchmark of **1740**  $\mu$ g/L for total iron proposed by Linton et al (2007) was adopted as the TRV for protection of the benthic community. Linton et al (2007) set a benchmark of 210  $\mu$ g/L for no or minimal changes to aquatic community structure and function, however this value is below the PWQO for iron of 300  $\mu$ g/L. Therefore the PWQO of **300**  $\mu$ g/L was adopted as the TRV for protection of benthic invertebrates on an individual level (i.e. SAR).

#### **Phosphorus**

Phosphorus compounds are not toxic to aquatic life and thus does not need to be controlled to protect aquatic life from any direct negative effects (MOE 1979).

Although phosphorus is not toxic to aquatic life, concentrations must be controlled to prevent increased algal growth may result in undesirable changes in the aquatic ecosystem. The PWQO

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 400 of 406
SLR Project No.: 209.04666

January 2020

of 10 µg/L was set to provide a "high level of protection against aesthetic deterioration for the ice-free period" (MOEE 1979). The MECP Rationale for the Establishment of the Provincial Water Quality Objectives (MOE 1979) states that excessive plant growth in rivers and streams should be eliminated at a total phosphorus concentration below 30 µg/L.

#### **Nitrite**

#### Fish

Salmonids are more sensitive to nitrite than are other fish species and show very little difference among the species. There is considerably more variation among warm-water fish species (Lewis and Morris 1986). A study by Palachek and Tomasso (1984) reviewed as part of CCREM 1987 indicated that 96-h LC50 values of nitrite-nitrogen for channel catfish (*Ictalurus punctatus*), tilapia (*Tilapia aurea*) and largemouth bass (*Micropterus salmoides*) were 7, 16 and 140 mg/L, respectively.

Small fish (including the larval stage) are unlikely to be more sensitive to nitrite than larger fish of the same species (CCREM 1987). A concentration of 0.06 mg/L was noted to be protective of salmonid species in two studies review in CCREM 1987:

- Russo et al. 1974 indicated no rainbow trout died over 10 d at a nitrite concentration of 0.06 mg/L; and
- Wedemeyer and Yasutake 1978 indicated steelhead juveniles exposed for 6 months first showed tissue damage in the gills at a concentration of 0.06 mg/L. No reduction in growth was noted over the 6 months' exposure period to 0.06 mg/L at a chloride concentrations of 2.3 mg/L.

Based on CCREM 1987, concentrations of nitrite (as N) of 5,000  $\mu$ g/L, would be protective of most warm-water fish and concentrations at or below 60  $\mu$ g/L should protect salmonid fish. Since Chedoke creek is a warm water system, **5,000 \mug/L** was selected as the TRV for fish. It's noted that Wedemeyer and Yasutake 1978 (as reviewed in CCREM 1987) indicated that addition of chloride ions increases the tolerance of salmonid fish to nitrite. Although chloride concentrations were not measured within Chedoke Creek, based on the urban nature of the creek and location between two roadways (Macklan Street North and Highway 403) chloride levels are likely to be elevated.

Limited information on nitrite-toxicity to aquatic plants and invertebrates was available for review. The CCME WQG of  $60~\mu g/L$  was selected for the protection of aquatic plants and invertebrates.

Page 401 of 406 SLR Project No.: 209.04666 January 2020

#### REFERENCES

- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019).
- BC Working WQGs for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV 2018).
- BC Approved WQG for the protection of Freshwater Aquatic Life (AWF) Long-term Values (BC ENV, 2019).
- Butcher. G.A. 1988. Water Quality Criteria for Aluminum. Technical Appendix. BC Ministry of Environment and Parks. Water Quality Unit. Resource Quality Section. Water Management Branch.
- Canadian Council of Ministers of the Environment (CCME) 1997. Canadian Council of Ministers of Environment. A Framework for Ecological Risk Assessment: Technical Appendices. March, 1997.
- CCME 2008. Canadian Water Quality Guidelines, Canadian Council of Ministers of the Environment. November 2008.
- CCREM. 1987. Canadian Council of Resource and Environment Ministers. Canadian water quality guidelines. Environment Canada (1987).
- Linton, T.K., M.A.W. Pacheco D.O. McIntyre W.H. Clement and J. Goodrich-Mahoney. 2007. Development of bioassessment-based benchmarks for iron. *Environ. Toxicol. Chem.* 26(6): 1291-1298. In: Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron. Overview Report.
- MOE 1979. Rationale for the Establishment of the Provincial Water Quality Objectives. September 1979. Ministry of the Environment.
- MOE 1988. Scientific Criteria Document for Development of Provincial Water Quality Objectives and Guidelines. Aluminum. September 1988. Ministry of the Environment.
- MOE 1992. Ontario's Water Quality Objective Development Process. March 1992. Ministry of the Environment.
- Palachek and Tomasso (1984).
- Phippen B., C. Horvath, R. Nordin and N. K. Nagpal. 2008. Ambient Water Quality Guidelines for Iron.
- Russo et al. 1974.
- Wedemeyer, G.A. and W.T. Yasatake. 1978. Prevention and treatment of nitrite toxicity in juvenile steelhead trout (*Salmo gairdneri*). J. Fish. Res. Board Can. 35: 822-827. (Cited in MOE 1979).

Appendix "A" to Report PW19008(g)/LS19004(g)
Page 402 of 406

# APPENDIX H Uncertainty Assessment

Ecological Risk Assessment Chedoke Creek Hamilton, Ontario SLR Project No.: 209.40666.00000

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

|                   |                                   |                                   |       | 100                   | DIMENT CHA             | SEDIMENT CHAPACTERIZATION | 200   |                              |                             |                | SEDIMENT CHARACTEDIATION                 |                             |             | ECOLOGICAL HEALTH SCREENING     | SNIN                              |
|-------------------|-----------------------------------|-----------------------------------|-------|-----------------------|------------------------|---------------------------|-------|------------------------------|-----------------------------|----------------|------------------------------------------|-----------------------------|-------------|---------------------------------|-----------------------------------|
|                   |                                   |                                   |       | 5                     |                        |                           |       |                              |                             |                |                                          |                             |             |                                 |                                   |
|                   |                                   |                                   | •     | Maximum Concentration | ncentration            |                           |       | Second Highest Concentration | oncentration                |                | Backį                                    | Background                  | Screening   | Screening Benchmarks            |                                   |
| Contaminant       | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | mg/kg | Sample ID             | Sample Depth<br>(mbss) | Sample Date               | mg/kg | Sample ID                    | Sample<br>Depth<br>(mbss)   | Sample<br>Date | Table 1 Background<br>Standards for Soil | MOE 2008, 2011 <sup>a</sup> | ON PSQG LEL | CCME SedQG Freshwater<br>(ISQG) | COPC?                             |
| Metals            |                                   |                                   |       |                       |                        |                           |       | Deep Sec                     | Deep Sediment ( >0.15 mbss) | 5 mbss)        |                                          |                             |             |                                 |                                   |
| Antimony          | 21 (+0)                           | 11 (+0)                           | 1.9   | C-5 West              | 0.15-0.3               | 9/19/2018                 | 1.7   | C-5 West                     | 0.3                         | 9/19/2018      | 1.0                                      |                             |             |                                 | Uncertain                         |
| Arsenic           | 21 (+0)                           | 21 (+0)                           | 16    | C-5 East              | 0.15-0.3               | 9/19/2018                 | 9.1   | C-5 West                     | 0.3                         | 9/19/2018      |                                          | 4.0                         | 9           | 5.9                             | Yes; maximum > LEL                |
| Barium            | 21 (+0)                           | 21 (+0)                           | 398   | C-5 West              | 0.15-0.3               | 9/19/2018                 | 397   | C-5 West                     | 0.3                         | 9/19/2018      | 210.0                                    |                             |             |                                 | Uncertain                         |
| Beryllium         | 21 (+0)                           | 21 (+0)                           | 0.85  | C-5 East              | 0.15-0.3               | 9/19/2018                 | 0.52  | C4 Centre                    | 0.15-0.3                    | 9/19/2018      | 2.5                                      |                             |             |                                 | Mo monimum T able 4 he deam and   |
| Boron             | 5 (+0)                            | 5 (+0)                            | 16    | C-1 West              | 0.15-0.3               | 9/18/2018                 | 13    | C-2 West                     | 0.15-0.3                    | 9/18/2018      | 36.0                                     |                             |             |                                 | NO, HAZIMANI VI ADIB I DACNBIONIN |
| Cadmium           | 21 (+0)                           | 21 (+0)                           | 89    | C-5 West              | 0.3                    | 9/19/2018                 | 49    | C-5 West                     | 0.15-0.3                    | 9/19/2018      | ,                                        | 1.0                         | 9.0         | 9.0                             | Yes; maximum > LEL                |
| Chromium (III+VI) | 21 (+0)                           | 21 (+0)                           | 26    | C-5 West              | 0.3                    | 9/19/2018                 | 87    | C-5 West                     | 0.15-0.3                    | 9/19/2018      |                                          | 31.0                        | 26          | 37.3                            | Yes; maximum > LEL                |
| Copper            | 5 (+0)                            | 5 (+0)                            | 73    | C-2 West              | 0.15-0.3               | 9/18/2018                 | 71    | C-1 West                     | 0.15-0.3                    | 9/18/2018      |                                          | 25.0                        | 16          | 35.7                            | Yes; maximum > LEL                |
| Lead              | 5 (+0)                            | 5 (+0)                            | 100   | C-3 West              | 0.15-0.3               | 9/18/2018                 | 59    | C-2 West                     | 0.15-0.3                    | 9/18/2018      | ,                                        | 23.0                        | 31          | 35                              | Yes; maximum > LEL                |
| Molybdenum        | 21 (+0)                           | 21 (+0)                           | 3.3   | C-5 East              | 0.15-0.3               | 9/19/2018                 | 2.4   | C-2 West                     | 0.15-0.3                    | 9/18/2018      | 2.0                                      | ,                           |             |                                 | Uncertain                         |
| Nickel            | 5 (+0)                            | 5 (+0)                            | 23    | C-1 West              | 0.15-0.3               | 9/18/2018                 | 21    | C-2 West                     | 0.15-0.3                    | 9/18/2018      |                                          | 31.0                        | 16          |                                 | No; maximum < background          |
| Selenium          | 21 (+0)                           | 3 (+0)                            | 1.5   | C-5 East              | 0.15-0.3               | 9/19/2018                 | 7:0   | C-5 West                     | 0.15-0.3                    | 9/19/2018      | 1.2                                      |                             |             |                                 | Uncertain                         |
| Silver            | 21 (+0)                           | 20 (+0)                           | 27    | C-5 West              | 0.3                    | 9/19/2018                 | 17    | C-5 West                     | 0.15-0.3                    | 9/19/2018      |                                          | 0.5                         |             |                                 | Uncertain, maximum < background   |
| Thallium          | 21 (+0)                           | 21 (+0)                           | 0.25  | C-5 East              | 0.15-0.3               | 9/19/2018                 | 0.18  | C-5 West                     | 0.3                         | 9/19/2018      | 1.0                                      |                             |             |                                 |                                   |
| Uranium           | 21 (+0)                           | 21 (+0)                           | 0.81  | C-5 East              | 0.15-0.3               | 9/19/2018                 | 0.78  | C-5 West                     | 0.3                         | 9/19/2018      | 1.9                                      |                             |             |                                 | No; maximum < Table 1 background  |
| Vanadium          | 5 (+0)                            | 5 (+0)                            | 19    | C-1 West              | 0.15-0.3               | 9/18/2018                 | 18    | C-2 West                     | 0.15-0.3                    | 9/18/2018      | 96.0                                     |                             |             |                                 |                                   |
| Zinc              | 5 (+0)                            | 5 (+0)                            | 339   | C-2 West              | 0.15-0.3               | 9/18/2018                 | 305   | C-3 West                     | 0.15-0.3                    | 9/18/2018      |                                          | 65.0                        | 120         | 123                             | Yes; maximum > LEL                |

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

City of Hamilton Ecological Risk Assessment – Chedoke Creek

| Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle   Particle    |                        |         |                                   |       | IABL       | E H-1.                 | AMINANISC   | POLE  | A HAL CONCER     | N (COPC)                  | CKEENIN        | TABLE H-1. CONTAMINANTS OF FOLENTIAL CONCERN (COPC) SCREENING - DEFFER SEDIMENT (>0.15 mbss) (mg/kg) | ENT (>0.15 IIIDSS) (III     | g/kg)       |                                 |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------------------|-------|------------|------------------------|-------------|-------|------------------|---------------------------|----------------|------------------------------------------------------------------------------------------------------|-----------------------------|-------------|---------------------------------|-----------------------------------------|
| Occusionary         Ass, of simples         Ass, of simples         Assistance (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         Assignation (signal)         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                      |         |                                   |       | S          | EDIMENT CHA            | RACTERIZATI | NO    |                  |                           |                |                                                                                                      |                             |             | ECOLOGICAL HEALTH SCREENING     | NING                                    |
| Continuition   Paragraet (Page)   Continuity   Page   Continuity   C   |                        |         |                                   |       | Maximum Co | oncentration           |             |       | Second Highest C | oncentration              |                | Backg                                                                                                | ground                      | Screening   | Screening Benchmarks            |                                         |
| Inthone  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0)  21(-0 | Contaminant            |         | No. of Detectable<br>Conc. (+Dup) | mg/kg |            | Sample Depth<br>(mbss) |             | mg/kg | Sample ID        | Sample<br>Depth<br>(mbss) | Sample<br>Date | Table 1 Background<br>Standards for Soil                                                             | MOE 2008, 2011 <sup>a</sup> | ON PSQG LEL | CCME SedQG Freshwater<br>(ISQG) | COPC?                                   |
| Inhyment         21 (cb)         0 (cb)         Col Living         Col Living         0 (cb)         Col Living         Col Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PAHs                   |         |                                   |       |            |                        |             |       |                  |                           | ]              |                                                                                                      |                             |             |                                 |                                         |
| minimation         21 (-0)         (150)         (22 Votati         (0.156.3)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)         (150.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acenaphthylene         | 21 (+0) | (0+) 0                            | <0.1  | C-1 West   | 0.15-0.3               | 9/18/2018   | <0.1  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             |             | 0.00587                         | No; not detected.                       |
| month         21 (-4)         176 (-4)         1.08         C-3 Weet         016-03         918-2016         1.50         C-5 Weet         015-03         918-2016         1.51         C-5 Weet         0.55         918-2016         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acenaphthene           | 21 (+0) | 13 (+0)                           | 0.92  | C-4 Centre | 0.15-0.3               | 9/19/2018   | 0.91  | C-3 West         | 0.225                     | 0.15-0.3       |                                                                                                      |                             |             | 0.00671                         | Yes; maximum > ISQG                     |
| phyloparium         21 (-d)         19 (-d)         3.54         C-3 Weat         015-03         918-2018         151         C-5 Weat         0.5         C-5 Weat         0.5         C-5 Weat         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Anthracene             | 21 (+0) | 17 (+0)                           | 1.08  | C-3 West   | 0.15-0.3               | 9/18/2018   | 0.56  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 0.22        | 0.0469                          | Yes; maximum > LEL                      |
| physopheria         21 (+0)         16 (+0)         4.86         C-3 Weet         015-0.3         9182016         2.57         C-5 Weet         0.5 Weet         0.5 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet         0.15 GWeet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benz(a)anthracene      | 21 (+0) | 19 (+0)                           | 3.54  | C-3 West   | 0.15-0.3               | 9/18/2018   | 1.51  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 0.32        | 0.0317                          | Yes; maximum > LEL                      |
| Diplicarylatine         21 (-d)         18 (+d)         123         C-3 Weat         015-0.3         9182018         0.69         C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat         0.5 C-6 Weat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Benzo[b]fluoranthene   | 21 (+0) | 19 (+0)                           | 4.96  | C-3 West   | 0.15-0.3               | 9/18/2018   | 2.37  | C-5 West         | 0.3                       | 9/19/2018      | 0.3                                                                                                  |                             |             |                                 | No; assessed as total PAHs <sup>b</sup> |
| opportante         21 (+4)         148 (+9)         148         C-3 Weet         0.15-0.3         97/18/2016         0.77         C-2 Weet         0.15-0.3         97/18/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | benzo(g,h,i)perylene   | 21 (+0) | 18 (+0)                           | 1.23  | C-3 West   | 0.15-0.3               | 9/18/2018   | 0.89  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 0.17        |                                 | Yes; maximum > LEL                      |
| ne         21 (+0)         19 (+0)         3.11         C-3 West         0.15-0.3         9192016         1.88         C-6 West         0.5         9192016            ne         21 (+0)         19 (+0)         4.04         C-3 West         0.15-0.3         9192016         1.87         C-2 West         0.15-0.3         9192016            a.h)amthrocene         21 (+0)         13 (+0)         0.35         C-3 West         0.15-0.3         9192018         0.21         C-2 West         0.15-0.3         9192018          0.15-0.3         9192018          0.15-0.3         9192018          0.15-0.3         9192018          0.15-0.3         9192018         0.71         C-2 West         0.15-0.3         9192018         0.75-0.3         9192018         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | benzo(k)fluoranthene   | 21 (+0) | 18 (+0)                           | 1.48  | C-3 West   | 0.15-0.3               | 9/18/2018   | 0.77  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             | 0.24        |                                 | Yes; maximum > LEL                      |
| ne         21 (+0)         19 (+0)         4.04         C-3 Weet         0.15-0.3         9182018         1.87         C-2 Weet         0.15-0.3         9182018         1.87         C-2 Weet         0.15-0.3         9182018         1.87         C-2 Weet         0.15-0.3         9182018         0.21         C-2 Weet         0.15-0.3         9182018         0.27         C-2 Weet         0.15-0.3         9182018         0.71         C-2 Weet         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3         9182018         0.15-0.3 <td>Benzo(a)pyrene</td> <td>21 (+0)</td> <td>19 (+0)</td> <td>3.11</td> <td>C-3 West</td> <td>0.15-0.3</td> <td>9/18/2018</td> <td>1.38</td> <td>C-5 West</td> <td>0.3</td> <td>9/19/2018</td> <td></td> <td></td> <td>0.37</td> <td>0.0319</td> <td>Yes; maximum &gt; LEL</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Benzo(a)pyrene         | 21 (+0) | 19 (+0)                           | 3.11  | C-3 West   | 0.15-0.3               | 9/18/2018   | 1.38  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 0.37        | 0.0319                          | Yes; maximum > LEL                      |
| a.h.janthriacene         21 (+0)         13 (+0)         0.35         C-3 Week1         0.15-0.3         91/82018         0.21         C-5 Week1         0.50         91/82018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chrysene               | 21 (+0) | 19 (+0)                           | 4.04  | C-3 West   | 0.15-0.3               | 9/18/2018   | 1.87  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             | 0.34        | 0.0571                          | Yes; maximum > LEL                      |
| theree 21(+0) 19(+0) 10.3 C-3 Week 0.15-0.3 9/18/2018 4.85 C-2 Week 0.15-0.3 9/18/2018  21(+0) 16(+0) 1.04 C-3 Week 0.15-0.3 9/18/2018 0.67 C-5 Week 0.15-0.3 9/19/2018  12.3-cd)pyene 21(+0) 18(+0) 1.25 C-3 Week 0.15-0.3 9/18/2018 0.67 C-5 Week 0.15-0.3 9/19/2018  aphthalene, 2  21(+0) 18(+0) 1.3(+0) 1.34 C-5 Week 0.15-0.3 9/19/2018 0.65 C-4 Centre 0.15-0.3 9/19/2018  adente 2.1(+0) 13(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.22 C-4 Centre 0.15-0.3 9/19/2018  21(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.22 C-4 Centre 0.15-0.3 9/19/2018  21(+0) 19(+0) 10(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.22 C-2 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.29 C-2 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.29 C-2 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018 1.29 C-2 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 1.2 C-3 Week 0.15-0.3 9/19/2018  21(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0) 19(+0)                                                                                        | Dibenz(a,h)anthracene  | 21 (+0) | 13 (+0)                           | 0.35  | C-3 West   | 0.15-0.3               | 9/18/2018   | 0.21  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 90.0        | 0.00622                         | Yes; maximum > LEL                      |
| e         21(+0)         16(+0)         1.04         C-3 Week         0.15-0.3         9/18/2018         0.67         C-5 West         0.57         C-5 West         0.57         C-5 West         0.71         C-5 West         0.73         9/19/2018          9/19/2018            naphthalene, 1-         21(+0)         18(+0)         0.59         C-5 Weet         0.33         9/19/2018         0.65         C-4 Centre         0.15-0.3         9/19/2018         0.05         P           aphthalene, 2-         21(+0)         13(+0)         1.94         C-5 Weet         0.3         9/19/2018         1.82         C-4 Centre         0.15-0.3         9/19/2018         0.05         P           alene         21(+0)         13(+0)         1.94         C-5 Weet         0.15-0.3         9/19/2018         1.92         C-4 Centre         0.15-0.3         9/19/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fluoranthene           | 21 (+0) | 19 (+0)                           | 10.3  | C-3 West   | 0.15-0.3               | 9/18/2018   | 4.85  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             | 0.75        | 0.111                           | Yes; maximum > LEL                      |
| aprithalene, 1-  21 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 (+0)  18 ( | Fluorene               | 21 (+0) | 16 (+0)                           | 1.04  | C-3 West   | 0.15-0.3               | 9/18/2018   | 29:0  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      | ,                           | 0.19        | 0.0212                          | Yes; maximum > LEL                      |
| aphthalene, 1-         21 (+0)         18 (+0)         0.89         C-5 Weet         0.3         91/92018         0.86         C-4 Centre         0.15-0.3         91/92018         0.06         0.06           aphthalene, 2-         21 (+0)         13 (+0)         1.94         C-5 Weet         0.15-0.3         91/92018         1.92         C-4 Centre         0.15-0.3         91/92018         -           alene         21 (+0)         10 (+0)         1.2         C-3 Weet         0.15-0.3         91/92018         4.39         C-2 Weet         0.15-0.3         91/92018         -           threne         21 (+0)         19 (+0)         10         C-3 Weet         0.15-0.3         91/92018         -         0.15-0.3         91/92018         -           21 (+0)         19 (+0)         10 (+0)         7.83         C-3 Weet         0.15-0.3         91/92018         -         0.15-0.3         91/92018         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | indeno(1,2,3-cd)pyrene | 21 (+0) | 18 (+0)                           | 1.25  | C-3 West   | 0.15-0.3               | 9/18/2018   | 0.71  | C-5 West         | 0.3                       | 9/19/2018      |                                                                                                      |                             | 0.2         |                                 | Yes; maximum > LEL                      |
| aphthalene, 2- 21 (+0) 13 (+0) 154 C-5 West 0.3 9/19/2018 1.92 C-4 Centre 0.15-0.3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018 3 9/19/2018                                                                                                                                                                                                                                                                                                                                                                                                           | Methylnaphthalene, 1-  | 21 (+0) | 18 (+0)                           | 0.89  | C-5 West   | 0.3                    | 9/19/2018   | 0.85  | C-4 Centre       | 0.15-0.3                  | 9/19/2018      | 0.05                                                                                                 |                             |             |                                 | Uncertain                               |
| alone         21 (+0)         10 (+0)         12         C-3 Weet         0.15-0.3         9/19/2018         0.45         C-2 Weet         0.15-0.3         9/18/2018         -           Ithrene         21 (+0)         19 (+0)         10         C-3 Weet         0.15-0.3         9/18/2018         4.39         C-2 Weet         0.15-0.3         9/18/2018         -           21 (+0)         19 (+0)         7.83         C-3 Weet         0.15-0.3         9/18/2018         -         9/18/2018         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Methylnaphthalene, 2-  | 21 (+0) | 13 (+0)                           | 1.94  | C-5 West   | 0.3                    | 9/19/2018   | 1.92  | C-4 Centre       | 0.15-0.3                  | 9/19/2018      |                                                                                                      | ,                           |             | 0.0202                          | Yes; maximum > ISQG                     |
| Ithrene         21 (+0)         19 (+0)         10         C-3 Weet         0.15-0.3         9/18/2018         4.39         C-2 Weet         0.15-0.3         9/18/2018         -           21 (+0)         19 (+0)         7.83         C-3 Weet         0.15-0.3         9/18/2018         -         9/18/2018         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Naphthalene            | 21 (+0) | 10 (+0)                           | 1.2   | C-3 West   | 0.15-0.3               | 9/19/2018   | 0.45  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             |             | 0.0346                          | Yes; maximum > ISQG                     |
| 21 (+0) 19 (+0) 7.83 C-3 West 0.15-0.3 9/18/2018 3.69 C-2 West 0.15-0.3 9/18/2018 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Phenanthrene           | 21 (+0) | 19 (+0)                           | 10    | C-3 West   | 0.15-0.3               | 9/18/2018   | 4.39  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             | 95.0        | 0.0419                          | Yes; maximum > LEL                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pyrene                 | 21 (+0) | 19 (+0)                           | 7.83  | C-3 West   | 0.15-0.3               | 9/18/2018   | 3.69  | C-2 West         | 0.15-0.3                  | 9/18/2018      |                                                                                                      |                             | 0.49        | 0.053                           | Yes; maximum > LEL                      |
| PAHs (sum of total) NM NM 47.46 C-3 West 0.15-0.3 9/18/2018 32.77 C-6 Centre 0.3 9/19/2018 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PAHs (sum oftotal)     | W       | WN                                | 47.46 | C-3 West   | 0.15-0.3               | 9/18/2018   | 32.77 | C-6 Centre       | 0.3                       | 9/19/2018      |                                                                                                      |                             | 4           |                                 | Yes; maximum > LEL                      |

TABLE H-1. CONTAMINANTS OF POTENTIAL CONCERN (COPC) SCREENING - DEEPER SEDIMENT (>0.15 mbss) (mg/kg)

City of Hamilton Ecological Risk Assessment – Chedoke Creek

|                             |                                   |                                   |       | SE                    | DIMENT CHAF            | SEDIMENT CHARACTERIZATION | z     |                              |                           |                | SEDIMENT CHARACTERIZATION                |                 |                      | ECOLOGICAL HEALTH SCREENING     | NING               |
|-----------------------------|-----------------------------------|-----------------------------------|-------|-----------------------|------------------------|---------------------------|-------|------------------------------|---------------------------|----------------|------------------------------------------|-----------------|----------------------|---------------------------------|--------------------|
|                             |                                   |                                   |       |                       |                        |                           |       |                              |                           |                |                                          |                 |                      |                                 |                    |
|                             |                                   |                                   |       | Maximum Concentration | ncentration            |                           |       | Second Highest Concentration | oncentration              |                | Background                               | puno            | Screening Benchmarks | tenchmarks                      |                    |
| Contaminant                 | No. of Samples<br>Analyzed (+Dup) | No. of Detectable<br>Conc. (+Dup) | mg/kg | Sample ID             | Sample Depth<br>(mbss) | Sample Date               | mg/kg | Sample ID                    | Sample<br>Depth<br>(mbss) | Sample<br>Date | Table 1 Background<br>Standards for Soil | MOE 2008, 2011ª | ON PSQG LEL          | CCME SedQG Freshwater<br>(ISQG) | COPC?              |
| Nutrients                   |                                   |                                   |       |                       |                        |                           |       |                              |                           |                |                                          |                 |                      |                                 |                    |
| ammonia and ammonium (as N) | 21 (+0)                           | 16 (+0)                           | 200   | C-1 West              | 0.15-0.3               | 9/18/2018                 | 200   | C-2 West                     | 0.15-0.3                  | 9/18/2018      |                                          |                 |                      |                                 | Uncertain          |
| kjeldahl nitrogen total     | 21 (+0)                           | 20 (+0)                           | 1500  | C-5 West              | 0.3                    | 9/19/2018                 | 1400  | C-5 East                     | 0.15-0.3                  | 9/19/2018      |                                          |                 | 550                  |                                 | Yes; maximum > LEL |
| phosphorus                  | 21 (+0)                           | 21 (+0)                           | 1820  | C-5 West              | 0.3                    | 9/19/2018                 | 1760  | C-5 West                     | 0.15-0.3                  | 9/19/2018      |                                          |                 | 009                  |                                 | Yes; maximum > LEL |
| Fecal Coliforms             | 21 (+0)                           | 3 (+0)                            | 0006  | C-3 West              | 0.15-0.3               | 9/18/2018                 | 1000  | C-5 East                     | 0.15-0.3                  | 9/19/2018      |                                          |                 |                      |                                 | Uncertain          |

Modea:
mg/d-milgam per kilogram
mbs- reites below sedment surface
mbs- rentres below sedment surface
PWOO. - Provincial Water Quality Objective
BC CSR - British Columbia Contaminad Site Regulation
COPC - Contaminarior Potential Concern

conc. concentration

Dup. Opplicate

The annual concentration

NM - not neasured - calculated parameter.

\*\* No guideline available, or not selected, as provincial guideline is available.

Value selected for screening.

BOLD

Granting indicates selected screening benchmark

a -Background selection whice the selected screening benchmark

a -Background selection whice it is a selected screening benchmark

benchmark where a available.

Local Polysone, Discourable from MOE 2008 (the great lakes benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark benchmark



## global environmental solutions

Calgary, AB

1185-10201 Southport Rd SW Calgary, AB T2W 4X9 Canada

Tel: (403) 266-2030 Fax: (403) 263-7906

Kamloops, BC

8 West St. Paul Street Kamloops, BC V2C 1G1 Canada

Tel: (250) 374-8749 Fax: (250) 374-8656

Ottawa, ON

400 - 2301 St. Laurent Blvd. Ottawa, ON K1G 4J7 Canada

Tel: (613) 725-1777 Fax: (905) 415-1019

Toronto, ON

36 King Street East, 4th Floor Toronto, ON M5C 3B2 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Winnipeg, MB

1353 Kenaston Boulevard Winnipeg, MB R3P 2P2 Canada

Tel: (204) 477-1848 Fax: (204) 475-1649

Edmonton. AB

6940 Roper Road Edmonton, AB T6B 3H9 Canada

Tel: (780) 490-7893 Fax: (780) 490-7819

Kelowna, BC

107 - 1726 Dolphin Avenue Kelowna, BC V1Y 9R9 Canada

Tel: (250) 762-7202 Fax: (250) 763-7303

Prince George, BC

1586 Ogilvie Street Prince George, BC V2N 1W9 Canada

Tel: (250) 562-4452 Fax: (250) 562-4458

Vancouver, BC (Head Office)

200-1620 West 8th Avenue Vancouver, BC V6J 1V4 Canada

Tel: (604) 738-2500 Fax: (604) 738-2508

Yellowknife, NT

1B Coronation Drive Yellowknife, NT X1A 0G5 Canada

Tel: (867) 688-2847

Guelph, ON

105 - 150 Research Lane Guelph, ON N1G 4T2 Canada

Tel: (226) 706-8080 Fax: (226) 706-8081

Markham, ON

200 - 300 Town Centre Blvd Markham, ON L3R 5Z6 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Regina, SK

1048 Winnipeg Street Regina, SK S4R 8P8 Canada

Tel: (306) 525-4690 Fax (306) 525-4691

Victoria, BC

303 - 3960 Quadra Street Victoria, BC V8X 4A3 Canada

Tel: (250) 475-9595 Fax: (250) 475-9596 Grande Prairie, AB

9905 97 Avenue Grande Prairie, AB T8V 0N2 Canada

Tel: (780) 513-6819 Fax: (780) 513-6821

Nanaimo, BC

9 - 6421 Applecross Road Nanaimo, BC V9V 1N1 Canada

Tel: (250) 390-5050 Fax: (250) 390-5042

Saskatoon, SK

620-3530 Millar Avenue Saskatoon, SK S7P 0B6 Canada

Tel: (306) 374-6800 Fax: (306) 374-6077

Whitehorse, YT

6131 6th Avenue Whitehorse, YT Y1A 1N2 Canada

Tel: (867) 688-2847













